
HYBRID LATTICE REDUCTION ALGORITHM AND ITS IMPLEMENTATION ON
AN SDR BASEBAND PROCESSOR FOR LTE

Ubaid Ahmad, Min Li, Sofie Pollin, Amir Amin, Liesbet Van der Perre, Rudy Lauwereins
Interuniversity Micro-Electronics Center (IMEC) vzw

Kapeldreef-75, Leuven, B-3001, Belgium
email: {ubaid, limin, pollins, aminamir, vdperre, lauwerei}@imec.be

ABSTRACT
Lattice Reduction (LR) is a promising technique to improve
the performance of linear MIMO detectors. This paper
proposes a Hybrid LR algorithm (HLR), which is a scal-
able LR algorithm. HLR is specifically designed and op-
timised to exploit ILP and DLP features offered by paral-
lel programmable baseband architectures. Abundant vector-
parallelism in HLR is enabled with highly-regular and deter-
ministic data-flow. Hence, HLR can be easily parallelized
and efficiently mapped on Software Defined Radio (SDR)
baseband architectures. HLR can be adapted to operate in
two different modes to achieve the best performance/cycle
trade-off, which is highly desirable for SDR baseband pro-
cessing. The proposed algorithm has been evaluated in the
context of 3GPP-LTE and implemented on ADRES which
is a Coarse Grain Reconfigurable Array (CGRA) processor.
Most of the previously reported implementations of LR al-
gorithms are for ASIC or FPGA. However, to the best of au-
thor’s knowledge, this is the first reported LR algorithm ex-
plicitly designed and optimized, to have a scalable and adap-
tive implementation for a CGRA processor like ADRES. The
reported implementation of HLR can achieve gains of up to
12 dB compared to ZF for MIMO detection.

1. INTRODUCTION
The optimal solution to the MIMO detection problem is the
Maximum Likelihood (ML) detector. A brute force ML de-
tector implementation requires exhaustive search over all the
possible transmitted symbols so its complexity increases ex-
ponentially with the number of antennas and the signal con-
stellation. The challenge is to have MIMO detectors that can
achieve performance comparable to the ML detector while
having a lower complexity. Linear Multiple Input Multiple
Output (MIMO) detectors, such as Zero Forcing (ZF) or Min-
imum Mean Square Error (MMSE), are attractive choices for
MIMO detection due to their low computational cost. How-
ever, they cannot efficiently remove the inter-stream interfer-
ence and suffer from noise amplification. Lattice Reduction
(LR) has been proposed [1] to improve the performance of a
sub-optimal detector for MIMO systems. Linear transforma-
tions on the MIMO channel matrix are performed to make
it more orthogonal. As a result, for a given MIMO detector,
the multiple received streams can be correctly detected with
a higher probability. LR-based linear ZF/MMSE detectors
have been proposed in [1] [2]. A well known technique to
compute the reduced lattice basis is the LLL algorithm [3].
Complex LLL (CLLL) algorithm has been proposed [4] as a
variant of LLL algorithm for MIMO processing.

In the context of implementation, majority of the exist-
ing LR algorithms are not designed for efficient mapping

on parallel programmable architectures. Implementations of
these algorithms reported for ASIC [5] and FPGA [6] [7]
[8] are essentially sequential and non-deterministic. These
algorithms are not suited for parallelism because of irregu-
lar data-flow, non-deterministic control flow, and extensive
memory-shuffling. These drawbacks will result in very low
resource-utilization of parallel programmable architectures.
Besides this, they can not be adapted to achieve various per-
formance complexity trade-offs, which is required to uti-
lize the potential offered by an SDR. Majority of the exit-
ing work on lattice reduction algorithms aim at improving
performance while sacrificing computational complexity and
vice versa. However, an adaptive LR algorithm is required
for SDR.

The main contribution of this paper is a Hybrid LR
(HLR) algorithm. In the proposed algorithm we introduce
enhancements to our previously reported work [9] to make
it adaptive for implementation on an SDR baseband proces-
sor so that performance/cycle trade-offs can be made in an
efficient manner. The algorithm is designed such that compu-
tationally expensive parts of LR can be executed simultane-
ously. Hence, LR can be performed on a block of sub-carriers
in parallel. This improves the processing throughput sig-
nificantly while making the algorithm suitable for a parallel
implementation. On the other hand, deterministic data-flow
can account for DLP. In addition, HLR offers both design-
time as well as run-time scalability. At the design time,
HLR can be initialized for DLP offered by a parallel pro-
grammable architecture while run-time scalability provides
performance/complexity trade-off [9]. The algorithm is op-
timised to have an implementation that can adapt between
two different modes to provide the best possible performance
while consuming minimum cycles. Thus, our algorithm can
operate in different scalability modes in an adaptive fash-
ion. For performance evaluation, HLR is implemented on
ADRES [10] which is a CGRA processor for LTE baseband
processing.

The remainder of this paper is organized as follows: re-
maining of this section describes the system model and LR-
aided MIMO detection. The HLR algorithm is proposed in
Section 2, while Section 3 details the implementation of our
proposed algorithm on ADRES. Experimental results are re-
ported in Section 4. Afterwards, conclusions are drawn in
Section 5.

1.1 Lattice Reduction-aided MIMO Detection

Consider a spatially multiplexed MIMO system with M
transmit and N receive antennas denoted as M×N. The vec-

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 91

tor of received symbols y ∈ CN×1 is given as

y=Hx+n, (1)

where x ∈ CM×1 denotes the vector of transmitted symbols
taken independently from a Quadrature Amplitude Modula-
tion (QAM) constellation with E

[
xxH

]
= 1, and n ∈ CN×1

is the vector of independent complex Gaussian noise sam-
ples where ni ∼ N(0,σ2) for 1 ≤ i≤M. H ∈CN×M denotes
the MIMO channel matrix and is considered to be perfectly
known at the receiver.

H is assumed to be column full-rank then the columns
hi,1 ≤ i ≤M, of the channel matrix H, can be seen as gen-
erator basis matrix for an M dimensional complex lattice
L(H) ∈ CN×1. CN×1 consists of all integer linear combina-
tions of the set of linearly independent basis column vectors,
hi i.e.

L(H) =

{

Hα =
M

∑
i=1

hiαi. | αi ∈ CZ for 1 ≤ i≤M

}

The possible set of basis vectors of lattice L can be infinite.
The main idea behind LR is to obtain a reduced (i.e., or-
thogonal basis) generator basis H for the same lattice L in
order to improve the performance of a linear equalizer [1].
H and H̃ generate the same lattice i.e. L(H) = L(H̃), if
H̃ = HT where T ∈ CM×M is a uni-modular matrix with
det(T) =±1.

A well known approach to generate the transformation
matrix T is the LLL algorithm [3]. The basis matrix H can
be represented as a product of an M×N matrix Q and an
M×M matrix R with H =QR, where Q is unitary and R
is upper triangular matrix. With respect to the QR decompo-
sition, hk is almost orthogonal to the sub space spanned by
h1,...,hk−1, if

∣∣R1,k
∣∣ ,...,

∣∣Rk−1,k
∣∣ are small compared to Rk,k,

where 2 ≤ k ≤M, [2].
Definition(Lenstra-Lenstra-Lovasz-Reduced) : A ba-

sis H̃ with QR decomposition H̃ = Q̃R̃ is called LLL-
reduced with parameter δ -see [2] [4], if

∣∣∣R̃l,k

∣∣∣≤
1
2

∣∣∣R̃l,l

∣∣∣ ∀l where 1 ≤ l < k≤M (2)

and

δ
∣∣∣R̃k−1,k−1

∣∣∣
2
≤
∣∣∣R̃k,k

∣∣∣
2
+
∣∣∣R̃k−1,k

∣∣∣
2
∀k where 2 ≤ k ≤M

(3)

2. HYBRID LATTICE REDUCTION ALGORITHM
OFDM in LTE converts a frequency selective channel into a
set of independent and parallel flat fading channels. A signif-
icant improvement in processing throughput can be achieved
if LR can be performed on a set of sub-carriers simultane-
ously. This requires a LR algorithm that has a predetermined
run time and a deterministic execution path. A typical imple-
mentation of the CLLL algorithm suffers from the fact that
the complexity and run time is determined by the position
and number of column swaps. Although the CLLL algorithm
can be terminated at intermediate iterations to bound the exe-
cution time, the pre-processing of each channel matrix would

then still follow a different execution path for each iteration.
As a result, a group of channel matrices cannot be reduced
in parallel and an efficient implementation on architectures
supporting vector (parallel) operations is not possible. Our
proposed HLR algorithm, shown in Table 1, introduces nec-
essary modifications in the CLLL algorithm while combining
the best features offered by the well known fixed complex-
ity LLL [11] and Effective LLL [12] algorithm, to overcome
above mentioned shortcomings in a scalable parallel imple-
mentation.

2.1 Modified Effective LLL Algorithm
Effective LLL algorithm was introduced in [12]. A basis is
called effective LLL reduced when,

∣∣∣R̃l,k

∣∣∣≤
1
2

∣∣∣R̃l,l

∣∣∣∀k where 2 ≤ k ≤M, l = k− 1 (4)

and the Lovasz condition (3). In Effective LLL algorithm,
a basis is size reduced against only the previous one before
Lovasz condition checking, i.e. hk is size reduced against
hk−1 (lines (9-13)) Table 1. Size reducing basis hk against
hk−2...h1 for k = 3, ..,M is performed at the end of the algo-
rithm (lines (45-51)). Moving of intermediate size reduction
operations to the end of the algorithm significantly reduces
the complexity compared to CLLL [12]. The final size reduc-
tion (lines (45-51)) does not contain any conditional state-
ments so they can be very efficiently pipelined on a parallel
programmable processor for better resource utilization.

The swap condition for CLLL, known as the Lovasz con-
dition is given by (3). A direct implementation of the Lovasz
condition requires significant computational resources. This
can be avoided by using Siegel condition [6] instead of
Lovasz condition. Dividing both sides of (3) by Rk−1,k−1 and
using the fact (4) is already true before Lovasz test, (5) can be
used for condition checking. The parameter δ = [(1/2,1]] in
Lovasz test gives the parameter α = [2,4] in Siegel condition
[13],

∣∣∣R̃k−1,k−1

∣∣∣
2
≤ α

∣∣∣R̃k,k

∣∣∣
2
∀k where 2 ≤ k ≤M (5)

In the current implementation we set α = 2. By doing
this Siegel condition can be evaluated by simple bit shift
and a comparison in fixed point implementation which re-
duces computational complexity. Since, there are significant
number of column swaps in the first few iterations of CLLL,
we modify HLR for SIMD architectures in such a way that
column swaps and Givens rotations are always performed.
Later, Siegel condition is evaluated (line (29)) Table 1, and
if satisfied matrices QT , R, T are updated (lines (31-33)).
This is required for parallel implementation of Givens rota-
tions. By this modification LR can be performed on a block
of adjacent sub-carriers in parallel. As described above, the
CLLL algorithm has an un-deterministic data-flow caused
by the column swaps. The number and sequence of column
swaps depends on the input R̃. To avoid this, HLR uses the
approach proposed in [11]. A pre-determined sequence of k
values (i.e. sequence of column swaps) is traversed (line(8-
36)). As a result of this pre-determined fixed execution order,
LR iterations can be performed on a number of sub-carriers
simultaneously. The total number of iterations are bounded
above by Nmax (line(4)). This feature is required for imple-
mentation on a pipelined parallel hardware.

92

Table 1: Hybrid Lattice Reduction Algorithm
INPUT: QT , R, T OUTPUT: Q̃T ,R̃,T̃

1: Initialization:Q̃T :=QT ,R̃ :=R,T̃ :=T
2: Switch := Mode1 or Mode2
3: Niter := 0,exit := FALSE,exit := FALSE
4: while Niter ≤ Nmax AND exit = FALSE
5: for i= 1 to 8
6: flag := 0
7: k := 2
8: while k≤M
9: l = k− 1

10: µ =
⌈
R̃l,k/R̃l,l

⌋

11: R̃(1 : l,k) := R̃(1 : l,k)− µR̃(1 : l, l)
12: T(:,k) :=T(:,k)− µT(:, l)
13: if Switch:=Mode1
14: for l = k− 2 to 1 step −1
15: µ =

⌈
R̃l,k/R̃l,l

⌋

16: R̃(1 : l,k) := R̃(1 : l,k)−µR̃(1 : l, l)
17: T(:,k) :=T(:,k)− µT(:, l)
18: end
19: end
20: R̃c(k− 1 : k,k− 1)← R̃(k− 1 : k,k)
21: R̃c(k− 1 : k,k)← R̃(k− 1 : k,k− 1)
22: R̃c(k−1 : k,k+1 : M)← R̃(k−1 : k,k+1 :

M)

23: T̃c(:,k− 1)← T̃(:,k)
24: T̃c(:,k)← T̃(:,k− 1)
25: Q̃T

c (k− 1 : k, :)← Q̃T (k− 1 : k, :)

26: Θ=

[
α β
−β α

]
with

α= R̃c(k−1,k−1)
‖R̃c(k−1:k,k−1)‖

β= R̃c(k,k−1)
‖R̃c(k−1:k,k−1)‖

27: R̃c(k−1 : k,k−1 :M) :=ΘR̃c(k−1 : k,k−
1 : M)

28: Q̃T
c (k− 1 : k, :) :=ΘQ̃T

c (k− 1 : k, :)

29: if
∣∣∣R̃(k− 1,k− 1)

∣∣∣
2
> 2

∣∣∣R̃(k,k)
∣∣∣
2

30: flag := 1
31: R̃(k−1 : k,k−1 :M)← R̃c(k−1 : k,k−

1 : M)
32: T̃(:,k− 1 : k)← T̃c(:,k− 1 : k)
33: Q̃T (k− 1 : k, :)← Q̃T

c (k− 1 : k, :)
34: end
35: k := k+ 1
36: end
37: V(1, i) := flag
38: end
39: Niter := Niter+ 1
40: if sum(V(1, :)≤ NLT
41: exit := TRUE
42: end
43: end
44: if Switch:=Mode2
45: for k = 3 toM step 1
46: for l = k− 2 to 1 step −1
47: µ =

⌈
R̃l,k/R̃l,l

⌋

48: R̃(1 : l,k) := R̃(1 : l,k)− µR̃(1 : l, l)
49: T(:,k) :=T(:,k)− µT(:, l)
50: end
51: end
52: end
OUTPUT: T satisfying H̃=HT

2.2 Adaptive Hybrid Approach
A combination of the above mentioned features, offered by
Effective LLL [12] and the Fixed Complexity LLL [11], is
required for an efficient implementation on a parallel base-
band processor. To utilise the potential of SDR, HLR can
adapt between these algorithms by the switch (line (13 and
44)) Table 1. Later on, we show, with experimental results,
that operating in one Mode always cannot achieve the best
performance/cycle trade-off. The performance requirements
of an SDR are always changing so this feature provides run-
time adaptability.

2.3 Run-Time Scalability
In OFDM, especially in LTE, adjacent sub-carriers are
spaced very closely together and hence within the coher-
ence bandwidth. Assume that the block size, or the num-
ber of channel matrices, to be processed in parallel is cho-
sen to be small or within the coherence time. Then, these
channel matrices are likely to have a similar execution time
with a similar position and number of column swaps. Based
on this, a simplified exit criterion i.e. Number of Lattice
Thresholding(NLT) [9] is defined for a block of sub-carriers.
When NLT is set to 4 (line (40)) Table 1 HLR terminates as
soon as half of the R̃ in a block gets LR reduced according to
the criteria given by (4) and (5) before the bounded run-time
Nmax is reached. NLT value of 1 means that all the R̃ gets
reduced if an unbounded run-time is allowed.

3. IMPLEMENTATION ON ADRES
The presented work is based on the ADRES ASIP template
[10]. As shown in Fig.1, the parameterizable template con-
sists of an array of densely interconnected FUs that have lo-
cal Register Files (RF) and configuration loop buffer. Using
the ADRES template, we can design an ASIP with extensive
parallelism by combining ILP and DLP. By changing the size
of the array (number of FUs), we can tune the amount of sup-
ported ILP. By changing the number of SIMD slots in each
FU, we can tune the amount of supported DLP. In our work,
ADRES ASIP template is instantiated for 8-way SIMD and
a block size of 8 sub-carriers is chosen for HLR to be lattice
reduced simultaneously. Division and inverse square-root are
computationally intensive operations and both are required in
majority of LR algorithms. Division is present in the compu-
tation of µ =

⌈
R̃l,k/R̃l,l

⌋
(line (10)). Division is followed by

rounding so it can be replaced by comparisons. In the current
implementation, we restrict the values of µ = [0,1,2,3,4],
simulation results show that restricting the values of µ has
negligible effect on the BER performance. µ can be calcu-
lated as,

∣∣R̃l,k)
∣∣≥ β

∣∣R̃l,l
∣∣ , where β = [0.5,1.5,2.5,3.5]

µ = β + 0.5

This eliminates the need of a divider unit and µ can be cal-
culated by bit shifts, additions and a comparison. This has
significant savings in terms of CPU cycles. By this ap-
proach, µ can be calculated for different sub-carriers in paral-
lel. The inverse of square-root is required in the computation
of the Givens Rotation (line (26)). A well known method for
computing inverse of square root to arbitrary precision in-
volves Newton-Raphson iterations. For example, to compute

93

Figure 1: ADRES

x = 1/sqrt(b) for b > 0. Initial estimate x0 is calculated by
linear approximation using a Look-up-table LUT, x0 is then
further refined iteratively using the following Newton Raph-
son equation:

xi+1 = 0.5xi(3− bxi)

A 16 byte LUT for initial approximation and 2 iterations of
the above equation are used for finding the inverse square-
root up to a precision of 1 LSB in the current implementa-
tion.

4. EXPERIMENTAL RESULTS

In this section, we provide performance comparison of HLR
to CLLL when used with ZF. A 4x4 MIMO system, with the
LTE Urban micro channel at a user mobility of 3km/h is con-
sidered. Simulations are carried out for block size of 8 sub-
carriers and the ADRES ASIP template is instantiated for 8
way SIMD. The effect of choosing the scalability parameters
Nmax, NLT and switching between Mode 1 and Mode 2 is
also demonstrated.

4.1 BER Performance

In Fig.2 and Fig.3, BER performance of ZF using different
LR algorithms is plotted. Nmax = 4 and Nmax = 8 is consid-
ered for HLR in Fig.2 and Fig.3, respectively. BER perfor-
mance of both the MATLAB and fixed-point ADRES imple-
mentation of HLR are reported. In the current implementa-
tion 16-bit saturation quantization is used. The simulations
show that, when HLR in Mode 2 is used with Nmax = 4 and
NLT = 1, gain from ZF is 8dB at a BER of 10−3 Fig.2. When
HLR is switched from Mode 2 to Mode 1, the difference be-
tween CLLL and HLR decreases further. Fig.2 shows that
the HLR is less than 2dB away from CLLL at a BER of 10−3

in Mode 1. As Nmax is increased to 8 and NLT = 1, HLR
in both Modes is less than 1dB away from CLLL, Fig.3, at
a BER of 10−3. The scalability parameters Nmax and NLT
both can be adjusted at run-time to achieve the required per-
formance.

10 12 14 16 18 20 22 24 26 28 30
10−4

10−3

10−2

10−1

SNR

U
nc

od
ed

 B
ER

BER performance − Urban Micro LTE − Nmax = 4, NLT = 1

ZF
HLR Mode 2 (ADRES)
HLR Mode 2 (MATLAB)
HLR Mode 1 (ADRES)
HLR Mode 1 (MATLAB)
CLLL−ZF
ML

Figure 2: Uncoded BER of a 4x4 16-QAM MIMO system,
Urban micro LTE channel at Speed = 3 km/h LR algorithms
with ZF

4.2 Implementation
The proposed implementation provides both design-time and
run-time scalability. At design-time, any block size can be
chosen depending on DLP offered by the available architec-
ture and at run-time bothNmax andNLT can be chosen to pro-
vide the desired performance/complexity tradeoff. Besides
HLR can switch between two different Modes to provide the
best performance/complexity trade-off. Fig. 4 shows the

10 12 14 16 18 20 22 24 26 28 30
10−4

10−3

10−2

10−1

SNR

U
nc

od
ed

 B
ER

BER performance − Urban Micro LTE − Nmax = 8, NLT = 1

ZF
 HLR Mode 2 (ADRES)
HLR Mode 2 (MATLAB)
HLR Mode 1 (ADRES)
HLR Mode 1 (MATLAB)
CLLL − ZF
ML

Figure 3: Uncoded BER of a 4x4 16-QAM MIMO system,
Urban micro LTE channel at Speed = 3 km/h LR algorithms
with ZF

average number of cycles per sub-carrier required by HLR
(Mode1 and Mode 2) and the degradation in terms of BER
from CLLL for different values of Nmax and NLT . In Fig.
4, values of Nmax = [4,6,8] are shown by the three points
on each individual curve (left to right). This clearly shows
that the run-time adaptation to operate at various imple-
mentation points is required for efficient performance. The
scalable parameters Nmax ,NLT ; and the adaptive switching

94

between Mode1 and Mode2 can be used for the best per-
formance/complexity trade-off shown by optimal operation
points in Fig. 4. Implementation results are summarized

120 125 130 135 140 145 150 155 160 165
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Cycles

SN
R

Lo
ss

 @
 1

E−
3

(C
om

pa
rin

g
to

 C
LL

L)

HLR in different Modes − 16QAM Urban Micro LTE

Mode 2, NLT = 4
Mode 1, NLT = 4
Mode 1, NLT = 1
Mode 2, NLT = 1
Optimal operation points

Figure 4: 4x4 16-QAM MIMO system, Performance - Cy-
cles Tradeoff curves

in Table 2 in comparison with the previously reported de-
signs [8] [6] [5] and our previous implementation [9]. Our
LR implementation shows a clear advantage in terms of aver-
age clock cycles per LR when compared to the non-scalable
FPGA [8] [6] as well as the scalable ASIC [5] implementa-
tions of LR algorithms, respectively.

LLL [8] CA [6] I-SCNT-LR [5] SBP-LR [9] HLR
Platform Virtex-4 Virtex-II Pro 0.65nm ASIC ADRES ADRES
Clock freq.(MHz) 140 100 400 600 600
Avg. Cycles per LR 130 420 713 104 130
Avg. Time per LR (µs) 0.93 4.20 1.78 0.17 0.21

Table 2: Comparison of HLR to different implementations

5. CONCLUSION
In this work, an algorithm architecture co-design approach
is followed to propose a Hybrid LR (HLR) algorithm. Deter-
ministic data-flow and predetermined execution time of HLR
allows for its efficient parallelized mapping on any parallel
programmable SDR baseband processor (ADRES in our im-
plementation). Simulation results for 3GPP-LTE show that
the HLR can be configured to operate in different modes
to achieve efficient performance/cycles trade-off. HLR-ZF
can provide SNR gains of up to 12dB when compared to
linear-ZF. Additionally, improved execution times are attain-
able compared to the previously reported FPGA and ASIC
implementations of lattice reduction algorithms by enabling
parallel processing.

REFERENCES

[1] H. Yao and G. Wornell, “Lattice-reduction-aided de-
tectors for mimo communication systems,” in Global
Telecommunications Conference, 2002. GLOBECOM
’02. IEEE, vol. 1, 17-21 2002, pp. 424 – 428 vol.1.

[2] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kam-
meyer, “Mmse-based lattice-reduction for near-ml de-

tection of mimo systems,” in Smart Antennas, 2004.
ITG Workshop on, 18-19 2004, pp. 106 – 113.

[3] A. K. Lenstra, H. W. Lenstra, and J. L. Lovasz, “Fac-
toring polynomials with rational coefficients,” in Math.
Ann., vol. 261, 1982, p. 515534.

[4] Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice
reduction algorithm for low-complexity full-diversity
mimo detection,” Signal Processing, IEEE Transac-
tions on, vol. 57, no. 7, pp. 2701 –2710, july 2009.

[5] D. Wu, J. Eilert, and D. Liu, “A programmable lattice-
reduction aided detector for mimo-ofdma,” in Circuits
and Systems for Communications, 2008. ICCSC 2008.
4th IEEE International Conference on, 26-28 2008, pp.
293 –297.

[6] L. Barbero, D. Milliner, T. Ratnarajah, J. Barry, and
C. Cowan, “Rapid prototyping of clarkson’s lattice re-
duction for mimo detection,” inCommunications, 2009.
ICC ’09. IEEE International Conference on, 14-18
2009, pp. 1 –5.

[7] B. Gestner, W. Zhang, X. Ma, and D. Anderson, “Vlsi
implementation of an effective lattice reduction algo-
rithm with fixed-point considerations,” in Acoustics,
Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on, 19-24 2009, pp. 577
–580.

[8] ——, “Vlsi implementation of a lattice reduction algo-
rithm for low-complexity equalization,” in Circuits and
Systems for Communications, 2008. ICCSC 2008. 4th
IEEE International Conference on, 26-28 2008, pp. 643
–647.

[9] U. Ahmad, A. Amin, M. Li, S. Pollin, L. Van der Perre,
and F. Catthoor, “Scalable block-based parallel lattice
reduction algorithm for an sdr baseband processor,” in
Communications, 2011. ICC ’11. to appear in IEEE In-
ternational Conference on, 2011.

[10] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and
R. Lauwereins, “Architecture exploration for a recon-
figurable architecture template,” Design Test of Com-
puters, IEEE, vol. 22, no. 2, pp. 90 – 101, mar. 2005.

[11] H. Vetter, V. Ponnampalam, M. Sandell, and P. Hoe-
her, “Fixed complexity lll algorithm,” Signal Process-
ing, IEEE Transactions on, vol. 57, no. 4, pp. 1634 –
1637, april 2009.

[12] C. Ling and N. Howgrave-Graham, “Effective lll reduc-
tion for lattice decoding,” in Information Theory, 2007.
ISIT 2007. IEEE International Symposium on, 2007,
pp. 196 –200.

[13] B. Gestner, W. Zhang, X. Ma, and D. V. Anderson,
“Lattice reduction for mimo detection: From theoret-
ical analysis to hardware realization,” Circuits and Sys-
tems I: Regular Papers, IEEE Transactions on, 2010.

95

