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ABSTRACT
In this paper, a new robust method for R wave detection in ECG sig-
nal is proposed by using algebraic derivative estimation based tech-
nique. In fact, this new and efficient method relies on differential
algebra, non-commutative algebra together with operational calcu-
lus. This technique allows noisy signal to be filtered via iterated
time integrals and R wave slope to be emphasized. The ECG signal
is then Hilbert transformed to be enhanced and threshold compared.
The performance of the algorithm was tested by using the annotated
records of MIT-BIH Arrhythmia Database. The robustness of the
proposed R wave detector in presence of noise was also tested ac-
cording to records from MIT-BIH Noise Stress Test Database. The
overall performance is quite good even SNR as low as 6 dB.

1. INTRODUCTION

The Electrocardiogram ECG represents the electrical activity of
the heart. This is characterized by a number of waves P, QRS,
T related to the heart activity. The QRS complex is the most
perceptible waveform within ECG beat. Its high amplitude makes
QRS detection easier than other waves. Detection of R-peaks and
consequently QRS complex have many applications including R-R
interval analysis, ST segment examination, ECG data compression
and ECG waveform classification. Different approaches have been
proposed to QRS detection. An extensive review of the approaches
proposed in the last decade can be found in [15]. Recently, new
approaches are mainly based on artificial neural networks [22],
genetic algorithms, wavelet transforms [16], hidden Markov
models as well filter banks techniques [1]. In noisy-free case, all
these algorithms have satisfactory performances but performances
decrease when the noise corrupts measured signal. Consequently,
these techniques require a pre-treatment step using the classical
numeric filters which introduce signal distortions in frequency or
temporal components. Indeed, we need methods preserving the
signal information contents and particularly R wave positions, in
the presence of noise. Our aim in this paper is to present a new
method which permits essentially to overcome the difficulties that
arise when considering the pre-treatment of the ECG signal.
The algorithm based on algebraic-derivative allows to emphasize
large slope of R wave. To enhance QRS complex, the differentiated
signal is then Hilbert transformed. The output is finally examined
using decision rules to detect the occurrence of QRS complexes.
Noise treatment is the mean challenge of QRS detectors since noise
is often present in all ECG signals. It comes from various sources:
muscular activity, movements artifacts, power line interference and
baseline wandering due to the respiration. In addition, P and T
waves with high amplitudes may be considered challenging noise
as they winder R wave detection.
Algebraic derivative, initially developed in [18], has already proved
to be robust with respect to noise in image processing [14], signal
processing [8], automatic control [9] as well as in biomedical
engineering. This feature is due to the iterated time integrals which
play the role of low pass filter attenuating the noise power. Indeed,
disturbing noise is viewed here as highly fluctuating phenomena

[7]. This investigation is essentially stimulated by the theory of M.
Fliess. The underlying theoretical framework using, in particular,
module theory and Mikusiński operational calculus can be found in
[19]. Recently, problem in biomedical engineering can be tackled
with this new method which is of algebraic flavour. For instance,
the works of Mboup [21], which aim at the neural information
processing by the detection of neuronal spikes, show promising
results in neuroscience field.
The Hilbert transformation is of widespread interest because it
is applied in the theoretical description of many systems and
directly implemented in the form of Hilbert analog or digital
filters (transformers). Hilbert transformer (or filter) finds numerous
applications, especially in modern digital signal processing. This
terminology is applied here as a part of R wave detection algorithm.

The remaining of the paper is organized as follows: section
2 outlines the algebraic derivative-based method as well as the
properties of the Hilbert transform. Section 3 gives an overview
of the R wave detection steps of our algorithm. Section 4 applies
the methodology on reals ECG data excerpted from the MIT-BIH
arrhythmia database [17] and gives the simulation results compared
to other algorithms and section 5 draws the conclusion.

2. FUNDAMENTAL RELATIONSHIPS

2.1 Algebraic derivative
We address the problem of estimating the first order derivative.
More precisely, let x(t) denotes the signal we want to estimate. We
assume that x(t) is smooth enough to permit a polynomial approx-
imation of a chosen order p locally over an interval IT

t− = [t −T, t]
where p is an integer. This integer corresponds to the derivation or-
der, here p = 1. This assumption is motivated by the Weierstrass’s
Theorem which states that function, continuous in a finite closed
interval can be approximated to a desired accuracy by a polyno-
mial function. Because polynomials are the simplest functions, and
computers can directly evaluate polynomials, this theorem has both
practical and theoretical relevance. With this motivation, the signal
can be approximated around t = 0 for example by the first degree
polynomial time function: p1(t) = a0 +a1t, t ≥ 0, a1, a2 ∈R. Ac-
curate identification of the coefficients is immediate: a0 and a1 are
respectively the estimators of the signal and its derivative around
the time constant t = 0, i.e, a0 = x(0) and a1 = dx

dt |t=0. Rewrite
thanks to classic operational calculus (cf [19]) p1 as P1 = a0

s + a1
s2 .

We look for annihilate a0 because we want to estimate a1. Thus,
multiply both sides by s:

sP1 = a0 +
a1

s

Take the derivative of both sides with respect to s, in order to omit
a0, which correspond in time domain to the multiplication by −t (cf
[19]);

P1(s)+ s
dP1(s)

ds
= −a1

s2 (1)
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The time derivative; i.e, s dP1(s)
ds , is removed by multiplying both

sides of equations (1) by s−n, n > 1, for instance n = 2. This op-
eration allows to obtain only iterated time integrals. Since x(t) is
noisy, there is an error in computing polynomial coefficients and
henceforwards we can only obtain an estimate of a1 denoted by â1.
Finally, the above equation leads in the time domain to the linear
estimator

â1(t) = 6

∫ t

t−T
τx(τ)dτ −

∫ t

t−T

∫ τ

t−T
x(κ)dκdτ

T 3 (2a)

= 6

∫ t

t−T
τx(τ)dτ −

∫ t

t−T
(T − τ)x(τ)dτ

T 3 (2b)

= 6

∫ t

t−T
(2τ −T )x(τ)dτ

T 3 (2c)

There are no derivatives with respect to time involved, but only
integrations. This is particularly valuable in the presence of high
frequency perturbations or measurements corrupted by noise. Be-
sides, we may mention that almost all local polynomial modeling
problems use the principle of sliding estimation window. An op-
timal choice of the size of this window remains an issue. In this
approach, it is established that a quit short time window is sufficient
for obtaining accurate value of a1. We note that the role of this
window is to localise the model fitting around the instant t. We use
an T -point window for simplicity, although other window functions
can be used. More information can be found in the original paper
[18].

2.2 Hilbert transform
Let’s x(t) a real signal. Generally speaking, the Hilbert transform
of a real signal x(t) is defined by [11]:

xH(t) = H {x(t)} (3a)

=
1
π

P
∫ ∞

−∞

x(λ )dλ
t −λ

(3b)

=
1
π

P
∫ ∞

−∞

x(t −λ )dλ
λ

(3c)

= x(t)∗ 1
πt

(3d)

Here H {.} means the Hilbert transform and ∗ denotes the usual
convolution product. The integrals in definition (3b) and (3c) are
improper because the integrand goes to infinity for λ = t. There-
fore, the integral is defined as the Cauchy principal value (Sign P).
Equation (3d) shows that the Hilbert transform of x(t) is obtained
by filtering the signal through a linear filter with impulse response
1
πt .
A useful way of looking at the Hilbert transform, and perhaps a
more intuitive definition, is in the frequency domain

XH(ω) = X(ω).[− j.sgn(ω)] (4a)
= X(ω).H(ω) (4b)

where the transfer function of the Hilbert transform H(ω) is given
by:

H(ω) =


− j, for ω > 0
j, for ω < 0
0, for ω = 0

(5)

In fact, a Hilbert transform simply shifts all positive frequency com-
ponents by −90o and all negative-frequency components by +90o.
The amplitude always remains constant throughout this transfor-
mation. As outlined in figure 2 Hilbert Transform requires a Fast

x(t) x

jy

B(t)

xH(t)

Φ(t)

Figure 1: The cartesian plane representing the analytic signal z(t) =
x(t)+ jxH(t)=B(t)e jφ(t)

Fourier Transform (FFT) and an Inverse FFT (IFFT). The imple-
mentation of the Hilbert Transform is fairly simple in the frequency
domain. The so-colled analytic signal is then defined as:

z(t) = x(t)+ jxH(t) (6)

It is witnessed that x(t) = Re{z(t)} and xH(t) = Im{z(t)} where
Re is the real part of z(t) though Im is the imaginary part of z(t).
The name of analytic denotes numerous types of complex functions
which satisfy the Cauchy Riemann conditions for differentiability
and is traditionally called analytic functions. By taking the Fourier
Transform of expression (6), we get

Z(ω) = X(ω)+ jXH(ω) (7)

by using equation (5), we obtain that the analytic signal has the
following spectrum:

Z(ω) =


2X(ω), for ω > 0
X(0), for ω = 0
0, for ω < 0

(8)

which is inverse transformed to obtain z(t). Therefore, the Hilbert
transform can be easily computed by taking the imaginary part of
the analytic signal z(t).
Since the analytic signal is complex it can always be put into polar
form

z(t) = B(t)e jφ(t) (9)

We can then unambiguously define the envelope B(t)(the ampli-
tude) and the phase φ(t) of z(t) by

B(t) =
√

x2(t)+ x2
H(t), φ(t) = tan−1

(
xH(t)
x(t)

)
(10)

which gives

ω(t) = φ ′(t) =
xH(t)′x(t)− x(t)′xH(t)

B2(t)
(11)

for the instantaneous frequency (IF) in the complex plane. The sig-
nal (equation 9) is represented in the cartesian plane as shown in
figure 1. The IF obtained by this means is often meaningless. A
recent method pioneered by Huang and al. called Empirical Mode
Decomposition (EMD) [13] was introduced to address this problem.
An innovative approach based on iterated application of the Hilbert
Transform (IHT) that has asymptotical convergence property faster
than that of EMD, is described in [10].
It’s clear that the envelope B(t) coincides with x(t) when xH(t) =
0. Therefore, the maximum contribution of the envelope B(t)
when x(t) = 0 is given by its Hilbert transform. These remarks
can be exploited in our case by the following way: We can turn
the first differential of the ECG into analytic signal using the
Hilbert transform. The maximum contribution of the first deriva-
tive envelope(B( d

dt (ECG))) is given by its Hilbert transform.
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Figure 2: Block diagram of the R wave detector.

Recall that if the real valued signal x(t) is even then X(ω) is purely
real-valued while if x(t) is odd then X(ω) is purely imaginary-
valued. Now if X(ω) is purely real valued then certainly XH(ω)
is purely imaginary valued( and vice-versa). Therefore, the Hilbert
transformation changes any even term to an odd term and any odd
term to an even term.
Let’s take the even part of the signal. The Hilbert transform will
be an odd function. That is to mean it will cross zero on the x-axis
every time there is an inflexion point in the original waveform. Sim-
ilarly, a crossing of the zero between consecutive positive and neg-
ative inflexion points in the original waveform will be represented
as a peak in its Hilbert transformed.
This interesting property can be exploited to develop an elegant and
much easier way to find the peak of the QRS complex in the ECG
waveform corresponding to a zero crossing in its first derivative
waveform d(ECG)

dt .

3. ALGORITHM FOR DETECTING R WAVE

The fact of applying the first derivative followed by the Hilbert
transform doesn’t detect QRS complex, but it only aims to enhance
the peaks corresponding to QRS complex and then find region for
high probability to locate R wave. A second stage to detect R wave
is required. It consists to detect peaks in the signal. When a peak is
activated, peak detection function returns all samples reaching the
current peak height. Thus, each time a peak is detected, it is classi-
fied as either QRS complex or noise. The algorithm uses the peaks
height, peaks locations (relative to the last QRS peak) and maxi-
mum Hilbert transformation in order to classify peaks.
The following is an outline of the basic detection rules for the algo-
rithm detailed in [12] and [20]:
1. Ignore all peaks that precede or follow larger peaks by less than

a waiting time equal to Dist (refractory period).
2. If the peak is larger than the detection threshold we call it QRS

complex, otherwise we call it noise.
3. If no QRS is detected within 1.5 R-to-R intervals so there is

a peak larger than half the detection threshold, and the peak
followed the preceding detection by at least 360ms, we classify
that peak as a QRS complex (back search).

Figure 2 shows the blocks diagram of the basic operations of our
algorithm for beats detection.
A true QRS peak is expected to appear after a delay equal to Dist
following the latest detected QRS peak. Dist is related to the ex-
pected QT interval of the current RR interval. Initially, Dist =
200ms. It is updated further using a version of an empirical for-
mula of the QT interval:

Dist = 0.4∗mRR (12)

Here mRR represents a combination of averaged latest four interval
RRmean with the shortest one of them RRmin:

7RRmean +RRmin

8
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Figure 3: R wave position definition: (a) ECG signal (record(100));
(b) The output of the algebraic derivative; (c) Hilbert transform.

When a beat is located nearer than Dist to the latest QRS complex,
this candidate is ignored if its amplitude is smaller than the latest
detected complex.
The adaptive detection threshold used in 2 and 3 is calculated by
using estimates of QRS peaks and noise peak heights. At each time
a peak is classified as a QRS complex, it is added to a buffer con-
taining the last eight QRS peaks. Otherwise, the peak is added to
a another buffer containing the recent eight non-QRS peaks (noise
peaks). The detection threshold is set according to:

Detection Threshold= Mean Noise Peak (13)
+TH*(Mean Peak-Mean Noise Peak)

Where TH is the threshold coefficient. We estimate the mean of
QRS height (respectively noise height and R-R intervals) using the
mean of the last eight peak values. We note that some initial thresh-
old estimate in the beginning of the algorithm is needed. We ini-
tialize noise buffer to 0 and the QRS buffer to the eight maximum
consecutive peaks in 1-second interval. The initial threshold is ini-
tialized according to formula (13). Figure 3 illustrates an example
of R wave detection by the proposed algorithm. We can see in figure
3(b) the original signal after the derivative estimation. The resulting
signal contains only R wave positions (refer to figure 3(c)). The ’+’
marker corresponds to the R-position Rp.

4. RESULTS AND DISCUSSIONS

To analyze the performance of the proposed technique, on real
world signals, we choose the ECG samples excerpted from the MIT-
BIH Arrhythmia database [17]. It contains 48 half-hour recording
of annotated ECG with a sampling rate of 360Hz. Furthermore, beat
annotations include R wave marks.
Two benchmark parameters are used to compare the performance
of the proposed detection algorithm: the sensitivity and the positive
predictivity of the beat detection are defined as following [15]

Se(%) = 1− FN
T P+FN

=
T P

T P+FN
%, (14)

+P(%) = 1− FP
T P+FP

=
T P

T P+FP
%, (15)

where (T P) is the number of true positive, (FN) is the number of
false negative and (FP) is the number of false positives. The (Se)
reports the percentage of true beats that were correctly detected by
the algorithm. The positive predictivity (+P) reports the percentage
of beat detection which were in reality true beats.
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Annot TP FN FP Se(%) +P(%) DER
17658 17610 48 20 99.76 89.89 0.34

Table 1: Recapitulate results for the proposed R wave detector of a
5mn record (not including MIT 107 and 108)

Method DER Se(%) +P(%)
Proposed detector 1.05 99.38 99.45
Combined adaptive threshold [5] 1.44 99.92 98.64
Wavelet transform [16] 1.09 99.50 99.42
Linear adaptive filtering [22] 2.41 99.15 98.47
Bandpass filtering [12] 2.91 99.15 97.98
and back search
Bandpass filtering [20] 3.46 99.15 97.58
Filter banks [1] 3.22 99.26 97.58

Table 2: DER, Se(%), +P(%) scores for the proposed the R wave
detector compared to literature for the record 105

The Detection Error Rate (DER) and the Average time error are
calculated as follow:

DER(%) =
FP+FN

Total number of QRS complex
% (16)

Average time error(ms) = (17)

∑T P
i=1 |Detected QRS Time-Actual QRS Time|

T P

The robustness of the estimation method in the presence of noise is
quantified by the noise stress test using recordings from the MIT-
BIH Noise Stress Database [17]. The ECG recordings were cre-
ated using two clean records (118 and 119) from the MIT-BIH ECG
Database to which calibrated amounts of noise containing baseline
wander, muscle artifact, and electrode motion artifact. The SNR of
each record is ranged from 6 to 24 dB.
The performance of our algorithm is influenced by a given set
of parameters. There are two principle parameters within our
algorithm(T,TH). The length T of the sliding window should be
small enough to improve estimation. We test our algorithm for each
record nine times with threshold coefficient TH ranging from 0.1
to 0.9. We choose the value which minimizes the Detection Error
Rate. In this paper, we selected TH as the mean of all optimal value
corresponding to lower DER for each record. The mean value is
roughly 0.3.
In order to make objective comparison with other published works,
we classify the reported results with respect to their score. On
the first scenario, we analyze the first five minutes signals in 46
database records. The table 1 reports the detection performances
of our algorithm. The results are Se = 99.76%, +P = 99.89%
and DER= 0.34%. Consequently, based on this score, the pro-
posed technique outperforms Dinh’s method [6] based on Cubic
Spline method (DER= 0.75%), although it performs similarly to
Ben Massaoud’s method [3] based on Equalize of the maxima
(DER= 0.34%).
On the second scenario, the algorithm is tested against the whole
noisy MIT-BIH record 105. This later is used through the litera-
ture to test QRS detectors and therefore comparisons are possible.
The predominant feature of this record is a high grade of noise and
artifacts. The comparison made between the performance of the
proposed algorithm and literature are listed in table 2. The reliabil-
ity of the proposed detector compares favorably with that of other
published results especially concerning the most noisy record 105
(see [1, 5, 12, 16, 20, 22]). Here, we should mention that the un-
derling result is very encouraging since it would open promising
investigation perspectives related to this new estimation method.
Next, a quantitative study of the noise tolerance test is performed.
The performance of our detector is quit good for SNR as low as

Record SNR DER Se(%) +P(%)
118 e24 24 0 100 100
118 e18 18 0 100 100
118 e12 12 1.27 99.73 98.99
118 e06 06 13.26 94.23 92.60
119 e24 24 0 100 100
119 e18 18 0 100 100
119 e12 12 1.16 99.90 88.84
119 e06 06 14.64 97.58 88.84

Table 3: DER, Se(%), +P(%) scores for the proposed QRS detector
at 6 dB, 12dB, 18 dB and 24 dB for the record 118 and 119

Method Av.time
error(ms)

Proposed detector 5.58
Hilbert transform with 2nd threshold [2] 7.08
Squaring function with automatic threshold [2] 7.90
2nd derivative with automatic threshold [2] 6.5
Filter banks[1] 266

Table 4: Comparison results of QRS detection delay time and liter-
ature

6dB with high sensitivity values (about 94%) as well as high pos-
itive prediction (above 88%). The results are depicted table 3. At
high SNR as well as low SNR, DER for our detector is superior to
the other techniques examined specially in [4].
Now let us discuss the delay time in QRS detection. Delay time
is expressed by the average time error parameter. Simulation re-
sults show that our algorithm has minimal delay in detecting beat
compared to other algorithms in literature [1, 2]. Comparative re-
sults are shown in table 4. In fact, applying algebraic derivative and
the back search strategy result on a beat detection latency time of
more than heartbeat interval. The detection delay will be roughly
the sum of derivative delay plus the average of R-to-R interval if
a back search detection is needed. The algebraic derivative for the
used approximation introduces a delay in the estimation equals to
T
2 samples length. See [18] for more explanation. This delay is
off-line corrected after derivative step. The back search strategy is
incorporated to correct FN. A back search is activated when no beat
detection has occurred in a time interval superior 1.5 R-to-R inter-
val. This strategy may result in a significant delay before a beat is
detected.

5. CONCLUSION

We proposed an algebraic derivative-based algorithm for R wave
detection of noisy ECG signals. We use an empirical technique
based on local polynomial model to estimate the derivative. This
model is popular because it is flexible with respect to derivative
and computational easy to use. The algorithm is tested on several
records from MIT-BIH arrhythmia database. These records are cor-
rupted by different noises and artifacts. The results is assessed in
term of benchmark parameters. Beat detection accuracy is compa-
rable to other algorithm reported in literature. It can also be catego-
rized by a real-time algorithm since it has a minimal beat detection
delay. Furthermore, our algorithm could be implemented more eas-
ily comparatively to other algorithm based for instance on wavelet
transform and neural networks. Further improvements to the al-
gorithm may be easily achieved by using more features of the fre-
quency components of the ECG or by using a more suitable model
to fit ECG signal variation.
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