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ABSTRACT

The paper proposes a new noise reduction technique coun-
teracting noise in path traced images: a filter kernel, referred
to as gradient kernel, is defined exploiting the gradient direc-
tion of particle density of participating media. The gradient
kernel is combined with the bilateral filter, so to enhance it:
the rationale is to perform Monte Carlo noise suppression
while preserving details in path traced images, exploiting the
information inherent in the 3D scenes. The proposed method
is applied to path traced images, the rendering results of mul-
tiple and non-isotropic light scattering in non-homogeneous
participating media. The experimental results show that the
novel approach behaves remarkably well both quantitatively
and qualitatively.

1. INTRODUCTION

A participating medium is composed of a lot of particles.
When the light travels in the medium and interacts with the
particles, the initial light distribution experiences angular,
spatial and temporal spread, causing a complex radiance dis-
tribution. Monte Carlo based global illumination (MCGI)
algorithms is one of the most important methods for realistic
imaging of multiple and anisotropic light scattering in inho-
mogeneous participating media and can give the physically
correct solutions to the light transport problem [1]. MCGI
usually employs path tracing [2]: unfortunately path traced
images suffer from the well known Monte Carlo noise, in
particular when a low sampling rate is used.

Filtering is a good and straightforward way to remove
noise, so it is typically carried out also as a post-processing
stage to remove Monte Carlo noise, by making use of some
classic filters. McCool [3] exploited the anisotropic diffu-
sion approach with the aid of depth and normal informa-
tion. Xu and Pattanaik [4] extended the bilateral filter [5],
by operating Gaussian kernel for each pixel and then apply-
ing the standard bilateral filters. In this paper, a new way
to improve the bilateral filter is proposed, aimed at reducing
Monte Carlo noise in path traced images for 3D scenes —
especially with inhomogeneous participating media. Upon
exploiting the gradient direction of particle density of partic-
ipating media, a function (named gradient kernel function)
is introduced and incorporated into the bilateral filter to help
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remove noise: its main potential comes from that it is com-
plementary to the range kernel adopted in bilateral filter.
The remainder of the paper is organized as follows. In
section 2, the novel filter is described; results are demon-
strated in section 3; finally conclusions are presented.

2. THE PROPOSED FILTER
2.1 Monte Carlo Noise in Path Traced Images

Because each pixel value is obtained stochastically and in-
dependently by Monte Carlo sampling and Monte Carlo in-
tegration, noise always exists in the path traced imagings.
Basically Monte Carlo noise appearing in path traced images
presents as the mixture of inter-pixel incoherence and out-
liers [4] and, even worse, heavy noise may group to form
large noise patches — see Figs. 2(b) and 3(b) as examples.
So, on the one hand, Monte Carlo noise behaves as inter-pixel
incoherence — the pixels in a smooth neighborhood seem to
fluctuate and vary irregularly, and this could be counteracted
by locally averaging pixel values, being somewhat similar to
the classic Gaussian noise. On the other hand, Monte Carlo
noise presents as outliers, pixels noticeably dissimilar to their
neighbors.

Since bilateral filter is based on locally averaging pixel
values, it can smooth additive Gaussian noise well [5] but,
reversely, it is not effective against outliers or impulse noise
[6]. Garnett et al. [6] improved the bilateral filter for the
mixed Gaussian and impulsive noise.

2.2 Rationale of the Proposed Filter

Despite bilateral filter effectively reduces noise, it can not
completely remove it — as shown in the examples Figs. 2(c)
and 3(c). This is due at least to two concurrent factors: the
intrinsic definition of bilateral filtering and the stochastic na-
ture of Monte Carlo imaging. In fact bilateral filtering carries
out denoising process pixel by pixel, considering the neigh-
borhood of each pixel, evaluating both spatial and radiomet-
ric similarity — the latter is fundamental to preserving edges.
Unfortunately the stochastic Monte Carlo process can make
two neighboring pixels, within the same smooth image re-
gion, largely different. As a result the bilateral filter may
keep some noise intact. The proposed goal is to benefit from
the deterministic 3D information drawn from the inhomoge-
neous participating media to improve the bilateral filter by
making it context-aware.
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(a) Cloud

(b) Smoke

Figure 1: Visualization of pixel gradient direction

From here on “surface” is called the boundary between
the participating media and the others in a 3D scene: a 3D
surface can be smooth or frequently fluctuating — as shown
in the areas within the windows with continuous and dotted
lines in Figs. 2(a) and 3(a). Since the non-homogeneous par-
ticipating media include particles in spatially varying density,
the gradient direction of particle density is proposed as a di-
rect indicator of surface contours of participating media. In
essence, close locations have similar gradient directions in a
smooth surface area, and vice versa. Fig. 1 displays the visu-
alization of the pixel gradient directions (a detailed explana-
tion is provided in Section 2.3): different colors correspond
to different gradient directions to vividly depict the surface
contours of participating media — smooth areas do not present
many colors, while areas with high variations illustrate a lot
of them — see Figs. 2(a) and 3(a).

Intuitively the radiometric differences among neighbor-
ing pixels are positively correlated with the differences
among 3D neighbors on the surface of the participating me-
dia, so the vectorial differences (“the distances”) between the
gradient directions of particle density correspond to the con-
tour differences and can be utilized to establish the “gradient
kernel”. The gradient kernel can complement the range ker-
nel and enhance the classic bilateral filter.

2.3 Gradient Kernel and Filtering

The participating media in a 3D scene are described by 3D
volumetric uniform grids with varying density of particles:
each grid includes a description of the gradient direction of
particle density in its center. Path gradient direction is gath-
ered during path tracing for each sample path, as the gradient
direction of particle density at the intersection of the path
with the surface of the participating media. More precisely
gradient direction is computed as a 3D spatial linear inter-
polation of the gradient directions of particle density at the
surrounding grids.

Given the gradient direction of a sample path, the gradi-
ent direction of a pixel is defined as the average on the gradi-
ents of the paths contributing to such pixel.

If Gx and Gy are the normalized gradient directions re-
spectively at the image pixels X and Y, and Oyy is the inter-
section angle of Gx and Gy, the gradient kernel is defined in
the following way:

(1—cos 9Xy)2

we=e % (1)

where og is the typical Gaussian parameter acting on the
shape and regulating the weight of the kernel itself. Qualita-
tively, wg is high when Oy is small, and vice versa, due to
the cosine function; Oxy, the angular difference between Gy
and Gy, varies in the range [0°,180°]. So w¢ is a weighting
function designed on the “distance” between the pixel gradi-
ent directions, and it is, by construction, complementary to
the radiometric difference between the pixels.

Let Ly be the pixel value at a pixel X, and Rx be the set
of pixels in a (2n+ 1) X (2n+ 1) neighborhood of X. wg
is integrated into the bilateral filtering (normally the bilateral
Lyery wowLLy

filter can be defined as Ly = Ty ey WL [5]) to produce the
new filter:
Py — Yyery Wo(WL+wg)Ly )

Yyvery Wo(wr +wg)

where I:X is the restored value of X, Ly is the pixel value of Y
in Ry, and wp and wy, are the standard domain kernel wp =
_ v iy Ly

e 2 and range kernel wy = e 207 (op and oy, are the
Gaussian parameters). The gradient kernel is directly added
to the range kernel because it is functionally compatible and,
due to its complementary definition, it is expected to improve
noise suppression capability.

3. IMPLEMENTATION AND RESULTS

In this section a comparative analysis is carried out between
the proposed solution and 3 filtering approaches relevant to
the application: bilateral filter [S] (Bilateral), extended bi-
lateral filter [4] (Ext-bilateral) and trilateral filter [6] (Trilat-
eral). Just as in the usual Monte Carlo denoising [4], 4 fil-
ters postprocess the indirect illumination component of the
path traced images. Considering that the new filter is specific
for participating media, only the pixels showing participating
media are respectively processed by 4 filters; the other ones
are handled only by the bilateral filter. All the filters use a
window size of 13 x 13 and are run in the CIE-Lab color
space, as suggested in [4] and [5] respectively.

The optimal settings for the new filter have been experi-
mentally determined: op, o and og are 2, 10 and 3 respec-
tively; more in general, op in [2,3] and o in [10,20] work
well, almost in the same way. For each of the filter com-
pared, the parameters have been tested exhaustively to obtain
the best possible result — 6;=2, 6,=20 for the bilateral filter;
o0,=3, 0,=10 for the extended bilateral filter; c5=2 (1st pass)
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Figure 2: Filtered results for Cloud (SPP=64)

(d) Ext-bilateral
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Figure 3: Filtered results for Smoke (SPP=64)

and 2.236 (2nd pass), 6;=40, 0;=50 for the trilateral filter.
As a matter of fact, the optimum filtering parameters used
in this paper depend upon the amounts of noise and image
texture contained in the images, and also upon the surface
contours of participating media: their systematic investiga-
tion is an open topic (though some published studies have
attempted to automatically define the parameters used in the
bilateral filter, see [7] as an example) and will be left for our
future work.

Two sets of test images of size 400 x 400 pixels are based
on two test scenes, Cloud and Smoke, which specifically in-
clude non-homogeneous participating media. The reference
images of the two test scenes by path tracing with 2000 sam-
ples per pixel (spp=2000) are used as the “gold” standard
(ground truth) to quantify the errors of the filtered images,
and the error metric is Root Mean Square (RMS)

n _grefy2 L refya L prefy2
RMS:\/Z,-ZI (L= L)+ (0= P+ (= b)) “

n

Table 1: Comparison of filtered results in RMS and runtime

Cloud Smoke
SPP Method RMS Runtime (s) RMS Runtime (s)
PT 8.62 - 8.15 -
Bilateral 2.09 65 2.23 64
spp=16  Ext-bilateral 1.78 73 2.14 76
Trilateral 1.56 438 2.12 477
Proposed 1.67 76 2.06 78
PT 579 - 5.57 -
Bilateral 1.86 62 1.859 62
spp=36  Ext-bilateral 1.54 72 1.82 75
Trilateral 121 443 1.82 479
Proposed 1.34 75 1.67 78
PT 433 - 423 -
Bilateral 1.66 63 1.74 62
spp=64  Ext-bilateral 1.33 72 1.66 76
Trilateral 1.08 444 1.62 487
Proposed 1.21 75 1.47 79

where (L;,a;,b;) and (L a’’ b/} are the i-th pixel values
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Figure 4: Filtered results for Cloud (SPP=36)
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Figure 5: Filtered results for Smoke (SPP=36)

of the filtered image and of the reference image, defined in
the CIE-Lab color space.

The path traced (PT) images and the filtered images are
shown in Figs. 2-7. It is clear how the bilateral filter leaves
some evident noise untouched, while the proposed filter con-
temporaneously improves noise reduction and edge preserva-
tion. Compared with the extended bilateral filter and the tri-
lateral filter, the proposed one preserves image details largely
better while noise suppression performance is almost the
same.

The 4 filters for the path traced images have been tested
at different noise levels (the images are produced with dif-
ferent spp): the RMS and runtime results (runtime is ob-
tained from our test-bed software in C++ on a Windows PC
with Intel Pentium E2180 2.00GHz CPU and 2GB RAM)
are listed in Table 1. The RMS results by the proposed tech-
nique are mostly better than those by the others, with several
exceptions in which data by the proposed method are a lit-

tle worse than those by the trilateral filter — but, notably, in
these cases the restored images by the trilateral filter are seri-
ously blurred and involve an excessive runtime. The runtime
by the new method is satisfactory — it is less than one-sixth
of that by the trilateral filter, and is only a little worse than
that by the extended bilateral filter.

All in all, the quantitative and qualitative results, and also
the running time achieved by the proposed method are favor-
able, though, some comparable, when compared with those
by the competitive algorithms.

4. CONCLUSIONS

This paper has presented a new filter aimed at counteracting
Monte Carlo noise in path traced imaging of inhomogeneous
participating media. The proposed contribution comes from
the use of the gradient direction of particle density of par-
ticipating media as a condition improving the bilateral filter.
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Figure 6: Filtered results for Cloud (SPP=16)
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Figure 7: Filtered results for Smoke (SPP=16)

Experimental results confirm the improved performance of
noise reduction and edge preservation achieved by the novel
technique.

The proposed technique can be speeded up, for exam-
ple, by using modern hardware such as (Graphics Processing
Unit, GPU): this constitutes our future work.
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