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ABSTRACT

Location sensing is fundamental for supporting wireless
communications services. This paper exploits the signal cor-
relation structure observed in an indoor localization envi-
ronment in order to provide accurate position estimation by
means of a limited amount of signal-strength measurements.
Because the mobile devices have limited processing power
and battery capacity, the proposed received signal-strength
localization protocol avoids putting on extra computational
overhead on the mobile device by performing the position es-
timation at the Access Points (APs). Since the APs observe
correlated signals from the mobile devices, the introduced
method exploits the common structure of the received mea-
surements in order to jointly estimate the positions precisely.
The evaluation of the proposed protocol is performed on real
laboratory data through experiments that quantify the impact
of the system parameters on the location error.

1. INTRODUCTION

Wireless communication systems are widely deployed to
provide various types of services. Location management is
critical in order to support many fundamental network ser-
vices in medicine, entertainment and commerce. Localiza-
tion or location sensing is a process to determine the physical
position of a mobile user and can be accomplished through
the efficient gathering of locally correlated network data [1].

Some of the existing localization systems are based on
the signal strength transmitted from the APs and require the
user to compute its own position. On the other hand, some
systems consider the periodic broadcasting of the mobile
users and compute their positions remotely, in a central unit
or at a specific AP. In a typical scenario, a number of APs
capture signals transmitted from several mobile users. Then,
the received signals are combined to estimate the positions
of the nodes.

Current literature shows a growing interest on leveraging
existing infrastructure (e.g., WiFi access points), to perform
location sensing [2]. The main advantage is the avoidance of
the cost of deploying extra specialized infrastructure for lo-
calization. The majority of the signal-strength based systems
can be classified into two categories, namely map-based and
distance-prediction based.

Distance-prediction based systems estimate the position
of a mobile user by measuring its distances from multiple ref-
erence points (e.g., APs, anchor nodes) according to a known
radio propagation model. The main challenge arising in these
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systems is the difficulty to formulate a reliable radio propaga-
tion model due to the shadow fading, low probability of line-
of-sight (LOS) path, and specific parameters (floor layout,
moving objects) that appear in an indoor environment [3].

On the contrary, map-based systems create signature
maps in order to represent the physical space by capturing
the variations of the dynamic nature of indoor radio propa-
gation [4]. The localization process typically consists of two
phases. During the training phase, location fingerprints are
collected from each potential position of the mobile node.
Then, during the runtime phase, the position of the user is
estimated by comparing its runtime signal strength measure-
ments with training observations. Map-based systems are
fairly accurate but they are time consuming due to the train-
ing phase [5].

A significant observation is that the localization problem
presents an inherent sparsity in the space domain. Particu-
larly, if we use a grid-based representation of the physical
space where each cell of the grid indicates a position, we
observe that the mobile location is sparse over the ground
plane. A vector is called sparse if its elements are mostly
zeros in a certain domain. The sparse nature of the problem
motivated us to explore the compressed sensing theory (CS)
in order to reformulate the location estimation as a sparse-
approximation problem [6].

Compressed sensing provides a novel framework that al-
lows the recovery of a signal that is sparse under a certain
basis while enabling a significant reduction in the sampling
costs compared to traditional methods. CS is based on the
observation that a small collection of linear projections of a
sparse signal contains enough information for reconstruction.

In [6] we introduced a signal strength based localization
scheme that considers the measurements received at the APs
and offers accurate position estimation when compared with
traditional localization algorithms. In this work, we extend
our previous study by exploiting the intra- and inter- signal
correlation structures present in the localization application
in order to provide accurate signal reconstruction by means
of a limited amount of signal-strength measurements. The
main goal is to reduce the amount of data required for ac-
curate localization in order to minimize the time that a mo-
bile node needs to stay at one position. The collection time
reduction is fundamental in cases where the mobile user is
not willing or permitted to remain stationary for a long time.
Moreover, by performing the localization task at a central
unit, we reduce the energy consumption of the mobile de-
vice. This is important since, in spite of improvements in en-
ergy consumption, battery capacity grows slowly and power
management is still a challenge in mobile computing.
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Considering the above insights, in this paper we apply
the distributed compressed sensing (DCS) theory that rests
on the joint sparsity of a signal ensemble and provides effec-
tive signal recovery by jointly reconstructing all the signals
precisely [7].

The organization of this paper is as follows. Section 2
presents the CS and DCS background. In Section 3, we dis-
cuss the location estimation approach via spatial sparsity and
we introduce the proposed localization framework. The per-
formance of the proposed approach is studied in Section 4,
while we conclude in Section 5.

2. COMPRESSED SENSING BACKGROUND

Compressed sensing builds on the observation that a signal
which has a sparse representation in one basis can be recon-
structed from far fewer data or measurements than what is
assumed by the Nyquist-Shannon sampling theorem [8, 9].
Denote the discrete-time signal x, an D×1 column vector in
R

D that can be represented in terms of a basis Ψ of D× 1
vectors {ψi}

D
i=1 such that

x=Ψb, (1)

where b is an D×1 column vector with K non-zero elements
(‖b‖0 = K). The signal x is called K-sparse if it is a linear
combination of only K basis vectors, where K≪ D.

CS exploits sparsity to acquire a compressive signal rep-
resentation without collecting D samples. Particularly, the
original signal is reconstructed by considering M linear pro-
jections y(m) = 〈x,φ T

m 〉 of the signal x into M measurement

basis vectors {φm}
M
m=1. The symbol T denotes the transpose

of the vector and 〈·, ·〉 denotes the inner product. We can
represent the measurement y(m) in a M×1 vector y and the

measurement basis vectors φ T
m as rows in a M×D matrix Φ.

Therefore, the measurement process can be written as

y =Φx=ΦΨb. (2)

An essential requirement is that the rows {φm} of Φ cannot
sparsely represent the columns {ψi} of Ψ (incoherence prop-
erty). It has been proved that independent and identically
distributed (i.i.d.) Gaussian or Bernoulli vectors provide uni-
versal measurement bases that are incoherent with any basis
matrix Ψ with high probability.

When the above conditions hold, the original sparse vec-
tor b can be recovered as the solution of an ℓ1 optimization
problem:

b̂= argmin‖b‖1 s.t. y =ΦΨb. (3)

Commonly used approaches to solve (3) are based on con-
vex relaxation and greedy strategies such as the Orthogonal
Matching Pursuit (OMP) [10].

The principles of the CS theory have been applied for sig-
nal reconstruction, detection and classification by exploiting
the intra-signal structures at a single collection point (e.g.,
a sensor). Multiple collection points usually capture related
phenomena and a joint structure is expected for the signals
ensemble, in addition to the intra-signal correlation between
the individual measurements. Recently, the authors in [7] in-
troduced a theory for distributed compressed sensing (DCS)
that exploits both intra- and inter-signal correlation struc-
tures. DCS considers the joint sparsity of a signal ensemble
to obtain accurate signal reconstruction.

Three models for jointly sparse signals have been intro-
duced and algorithms for joint recovery have been proposed
[7]. According to the first model, all signals share a common
sparse component but they have sparse innovations compo-
nents that are unique to each signal. This situation arises in
applications where global signal processes affect all sensors
while local noise affects individual sensors, e.g., a network of
multiple microphones placed in a venue. The second model
describes signals that are constructed from the same sparse
set of basis vectors but with different coefficients. This is the
case in our indoor positioning application where the signals
are sparse in the spatial domain, yet different propagation
path losses cause different attenuations among the received
signals at each AP. In this case, accurate recovery is achieved
via the DCS-SOMP algorithm [11]. Finally, the third model
is an extension of the first model in that the common compo-
nent need not be sparse in any basis.

3. INDOOR LOCALIZATION VIA SPATIAL
SPARSITY

In our setting, we consider a WLAN scenario where a set
of APs are connected and one mobile node, equipped with
an active wireless adapter card, is located in an indoor envi-
ronment. An AP that listens to a channel receives the bea-
cons sent by the mobile user (at that channel) periodically
and records its received signal strength indicator (RSSI) val-
ues. We refer the interested reader to [12] for further details
concerning the characteristics of RSSI.

The location estimation can be obtained by searching for
the sparsest solution of an under-determined linear system
of equations that arises in localization. The location of one
mobile user can be modeled as an 1-sparse vector which is
the case of highest sparsity. Consequently, the CS framework
can be applied to efficiently detect the position of a node.

Recently, independently of our work in [6], another
sparse approximation approach to mobile localization has
been introduced. The authors in [13] propose a two-phase
signal strength based system that applies a CS algorithm to
improve the final estimation. The localization, unlike in our
approach, is performed at the device of the mobile user. More
specifically, the main goal in [13] is to minimize the num-
ber of APs needed for accurate position. Therefore, a mea-
surement basis Φ is defined as an AP selection operator that
considers a subset of available APs. The objective of our
proposed approach is to reduce the number of measurements
needed per AP so as to effectively decrease the time a mobile
device is required to remain stationary at a specific position
in order to be located.

3.1 Proposed Framework

In the indoor localization scenario, the APs measure signals
transmitted from the mobile user that are each individually
sparse in a certain basis and also correlated among the APs.
The goal is to exploit the spatial correlations among the mea-
surements in order to jointly estimate the sparse coefficients
precisely. The joint structure of the signal ensembles at the
APs makes the theory of DCS applicable for indoor posi-
tioning in WLANs (cf. Figure 1). Specifically, the problem
setup follows the same properties associated to the second
joint model, as it was described in Section 2.

Our proposed localization framework consists of two
phases (cf. Figure 2). During the training phase, the char-
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Figure 1: Common sparse support model in a WLAN in-
door environment. Each AP gathers signal-strength vectors
x, transmitted from the mobile users, on its local grid. Each
vector has non-zero coefficients at the positions occupied by
the mobile users.

acteristics of the signal propagation in the indoor environ-
ment are captured. More specifically, the APs gather signal-
strength data from beacons received from a mobile device at
each cell of the grid in order to construct a signature map
of the spatial space. In the runtime phase, each AP collects
RSSI measurements for a period of time, projects its signal
into another incoherent basis and then transmits just a subset
of the resulting coefficients to the central unit. The central
unit collects the RSSI fingerprints from the APs and applies
a Joint Detection Compressed Sensing (JDCS) protocol to
estimate the positions of the mobile devices.

At this point, it is emphasized that in our previous ap-
proach [6], during the runtime phase the APs collect mea-
surements for a period of time and then they compute the
average value. The average RSSI value is sent to the collec-
tion point where the CS algorithm is applied. In the proposed
approach, each AP considers the complete time series of the
RSSI measurements in a cell, in order to represent the sig-
nal’s properties for a given environment.

An AP collects signal strength measurements in order to
locate the mobile node on its local grid. We assume the phys-
ical space of D dimensions and we consider J APs and 1 mo-
bile user (K = 1≪ D). Our objective is to determine the
location n = [x,y]T of the mobile node by detecting the cell
in which he is located.

We discretize the physical space to create a finite set of
cells B = {p1, p2, . . . , pD}. The sparse vector b∈RD selects
elements from B. All elements of b are zero except b(p) =
1, where p is the index of the grid point that corresponds to
the estimated position of node.

During the training phase, each AP j constructs the sig-
nature basis matrix Ψ j where

Ψ j =




P1,1, j P1,2, j · · · P1,D, j

P2,1, j P2,2, j · · · P2,D, j
...

...
. . .

...
PN,1, j PN,2, j · · · PN,D, j


 .

Particularly, each column of Ψ j corresponds to the N re-
ceived RSSI signals the j-th AP perceives from each poten-

Figure 2: Proposed localization framework.

tial location that a node may occupy. We denote the t-th RSSI
sample the j-th AP receives from a node at location k as Pt,k, j.

In the runtime phase, each AP collects RSSI measure-
ments from the mobile node on its local area. We can ex-
press the runtime measurements of the signal x j received at
the j-th AP as:

x j =Ψ jb, (4)

where b is supported on the same B
′ ⊂B and |B′ |= 1. We

observe that all x j signals are 1-sparse and are constructed
from the same elements of signature basis matrix Ψ j but with
different coefficients. Hence, the joint sparsity model 2 in [7]
applies on our case.

Our approach aims to reduce the total number of mea-
surements needed, during the runtime phase, to detect the
sparse coefficients in the common support set. Employing a
reconstruction algorithm in the central unit that exploits the
common structure among the signals will facilitate this task.

During the runtime phase, each AP constructs a random
measurement matrix Φ j ∈ R

M×N , where M is the number of
RSSI measurements each AP receives from the mobile users.
Therefore, the set of RSSI measurements for the mobile de-
vice is expressed as:

y j =Φ jx j =Θ jb j = 1, . . .J, (5)

where Θ j =Φ jΨ j. The set {Φ j}
J
j=1 contains matrices with

i.i.d. random variables from a Gaussian propability density
function with mean zero and variance 1/D. The Gaussian
measurement matrix Φ j is incoherent with the basis matrix
Ψ j with high probability to satisfy the conditions imposed
by the theory of CS (universality property).

The localization process is performed in the central unit
where the location of the mobile node is jointly estimated
via an iterative algorithm. Motivated by recent work [11],
we adapt the DCS-SOMP algorithm to the requirements of
the localization problem (Algorithm 1).

The JDCS algorithm is based on the common sparse sup-
port set among the J APs in order to detect the position of the
mobile user. Particularly, in Step 1 the sparse coefficient vec-
tor b j is estimated for each AP. Because of the joint sparsity,
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Algorithm 1 JDCS

Inputs: Θ j, RSSI measurements y j, j = 1, . . . ,J.
Outputs: Support set B

′

Initialize: B
′ 6= /0

for j = 1 to J do
r j = y j

end for
1. b j←ΘT

j r j, j = 1, . . .J

2. b= ∑
J
j=1 |b j|

3. pl = argmaxb
4. B

′← [B′ pl ]
return B

′

the index of the maximum value of the b j vectors should co-
incide for each AP. In Step 2 the individual absolute b j vec-
tors from each AP are added together, in order to estimate
the position of the coefficient that has the maximum energy
among all the APs. Therefore, in Step 4, the position of the
mobile user is detected as the index that corresponds to the
largest coefficient of vector b. Finally, the detection algo-
rithm returns the set B

′ that contains the estimated position
of the mobile user.

In an indoor environment, the central unit applies the
JDCS algorithm to select elements from the finite set of cells
B. Thanks to the common sparsity of the structure among
the signals, JDCS offers accurate estimates of the position of
the node.

4. EXPERIMENTAL RESULTS

In this Section, we study the performance of the proposed
scheme in terms of location error under different RSSI varia-
tions charasteristics. The location error is defined as the Eu-
clidean distance between the estimated position of the mobile
node and the true one. The purpose of the experiment is to
evaluate the accuracy of the proposed method compared to
traditional localization techniques using real data measure-
ments. The evaluation of the joint compressed sensing local-
ization protocol took place in a laboratory area of 7m×12m.
For this area, a grid-based structure was considered with cells
of size 50cm× 50cm. During the training phase, RSSI ob-
servations from a mobile device were recorded for a period
of 109 seconds. The signature map included measurements
from 109 different cells. If no RSSI observations are found
for a candidate location in the grid at an AP, the correspond-
ing RSSI entry in the signature map is set to -100 dBm. The
experiment involved a total of 13 APs.

Figure 3 indicates the effectiveness of the proposed
framework when compared with two well-known localiza-
tion schemes, the KNN (K = 1) [14] and the Bayesian indoor
localization method [15]. To evaluate the performance of the
algorithms in terms of location error under different signal-
to-noise (SNR) values, we added white Gaussian noise to
the runtime measurements. For each possible position in the
testbed, we performed 100 Monte Carlo simulations for dif-
ferent SNR values. In this experiment, the JDCS algorithm
employs all the available runtime RSSI measurements.

Figure 3 shows that for a certain SNR, the proposed
JDCS method achieves a significant reduction in the location
error when compared to the KNN and the Bayesian localiza-
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Figure 3: Mean location error vs. SNR for the KNN,
Bayesian and the JDCS methods. The JDCS algorithm has
better performance in all cases.
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Figure 4: Mean location error vs. percentage of RSSI
runtime measurements for the Joint Detection Compressed
Sensing localization, for different SNR values.

tion techniques. Particularly, for low SNR (SNR = -110 dB)
values, we observe that the proposed algorithm cuts the mean
location error by approximately 67% and 80% of the value
corresponding to the KNN and the Bayesian algorithms, re-
spectively.

Figure 4 examines the effectiveness of the JDCS algo-
rithm when it uses a different percentage of the total available
runtime RSSI measurements. We observe that as the num-
ber of measurements increases, the accuracy of the proposed
scheme increases, as expected. But interestingly enough,
JDCS achieves its desired accuracy with only 5% to 10% of
the runtime RSSI measurements.

Finally, Figure 5 illustrates the empirical cumulative dis-
tribution function (CDF) curves (P(|X | ≤ x)) of the localiza-
tion error for the three methods and a case of low SNR =
-110 dB. JDCS employs 10% of the available runtime RSSI
measurements. We observe that 73% of the time the location
error of JDCS is less than 0.1 m. On the contrary, the median
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Figure 5: CDF curves (P|X | ≤ x) for the three methods for
low SNR. JDCS considers only 10% of the available runtime
RSSI measurements. Observe that the location error of the
JDCS method is less than 0.1 m 73% of the time.

location error (i.e., the value bellow which 50% of the loca-
tion error fall), is 3 m for the KNN and 5.5 m for the Baysian
classification method.

5. CONCLUSIONS

In this paper, we proposed a received signal strength localiza-
tion protocol that exploits the spatial correlations among the
received measurements in order to jointly estimate the posi-
tions of the mobile users. The proposed method was imple-
mented at the APs in order to reduce the computational over-
head and the energy consumption at the mobile device. The
experimental results validated the proposed Joint Detection
Compressed Sensing approach under different RSSI charac-
teristics.

Future work will investigate the performance of the al-
gorithm in various operational environments. We will focus
on the impact of the environmental conditions on the accu-
racy of the localization protocol. Finally, we are interested
in reformulating the localization algorithm in a decentralized
manner where all APs will participate in location sensing.
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