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ABSTRACT

There is a large body of evidence that demonstrates the
practicable use of moment invariants in real-time computer
vision applications. Object detection, recognition and track-
ing are some of them, to name a few. However, the efficacy
of moment invariants is highly susceptible to varying illu-
mination conditions, which is inherent in real-world appli-
cations. Contrast stretching alleviates the problem, but per-
forming contrast stretching prior to the calculation of mo-
ment invariants is computationally intensive and not suitable
for real-time use. We address this problem by proposing
an efficient real-time method that integrates the calculation
of moment invariants up to the 4th order with a contrast
stretching operation (all in one go), by utilising Summed-
Area Tables (SATs). The method is limited to general con-
trast stretching, not necessarily covering very distinct illumi-
nation sources from different directions; that is, illumination
conditions that create extra strong edges. We test the pro-
posed method with a popular benchmarking image database
(Amsterdam Library of Object Images) that is publicly avail-
able. Such images were acquired in a controlled environ-
ment, demonstrating varying lighting conditions. We show
empirically that the method works in real-time and accurate
enough for practical object detection applications.

1. INTRODUCTION

Moment invariants were observed to be highly sensitive to il-
lumination intensity changes [5]. Although one can use nor-
malisation to overcome simple contrast problems, this pre-
vents the simultaneous realisation of contrast invariance and
scaling invariance [5]. Images with poor contrast, exhibit-
ing either too dark or too bright areas, may benefit from a
simple contrast stretching operation, as long as the contrast
invariance can be achieved simultaneously with rotation in-
variance, scaling invariance and translation invariance.

Also, in an object detection problem it is often conve-
nient to process sub-windows separately. Sub-windows pro-
cessing, however, calls for a quick and efficient algorithm
that can run in real-time. To this end, SAT is applied as it al-
lows for the calculation of geometric moments in thousands
of sub-windows (within the same frame or image) in real-
time.

Contrast stretching operations work better when applied
locally (to a specific sub-window) rather than globally (to the
entire image). Unfortunately, if we apply contrast stretching
operations to a specific sub-windows and modify the image,
the use of SATs are rendered too slow, as the SATs would
have to be recomputed for every sub-window. Ideally, we
should be able to compute the SATs only once for the en-
tire image, and still be able to extract the moment invariants

from a given sub-windowwith contrast stretching. In this pa-
per we propose a method that can achieve that. Effectively,
the method allows for the computation of moment invariants
from any sub-window in real-time, and the moments are in-
variant to rotation, translation, scaling and contrast.

In order to compare the proposed method with the tradi-
tional method, we have used three approaches. Firstly, we
extract moments from images without any consideration to
contrast. Images with the same objects have different illumi-
nation conditions, and one can measure the variance of these
extracted moment invariants.

Secondly, we apply the contrast stretching operation to
the sub-window where the object is contained, and extract
the moments. In most cases, this helps to bring the variance
down. This second approach serves as the “control” method
for comparison purposes only. In practise, this method is too
slow, as already explained above.

Lastly, we extract moments using the novel approxima-
tion technique that combines contrast stretching with geo-
metric moments using SATs. This method can achieve quasi-
invariant moments for grey-scale images, and works in real-
time. Although only an approximation, empirical results
show that in most cases this is better than trying to com-
pute moments directly from the raw images with no contrast
stretching.

2. RELATED WORK

Crow [3] used a simple structure called Summed-area Table
(SAT) to speed up the computation of sum of pixels over arbi-
trary sized sub-windows. Viola and Jones [11] used the idea
of SAT’s to compute Haar-like features in real-time for face
detection applications. In same direction, other researchers
realised that they could use SATs to compute moment invari-
ants in real-time. For example, [1] implemented algorithms
to compute moment invariants over arbitrary sub-windows,
including approximation of circles. They used eleven inde-

pendent moments up to the 4th order, which differs from the
original seven moments by Hu ( [7]). The eleven moment
invariants were proposed by [4].

These eleven moment invariants can be computed di-
rectly from the 2-D geometric moments:

mpq = ∑
x

∑
y

xpyqi(x,y) (1)

Where mpq is the geometric moment of order pq, and
i(x,y) is a digital image. Using Summed-area Tables (SAT)
one can speed-up the computation of moments over arbitrary
sub-windows. In order to create these SATs, a simple recur-
sive method can be used for each order pq:
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Mpq(x,y) = Mpq(x−1,y)+Mpq(x,y−1)

−Mpq(x−1,y−1)+ i(x,y)xpyq (2)

Where Mpq(x,y) is a point of the SAT that contains the
sum of all points between the origin (0,0) and (x,y).

For a certain sub-window, four look-up points suffice to
find the sum of the pixels that belong to it. For the moments

up to the 4th order one needs 15 SATs [1].

2.1 Linear Transformations

There are cases where transformations have to be applied
separately to each sub-window. There are two ways to com-
pute the moments with the transformed image.

The first is to compute the transform for a particular sub-
window, recompute the SATs, and then compute the mo-
ments. In this case there is no advantage in using SATs, and
if the number of sub-windows is large enough, it significantly
slows the application.

The second way is to combine the transformation with
the moments computation, in such a way that with the sup-
port of the SATs we can get an equivalent result.

This is possible if either the parameters of the linear
transformation are known in advance, or if they depend on
local information that the SATs can compute. For example,
one can use M0,0(x,y) and compute the mean of the pixels.

Let ī(x,y) be the image after a transformation:

ī(x,y) = ai(x,y)+b (3)

2-D moments can be rewritten splitting the position com-
ponents:

mpq = ∑
n

i(x,y)Cpq (4)

Where Cpq = xpyq. The moments after the transformation
are:

m̄pq = ∑
n

ī(x,y)Cpq = ∑
n

(ai(x,y)+b)Cpq (5)

m̄pq = ∑
n

(ai(x,y)Cpq +bCpq) (6)

m̄pq = a∑
n

(i(x,y)Cpq)+∑
n

(bCpq) (7)

but ∑n(i(x,y)Cpq = mpq, and therefore:

m̄pq = ampq +b∑
n

Cpq (8)

mpq are the geometric moments of the image before the
transformation, computed directly from the raw image. The
expression ∑nCpq can be pre-computed at the initialisation
stage using SATs with “unit” images (all pixel values set to
1) and do not need to be repeated for the duration of the se-
quence of images. To find the value for each order, it suf-
fices to know the 4 points that define the sub-window. For
moments up to the 4th order, we need 15 SATs for mpq and
15 SATs for ∑nCpq. Using rectangular sub-windows, it re-
quires 120 look-ups. In addition, the use of SATs allows the
computation over arbitrary sub-window shapes (e.g., [1] used
approximations to circular sub-windows).

Digital pixel values may overflow after a linear transfor-
mation of the form presented above, and therefore the equa-
tion 8 may become invalid [5]. In practise, however, only
a few points suffer from overflow, and the equation may be
used as a good approximation. This will be demonstrated
with empirical experiments where the linear transformation
is a function of the mean (µ) and the variance (σ ) of the sub-
window.

2.2 Approximating a Linear Transformation for Light-
ing Contrast Stretching

In object detection applications, it is more effective to apply
contrast stretching operations to individual subwindows, in-
stead of to the entire image. Lienhart et. al. [9] implemented
a simple contrast stretching for Haar-like features, creating
an extra SAT for the sum of the squares of the pixel values,
so the variance can be easily obtained per sub-window.

A simple well-known contrast stretching uses maximum
and minimum values of the image (or sub-window):

ī(x,y) = k

(

i(x,y)−min

max−min

)

(9)

Where k is the maximum value represented in the digital
pixel (e.g., 255 for greyscale with 8 bits),min andmax are the
minimum and maximum pixel values for the sub-window.

The problem is to extract the maximum and minimum
points from an SATs. Obviously, this cannot be achieved
by examining SATs that only contain sum of areas, and no
detailed information about the image. Fortunately, one can
approximate the minimum value to µ−cσ and the maximum
value to µ +cσ , where c is a tunable constant. Both µ and σ
can be easily computed for any arbitrary sub-window using
SATs [9]. Rewriting equation 9:

ī(x,y) =
k(i(x,y)− (µ − cσ))

µ + cσ − (µ − cσ)
=

k(i(x,y)− µ + cσ)

2cσ
(10)

For a gray-scale image, from equation 10, with the re-
strictions 0 ≤ ī(x,y) ≤ 255 for a greyscale 8 bits image, we
have:

ī(x,y) =
255(i(x,y)− µ + cσ)

2cσ
,c ∈ ℜ+ (11)

In our experiments we tested constant c values between 1.0
to 2.0. Based on equation 5, the moments computed on the
original image can be re-written as:

m̄pq =
255

2cσ
[mpq +(cσ − µ)∑

n

Cpq] (12)

Equation 12 requires an extra SAT with the sum of the
square of the pixel values, so we can compute σ over a sub-
window. Therefore, we need a total of 124 look-up points (4
points per SAT), as we have 15 SATs for mpq, 15 SATs for

∑nCpq and one SAT for the sum of the square of the pixels.
Which value for the moments should be considered cor-

rect? When we carry out the contrast stretching in digital
images, we are forced to round and cut-off pixel values to a
certain interval, and therefore the values for the combined
computation will vary widely when compared to the mo-
ments computed directly from the stretched image. Equation
12 does not round nor cut-off pixel values until the end, and
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therefore would be much closer to the moments computed
using pixels represented by floating point values.

What we have to show is that the variance among the
moments computed with equation 12 is smaller than those
values computed with the raw images, making the feature
extraction process more reliable under different illumination
conditions.

3. EXPERIMENTS AND ANALYSIS

In this section we present results gathered using the Amster-
dam Library of Object Images (ALOI) [6], specifically the
set aloi grey red2 col. This set contains 1000 objects with
12 different illumination conditions.

For these tests, we implemented three algorithms using
the approaches described in section 1. For every object, we
computed 11 moment invariants (from ψ1 to ψ11) for the 12
different illumination conditions that the ALOI set contains.
We measured the relative variance (σ/µ) for each case, and
plotted graphs for all ALOI images (e.g. figure 4).

We computed 11 moments with the help of 31 SATs and
equation 12. The first 5 moments (fromψ1 to ψ5) correspond
to Hu’s set φ1 and φ4-φ7 ( [7]). The other 6 moment invariants
equations (from ψ6 to ψ11) can be derived from [5], or can
be found explicitly in [1].

Through the naked eye, only subtle differences can be
seen between figures 1, 2 and 3. Nevertheless, as a result
of the application of the proposed contrast stretching, as de-
picted in figure 2, a more pronounced object shape was pro-
duced as compared to figure 3. More importantly, as can
be observed in the calculation of moment invariants (figure
4), the proposed algorithm produced more stable moments
corresponding to the target object. This is deemed vital for
object detection tasks.

In figure 4 one can see three curves corresponding to
the three methods used to compute the 11 moment invari-
ants, namely “raw” (no contrast stretching), “stretched” (ap-
ply contrast stretching first, then compute the moments) and
“combined” (the proposed method). The curve raw shows
that the illumination conditions causes some variability for
the computed moments of the same object within the same
sub-windows for all the 12 illumination conditions. The
curve stretched shows that the variance has been minimised,
even though the computation could not be done in real-time
if we were scanning several thousand sub-windows. The
curve combined shows that the values are very close to the
stretched line, the moments being quasi-invariant to illumi-
nation intensity.

Figure 1: Original image (ALOI image 20) without contrast
stretching.

Figure 2: ALOI image 20: Contrast stretching applying
equation 11 to the subwindow that encompass the object.

Figure 3: ALOI image 20: Contrast stretching applying
equation 11 over the entire image. Note that the details of
the object are not as clear as the image in figure 2. Also, the
contrast stretching is influenced by any extreme pixels in the
background even if located further from the object.

The only tunable parameter for the contrast stretching is
the constant C (see equation 12). In figure 5, several values
of C (1.0, 1.5, 1.75 and 2.0) for ALOI image 20 are shown,
in order to compare the results. In this particular instance of
ALOI image 20 (figure 4), the lowest C value worked best.
For other ALOI images, other values of C achieved the best
results.

For the purpose of comparison, we also plotted figure 6
to analyse the variance for all the figures of ALOI. The vari-
ance improves with the use of the combinedmethod for most
cases, and the most influenced moment is ψ1. This is no sur-
prise, given that this is the lowest order moment of the set,
deemed to be more robust to noise.

Figure 7 shows the mean of the relative variance for the
11 moments using the proposed method (combined), for var-
ious values ofC (C= 1.0,1.5,1.75and2.0). The figure shows
that the best C for the mean over the ALOI set was C = 2.0,
even though there is very little variation between C = 2.0,
C = 1.5 C = 1.75. For C = 1.0, the relative variance is
slightly higher. The parameter C between the values shown
here does not influence the invariance in a clear way.

For most images contained in ALOI we observed that the
11 moments relative variance was just above 1% on average.
When applying the proposed method the relative variance
was reduced to a range between 0.1% to 0.8%. In rare cases
(about 10% of the moments), we observed that the variance
actually was slightly above the variance of the raw image.
This is explained in section 3.1.
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Figure 4: Relative variance (σ/µ) for 11 moments in ALOI
image 20 withC = 1.0.
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Figure 5: Comparison between the methods stretched and
combined: relative variance (σ/µ) for 11 moments in ALOI
image 20, with various values ofC.

3.1 Numerical Instabilities of Moment Invariants

It is a well known problem that moment invariants based on
geometric moments are prone to numerical instabilities, sen-
sitivity to noise (see for example [8], and problems such as
moments vanishing when the objects in the image are per-
fectly symmetric. Examples are cited in the literature, and
many of these problems are sumarised in [5]. Another exam-
ple is the comparison between Hu’s moment invariants and
Fourier descriptors for gesture recognition, which found mo-
ment invariants to be less robust to noise [2].

As an example of the problems that can be encountered,
we present figures 8,9 and 10, which show ALOI image 1
and the contrast stretching operations.

The results for ALOI image 1 (figure 8) show that for one
of the moments the relative variance was slightly above the
equivalent one for the raw image (figure 11). This is a prob-
lem related to the sensitivity to noise and can also be influ-
enced by the very shape of the object (e.g. symmetric shape),
as shown in [5]. Despite this setback, we argue that the pro-
posed method is still useful for practical applications such
as object detection, as other moments still present a lower
variance after the contrast stretching operation.
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Figure 6: Comparison between the three methods (raw,
stretched and combined): mean of the relative variance
(σ/µ) for 11 moments in all ALOI images with C = 1.0 for
raw, stretched and combined methods.
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Figure 7: Proposed method(“combined”): the mean of the
relative variance for 11 moments in all ALOI images with
various values ofC.

Figure 8: Original image (ALOI image 1) without contrast
stretching.

3.2 Real-time Computations

Using the same approach Viola and Jones used for their
object detection approach, we counted the number of sub-
windows and measured the runtime, estimating the frame
rates.
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Figure 9: ALOI image 1: Contrast stretching applying equa-
tion 11 to the subwindow that encompass the object.

Figure 10: ALOI image 1: Contrast stretching applying
equation 11 over the entire image.

Table 1 shows the number of sub-windows computed for
a frame 384x288 (same as used in Viola-Jones [11]) using a
2GHz Intel, ordered by the number of sub-windows scanned.
Inevitably, the performance of this approach will depend on
frame size, scaling and translation factors (which define the
number of sub-windows), and the processor speed. The mo-
ment/SAT code (without the contrast stretching) was imple-
mented in an earlier work using a GPU [10]. This shows the
potential of the combined approach for real-time applications

4. CONCLUSIONS AND FUTUREWORK

We presented and tested a real-time method for the com-
bined computation of moment invariants and contrast stretch-
ing. The proposed method is simultaneously invariant to ro-
tation, scaling, translation, and contrast. We have used the
ALOI image database to benchmark the method and found
that over 90% of the moments that have undergone the con-
trast stretching operation using the proposed method have
improved their invariance to illumination. Our future goal is
to apply this method in dynamic environments, using video
cameras for object detection and recognition tasks. We also
plan to investigate the conditions in which the moment in-
variants become less robust to noise and symmetry.
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