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ABSTRACT 

In this paper, we describe an Acoustic Event Recognition 

(AER) system for locating events of interest in the audio 

stream of multimedia recordings. We focus on two non-

speech acoustic events; bomb explosions and gunfire, which 

typically exist in surveillance videos and are of importance 

in monitoring and alerting applications. Recognition is per-

formed using a discriminative approach based on Support 

Vector Machines (SVM). We compare the new approach to a 

baseline system that utilizes a Hidden Markov Model 

(HMM)-based classification approach. We performed expe-

riments on a corpus of publicly available video files contain-

ing gunfire and explosion events. Our results show that the 

new discriminative approach, when configured to use a rich 

combination of acoustic features, achieves a high retrieval 

precision at a notable recall under noisy conditions. As 

compared to HMM-based system, we achieved 54% relative 

improvement in F-score for explosion recognition with 1.5% 

relative improvement in F-score for gunfire recognition. 

1. INTRODUCTION 

 Video surveillance applications are becoming increa-

singly important both in private and public environments. 

The increase in the number of video cameras for surveil-

lance and security purposes has rendered the manual detec-

tion of events of interest impractical and expensive. For this 

reason, research on automatic surveillance systems has re-

cently received particular attention.  A video can contain a 

wide variety of non-speech events including gunfire, explo-

sion, screams and others. Automatic recognition of these 

events can be used for the alerting of hazardous situation at 

hand. In particular, the use of audio sensors in surveillance 

and monitoring applications has proved to be particularly 

useful for the detection of events like screams and gunfire 

[1], [2]. 

 Audio-based surveillance stems from the field of au-

tomatic audio classification and matching. Traditional tasks 

in this area are speech/music segmentation and classification 

[3] and audio retrieval [4]. Previous approaches on the sub-

ject of acoustic monitoring include cases such as in [1] 

where a gunfire detection system is presented based on fea-

tures derived from the time-frequency domain and a Gaus-

sian Mixture Model (GMM) classifier. The authors use dif-

ferent Signal-to-Noise Ratio (SNR) during the training 

phase for achieving 10% and 5% false rejection and false 

detection rate, respectively.  In [5], they report on building a 

parallel classification system based on GMM for the dis-

crimination of ambient noise, scream and gunfire sounds. 

After a feature selection algorithm, they achieve 90% preci-

sion and an 8% false rejection rate.  

 The main objective of an AER system is to efficiently 

characterize the acoustic environment in terms of the ha-

zardous and non-hazardous conditions while using a single 

microphone sensor; the goal of the system is to help/warn 

authorized personnel to take the appropriate action. In order 

for such an implementation to be useful and practical, it 

must offer high precision while keeping detection accuracy 

as high as possible under noisy conditions. 

 In this paper, we describe two different approaches to 

accurately recognize two types of acoustic non-speech 

events: explosions and gunfire. The first approach is a 

HMM-based system which uses perceptually-inspired 

speech features whereas the second approach is a discrimin-

ative SVM-based system that uses a larger set of traditional 

and novel acoustic features representing non-speech events 

like explosion and gunfire. We performed experiments with 

both these systems using publicly available surveillance data 

and evaluated the accuracy using widely adopted perfor-

mance metrics. 

2. HMM-BASED AER SYSTEM 

 The BBN Large Vocabulary Speech Recognition Sys-

tem consists of an HMM-based speech/non-speech detection 

component which is used for segmentation of input audio 

stream [6]. This component produces an acoustic event de-

scription of the input audio to segment the audio signal into 

regions of speech and non-speech. The component uses 14-

dimensional Mel-frequency Cepstral Coefficients (MFCC), 

along with their derivatives as a 42-dimensional feature vec-

tor. It uses phonemes as detection units, where the speech 

class is modeled in terms of voiced, fricative or obstruent 

units and the non-speech class is modeled in terms of music, 

silence and noise phonetic units. 

 In order to use this component for AER, we adapted 

the system to model explosion and gunfire as additional non-

speech classes along with the existing music, silence and 

noise phonetic classes. The explosion and gunfire models 

were trained using manually segmented and transcribed au-

dio files for such non-speech events. These training tran-

scripts were also used to re-train the language models so as 
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to include these non-speech units in computation of bigram 

and trigram probabilities. Once the models were trained, 

Viterbi decoding was applied to recognize and produce tran-

scriptions of explosion and gunfire events in the audio 

streams. 

3. SVM-BASED AER SYSTEM 

 The HMM-based AER system uses speech perception 

inspired MFCC features for modeling speech as well as non-

speech classes. These MFCC features are designed based on 

the speech spectral structure which is quite different from the 

non-speech acoustic events. For example, acoustic events 

like explosions and gunfire usually exist in the high frequen-

cy regions that are not fully resolved by the Mel-scale filter 

banks. To function accurately, such an AER system needs 

diverse and dynamic, low and high frequency acoustic fea-

tures that represent such non-speech classes efficiently and 

help distinguish between gunfire, explosion and speech [7], 

[8].  

 In the context of a classifier design, a discriminative 

approach may be a better fit to recognize and separate these 

non-speech classes from speech. Discriminative models 

such as Support Vector Machines (SVM) are free of statis-

tical and distributional assumptions and are easily scalable 

to high dimensional feature spaces. Despite their several 

significant advantages, generative models like HMM require 

far more labeled training samples than are usually available 

to model the target classes such as explosions and gunfire 

and are quite sensitive to distributional biases. Moreover, 

SVM natively support binary, categorical and continuous 

valued high-dimensional and sparse features which cannot 

be easily integrated into HMM-based system [9].  

 In this section, we describe a discriminative SVM-

model based AER system which uses diverse low and high 

frequency acoustic features for modeling explosion and gun-

fire acoustic events. 

 

3.1 Algorithm Flowchart 

 Figure 1 shows the procedural flowchart for SVM-

based AER system that recognizes explosion and gunfire 

events in the input audio. The output of the system is a tran-

script with the timestamps of the recognized explosions and 

gunfire events. The algorithm consists of 3 major conceptual 

steps: 

1. Discriminative AER feature extraction 

2. Discriminative classification using SVM 

3. Bottom-up segmental integration 

Each of these steps is discussed in detail in the next sections. 

 

3.2 Feature Extraction 

 In SVM-based AER system, we integrated the 

traditional acoustic features with some novel correlation-

based features that give a measure of the periodicity and 

temporal energy [10]. We computed 6 diverse measures on 

each 60 ms audio frame at a frame rate of 30 ms: 

1) Zero-crossing rate measure is defined as the weighted 

average of the number of times the speech signal 

changes sign within a frame.  

2) Energy measure is the short-time energy obtained by 

squaring the windowed samples in the low frequency 

sub-band signal. 

3) Spectral flatness measure is defined as the ratio of the 

geometric mean to the arithmetic mean of the power 

spectrum. 

4) Forward-backward autocorrelation change is defined 

as the difference between the forward and backward 

prediction of autocorrelation coefficients computed on 

a frame [11]. 

5) Inter-frame autocorrelation change is defined as the 

difference between autocorrelation coefficients 

calculated from 1
st
 half of the frame and those 

calculated from 2
nd

 half of the same frame. 

6) Pitch frequency is the frame-level estimated pitch 

values which may be absent for unvoiced and non-

speech frames. 
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Figure 1 – SVM-based AER System Algorithm Flowchart 
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 The acoustic events such as explosions and gunfire 

usually appear as loud high frequency bursts as compared 

to speech and music which are predominantly quasi-

periodic harmonic events. In order to capture these high and 

low frequency patterns, we split the input audio utterance 

sampled at 16 KHz, into low frequency (LF) (0-4 KHz) and 

high frequency (HF) (4-8 KHz) sub-bands using low-pass 

and high-pass filter respectively. Except for zero-crossing 

rate and pitch measure, we computed all other measures 

separately on these 2 sub-band filtered signals. To 

characterize and compare the feature values across the 2 

sub-band filtered signals and to extract the underlying 

dynamics; we computed absolute differences and ratios 

between the values and augmented the base feature vector. 

A total of 15 base features were then extracted per frame. 

 These base features were min-max normalized to 

bring their values into the [0, 1] range. This normalization 

was based on global minimum and maximum values for each 

feature dimension computed from the entire training set. To 

model the temporal variability of these spurious non-speech 

acoustic events, we expanded the base feature vector across 

frames by concatenating the center feature vector block with 

contextual feature vector blocks symmetrically on both sides. 

We choose the context window size to be large enough to 

reasonably capture the length of an acoustic event like explo-

sion or gunfire. Based on preliminary experiments, we se-

lected a context analysis window consisting of 5 neighboring 

frames before and 5 frames after the center frame for feature 

expansion. Then the final expanded feature dimension was 

equal to 15 x 11 = 165. This 165 dimensional feature vector 

per frame was used as a classification unit in SVM model, 

which is described in the next section. 

 

3.3 SVM Classification 

 The linear SVM is a simple linear discriminative 

model that corresponds to the hyper-plane separating the 

positive class examples from the negative class examples as 

shown conceptually in Figure 2. 

 
Figure 2 – Large-margin discrimination for linearly separable prob-

lems 

 Let 
1{ , , }nx x be the set of n labeled training exam-

ples for a class and let {1, 1}
i

y    be the class label of xi, 

which is a K-dimensional feature vector [12]. The optimal 

separating hyper-plane is represented as the weight vector w, 

found by solving the constrained optimization problem: 

                                
21

2
Minimize w                                (1) 

  1T

i isubject to y w x b i    

 The SVM classifier used in the AER system was 

based on the open-source publicly available SVM
Light

 library 

[13]. In our AER system, we designed 2 one-versus-all SVM 

binary classifiers, (1) to detect gunfire and (2) to detect ex-

plosions. From the labeled gunfire and explosion examples, 

the linear SVM models were trained separately for both 

classes. Then, during decoding, incoming audio utterances 

were split into 60ms frames and each frame was classified as 

gunfire, explosion or everything else. The detection results 

from these binary decision classifiers were smoothened and 

merged via simple segmental integration methods. 

 

3.4 Bottom-up Segmental  Integration 

 We performed acoustic segmental integration step to 

merge the frame-level recognized units into segmental 

units. Based on the training data characteristics, we de-

signed simple heuristic rules for frames-to-segment conver-

sion.  We used the following 2 heuristics: (1) an event must 

exceed a specified minimum duration of frames, and, (2) an 

event segment ends at the last in-class frame if a specified 

minimum number of consecutive out-of-class frames follow 

it. This step resulted into sets of gunfire and explosion seg-

ments which may or may not be overlapping in timestamps. 

Finally, these explosion and gunfire segments were merged 

into a single sequence of segments, resolving overlaps by 

using a simple heuristic of “longest segment wins”. 

4. EXPERIMENTAL SETUP 

 To train the explosion and gunfire models, we 

selected videos publicly available on the web from 

liveleak.com and youtube.com. 

 Some keywords like bomb, IED, explosion, roadside, 

detonate, Iraq, army, etc were used to search for explosion 

and gunfire videos from these websites. The videos were 

originally collected in MP4, MPG, WMV and FLV formats 

and the audio track was then extracted and used for segmen-

tation and acoustic event annotation. Overall, 36 files were 

selected for annotating explosion and gunfire acoustic events. 

The annotated data was split, with 90% of the data used to 

train the system and 10% held out as a test set. Table 1 shows 

the number of gunfire and explosion segments available in 

training and test data set.  

 Training Set Test Set 

Event 
#  

Segments 

Duration 

(sec) 

# 

Segments 

Duration 

(sec) 

Explosion 137 154.2 14 17.1 

Gunfire 961 1049.2 28 36.6 

Other 4121 6094.4 345 718.0 

Table 1 – Training and test data set characteristics 

 From the annotation, it was discovered that the train-

ing set for explosion class was less by one order of magni-

tude compared to the gunfire class. As compared to explo-

sion, the corpus consisted of 895 seconds more gunfire train-

ing data. The overall training data duration for both explo-

sion and gunfire including background speech was about 20 
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minutes. Similar to training data, we had twice the amount 

of gunfire as explosion in the test data set.  

5. EVALUATION METRICS 

 The AER system accuracy was measured using AED-

ACC metric (the first metric in CLEAR 2007 Acoustic Event 

Detection (AED) Evaluation [14]). The aim of this metric is 

to score detection of all instances of what is considered as a 

relevant acoustic event (AE). With this metric it is not impor-

tant to reach a good temporal coincidence of the reference 

and system output timestamps of the AEs but to detect their 

instances. It is oriented to applications like real-time services 

for smart-rooms, audio-based surveillance, etc. AED-ACC is 

defined as the F-score (the harmonic mean between Precision 

and Recall): 

    

 2

2

1+β Precision * Recall
F-score = AED-ACC = 

β * Precision + Recall

 * 

      (2) 

where 

            

#correct system output AEs
Precision=

#all system output AEs         (3)
 

          
#correct detected reference AEs

Recall=
#all reference AEs           (4)

 

and β is the weighting factor that balances Precision and Re-

call.  

 For our system evaluation, the factor β was set to 1. A 

system output AE is considered correctly produced, if there 

exist at least one reference AE (with same label) whose tem-

poral center is situated between the timestamps of the sys-

tem output AE, or  if the temporal center of the system out-

put AE lies between the timestamps of at least one reference 

AE. A reference AE is considered correctly detected, if there 

exists at least one system output AE (with same label) 

whose temporal center is situated between the timestamps of 

the reference AE, or if the temporal center of the reference 

AE lies between the timestamps of at least one system out-

put AE. 

6. RESULTS 

 We first evaluated the HMM-based AER system 

which used only the MFCC features and Viterbi decoder. The 

decoder acoustic model and language model weights were 

optimized to yield the best performance on the test set. Table 

2 below shows the Recall, Precision and AED-ACC (F-

score) metrics for the HMM-based AER system. We report 

performance values for respective explosion and gunfire rec-

ognition. We also report the composite acoustic event recog-

nition performance calculated from combined performance 

averaged over both explosion and gunfire AEs. 

Event Recall Precision F-score 

Explosion 37.5 46.2 41.4 

Gunfire 73.3 84.6 78.6 

Composite 54.8 64.3 59.2 

Table 2 – Performance of HMM AER System with MFCC speech 

features 

 The results indicate that HMM-based AER system 

gives much higher F-score for gunfire recognition as com-

pared to explosion recognition. The balance between recall 

and precision values for gunfire recognition points out that 

the system generalized well for the gunfire class. We suspect 

that the poor performance in explosion recognition may be 

due to the insufficient annotated training data available for 

that class.  

 The second experiment was designed to evaluate the 

performance of SVM-based AER system with MFCC fea-

tures used in the HMM system. We believe that the 42-

dimensional MFCC feature vector does not capture the un-

derlying non-linearity of gunfire and explosion events when 

used with linear SVM model. The objective of this experi-

ment was to emphasize the importance of using high-

dimensional and domain-specific features with the SVM 

model. Table 3 shows the performance of the system for this 

experiment. While the SVM model seems to underperform as 

compared HMM-based AER system when both use MFCC 

features, the native ability of SVM's to accept many more 

types of easy-to-extract features makes them more appealing 

in principle.  

Event Recall Precision F-score 

Explosion 18.8 50.0 27.3 

Gunfire 53.3 72.7 61.5 

Composite 35.5 62.7 45.3 

Table 3 – Performance of SVM AER System with MFCC speech 

features 

 The next experiment was designed to evaluate the 

performance of SVM-based AER system using the discri-

minative AER features described in section 3. Table 4 below 

shows the Recall, Precision and F-scores for this experiment.  

Event Recall Precision F-score 

Explosion 56.3 75.0 64.3 

Gunfire 66.7 93.0 77.7 

Composite 61.5 83.8 70.8 

Table 4 – Performance of SVM AER System with discriminative 

AER features 

 As compared to 42-dimensional MFCC features, us-

ing the expanded 165-dimensional AER features with SVM 

resulted in almost 135% relative F-score improvement in 

explosion recognition and 26% relative F-score improvement 

in gunfire recognition. As compared to HMM-based AER 

system, there is approximately 20% relative improvement in 

the composite F-score with the SVM-based AER system 

which uses high-dimensional AER features.  

 Although using MFCC features only with SVM did 

not yield improvements over baseline HMM-based system, 

we believe, that there is some discriminative information in 

them. This information could either be harnessed by using 

projection techniques such as concatenation of adjacent fea-

ture vectors (similar to AER feature expansion) or using non-

linear kernels in SVM model. We decided to take advantage 

of the feature dimension flexibility of SVM by combining 

the 42-dimensional MFCC features with the 15-dimensional 

base AER features and applying the contextual window of 11 
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on the concatenated 57-dimensional extended feature set. 

The final expanded feature dimension was then equal to 57 x 

11 = 627. This 627-dimensional feature vector per frame was 

used for classification in the SVM model. Table 5 below 

shows the results for this experiment. 

Event Recall Precision F-score 

Explosion 57.8 70.0 63.7 

Gunfire 74.7 85.7 79.8 

Composite 65.5 77.8 71.1 

Table 5 – Performance of SVM AER System with combination of 

MFCC and discriminative AER features 

 The results show that there is approximately 2.7% 

relative improvement in F-score for gunfire recognition at a 

modest 0.9% relative degradation in F-score for explosion 

recognition as compared to the SVM-based system with 

only AER features. Finally, with respect to HMM-based 

system (with MFCC features), we observed a composite 

relative improvement of 19.5% in recall and 21% relative 

improvement in precision, by using the SVM-based system 

with combined MFCC and AER features. 

7. CONCLUSION 

 In this paper, we presented a discriminative SVM 

model-based approach to acoustic event recognition using 

publicly available surveillance video footage containing ex-

plosions and gunfire. The system performances were meas-

ured in terms of recall and precision using AED-ACC metric 

proposed in CLEAR 2007 evaluation.  

 The results presented in this paper show that the dis-

criminative SVM-based AER system gives a high precision 

and high recall performance for both acoustic event classes 

as compared to the generative HMM model system. For any 

acoustic event recognition system, the underlying uncorre-

lated features play a very important role in class discrimina-

tion. We incorporated a combination of traditional and novel 

acoustic features that capture temporal and spectral characte-

ristics of the non-speech acoustic events. Moreover, the dis-

criminative distribution-free SVM model-based approach 

was easily applied to these large-dimensional feature vectors 

to model respective classes effectively.  

 We believe that additional tuning and unified feature 

normalization will lead to further improvements in retrieval 

precision and recall in the current SVM-based AER system. 

Additionally, using the current SVM model framework with 

non-linear kernels and additional feature expansions will give 

further improvements in accuracy. We plan to continue our 

investigations in those directions. 
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