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ABSTRACT
Positioning is a fundamental issue in mobile robot applications that
can be achieved in multiple ways. Among these methods, trian-
gulation with active beacons is widely used, robust, accurate, and
flexible. In this paper, we analyze the performance of an original
system, introduced in one of our previous papers, that comprises a
rotating receiver and beacons that send an On-Off Keying modu-
lated infrared signal. The probability density functions of the mea-
sured angles are established and discussed. In particular, it is shown
that the proposed estimator is a non biased estimator of the beacon
angular position. We also evaluate the theoretical results by means
of both a simulator and measurements.

1. INTRODUCTION

In a previous paper [3], we have presented an original system for
robot positioning used during the Eurobot contest since 2008. The
system comprises a turning turret that measures angles based on sig-
nals sent by several infrared beacons (see Figure 1 for an illustration
of the Eurobot setup). These angles, denoted αi, are combined, dur-
ing a triangulation calculus, to compute the current position of a
mobile robot in a 2D plane [1, 4]. In order to identify a beacon
and to increase the robustness against noise, each beacon sends a
unique binary sequence encoded as an On-Off Keying (OOK) am-
plitude modulated signal.

In this paper, we evaluate the error made on measured angles re-
sulting from the coding of signals sent by the beacons. As explained
in [3], the modulation of the 455 [kHz] carrier beacon signal makes
it possible to identify beacons but, as a drawback, introduces errors
that occur when no signal is sent, that is during an OFF period of
the sequence. In the following, we address the issues raised by the
use of an OOK modulation mechanism. An angle estimator is pro-
posed and we characterize its performance by means of a simulator
and experiments.

The paper is organized as follows. In Section 2, we first briefly
present the principle of the original positioning system described
in [3]. Section 3 discusses the origin of the errors. In Section 4,
we propose several estimators and compute the probability density
functions of the measured angles. Then we present and discuss the
experimental results in Section 5, and conclude the paper in Sec-
tion 6.

2. ANGLE MEASUREMENT PRINCIPLE

The system described in [3] is an angle measurement sensor based
on fixed infrared beacons, a rotating turret turning at a constant
speed ω , and an infrared receiver (TSOP7000). Each beacon con-
tinuously emits an infrared (IR) signal in all directions in a horizon-
tal 2D plane. Let us denote by φ the current angular position of the
receiver. As the turret turns at a constant speed, the angular position
φ is directly proportional to time

φ(t) = ω t. (1)

As a result, we can either talk about time or angular position in-
differently. In fact, the processing unit of the positioning system
measures times corresponding to angles thanks to eq. (1). Although
the system measures times, we prefer to think in terms of angles,
because it is more intuitive for the developments.
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Figure 1: Left-hand side drawing: triangulation setup in the 2D
plane. The circle and the small squares represent the mobile robot
(R) and the beacons (Bi) respectively. αi are the angle measure-
ments for each Bi, relatively to the robot reference orientation θ .
Right-hand side image: playing field of the EUROBOT contest 2009.

The receiver has a limited field of view and, consequently,
the amount of infrared power collected at the receiver, denoted by
PIR(φ), depends on the angle. Moreover, this power depends on
the power emitted by the beacon and the distance between the bea-
con and the receiver. The exact shape of PIR(φ) depends on the
hardware used (receiver, optical components and geometry of tur-
ret) and, unfortunately, the information available at the receiver out-
put is too sparse to derive a precise curve. Indeed, we have only
access to the demodulated signal and no information about power is
available. Therefore, we make some basic assumptions on PIR(φ).
Figure 2 shows a possible curve for PIR(φ) (top curve). The shape of
this curve has not much importance in this study but is supposed to
increase from a minimum to a maximum and then to decrease from
this maximum to the minimum. In the following theoretical devel-
opments, we make three important assumptions about the curve and
the detection process itself:
1. The maximum occurs at an angle which is the angular position

of the beacon, denoted φb. In other words, we have, for any
angle φ

PIR(φ)≤ PIR(φb). (2)

2. The curve is also supposed to be symmetric around the maxi-
mum since the turret and all optical components are symmetric.
Therefore, we consider that

PIR(φb−φ) = PIR(φb +φ). (3)

3. Finally, we suppose that the receiver reacts to 0→ 1 (raising)
and 1→ 0 (falling) transitions at the same infrared power thresh-
old Pth, respectively at an angle φr and φ f

PIR(φr) = PIR(φ f ) = Pth. (4)

From eq. (3) and (4), we can see that φb−φr = φ f −φb and, conse-
quently, that

φb =
φr +φ f

2
. (5)

If the beacons are assumed to send a non modulated IR signal
(that is, a pure 455 [kHz] sine wave), the measurement of the an-
gular position of a given beacon works as follows: while the turret
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Figure 2: The upper curve PIR(φ) is the infrared power collected at
the receiver while the turret is turning. Ei are examples of emitted
signals from the beacons. Ri are the corresponding received sig-
nals at the receiver output. R0 is a special case corresponding to
a non modulated infrared carrier (no blank periods). The black ar-
rows represent the measured values respectively for Φr to the left
(first Rising edge) and for Φ f to the right (last Falling edge). The
encircled arrows emphasize errors committed on Φr or Φ f .

is turning, the receiver begins to “see” the IR signal from that bea-
con when the threshold Pth is crossed upwards (0→ 1 transition).
The receiver will continue to receive that signal until Pth is crossed
downwards (1→ 0 transition). The receiver output is depicted as
R0 in Figure 2. The estimator used for φr is the angular position of
the first rising edge at the receiver output; the estimator is denoted
by Φr hereafter. The estimator used for φ f is the angular position
of the last falling edge at the receiver output; it is denoted by Φ f .
These estimators are represented by the black arrows in Figure 2.
The estimator Φb of the beacon angular position φb derives from
eq. (5)

Φb =
Φr +Φ f

2
, (6)

where Φr, Φ f and Φb are random variables.
Until now, we have considered that the IR signal is not mod-

ulated. But the situation is different because the IR receiver gets
an On-Off Keying amplitude modulation of a 455 [kHz] carrier fre-
quency, otherwise it would not be possible to distinguish between
beacons, and this introduces some errors.

3. SOURCE OF THE ERRORS

Even if we would use a pure 455 [kHz] carrier, noise or other irrel-
evant IR signals could produce erroneous transitions at the receiver
output, and consequently erroneous Φr or Φ f . In order to identify
the different beacons and to be robust against noise, each beacon
sends its own coded signal. These coded signals solve issues men-
tioned previously but introduce a new error, as detailed hereafter.

The receiver gets an OOK amplitude modulated signal. It
means that the information can be represented only by the presence
of the carrier (denoted by a 1 or ON period) or the absence of the
carrier (denoted by a 0 or OFF period). The coding of the beacon
signals will inevitably introduce 0’s in the emitted sequences. Let
us now examine the effects of the code on the detection time. If a
beacon emits a 1 while it enters into the receiver field of view, there
is no error on Φr, meaning that Φr = φr. However, if a beacon emits
a 0 while it enters the receiver field of view, there is an error on Φr
because no signal produces a 0→ 1 transition at the receiver output.
In fact the transition occurs later (Φr ≥ φr), at the next 1. The same
consideration applies to Φ f , except that the 1→ 0 transition could
occur sooner (Φ f ≤ φ f ).

Such situations are illustrated in Figure 2. We first represent
the output of the receiver for a non modulated carrier, R0. In that
case there are no errors on the transition times because the beacon
constantly emits 1’s. The four other cases represent the output of
the receiver for four different situations using an arbitrary code. The
first case (R1) does not generate errors because Pth is reached twice
while the beacon emits a 1. The second case (R2) generates an
error on Φr only because Pth is reached in a 0 period. The third
case (R3) generates an error on Φ f only and the fourth case (R4)
generates an error on both Φr and Φ f . From Figure 2, one can see
that the receiver output Ri for an emitted signal Ei is the logical
AND between Ei and R0. Now suppose that the OFF periods of a
sequence have the same duration, denoted by φ0 (this is the case by
design). The worst case for Φr occurs when an OFF period starts at
an angle φ = φr, delaying the next transition at an angle Φr = φr +
φ0. The same reasoning applies to Φ f when an OFF period begins
at an angle φ = φ f −φ0. In both cases, the maximum absolute error
on Φr or Φ f is equal to φ0. These are the worst cases but there are
many combinations of these two errors. The next Section evaluates
the probability density functions of the estimated angles.

4. ERROR ANALYSIS

In order to determine the underlying statistics of the errors, we have
to analyze the influence of the code on the detection times. In this
section, we determine the probability density functions (PDFs) of
several random variables: the angle Φr when the beacon enters the
field of view of the receiver, the angle Φ f when the beacon leaves
the field of view of the receiver, and the angular position of the
beacon Φb, according to eq. (6).

4.1 Notations
In the following, we use these notations:
• p0, p1: the probability to get a “0” or a “1” respectively at the

IR power threshold (rising or falling edge), that is the frequency
of 0 (or 1) symbols in the code. As usual, we have p0 + p1 = 1.

• T0: the duration of a blank period (0 symbol) in a code. The
only requirement in this study is that the blank periods of a code
must all have the same duration.

• φ0: the angle corresponding to the blank period T0

φ0 = ω T0. (7)

Note that, in our design, we have: p0 = 1/6, T0 = 30.8 [µs], ω =
10 [2π/s], and φ0 = 0.111 [degree].

The Uniform PDF, used later, is defined as

U(a,b) (x) =

{ 1
b−a if a≤ x≤ b,
0 otherwise

(8)

whose variance is (b−a)2

12 . The symmetric Triangular PDF is

T(a,b) (x) =

{
2

b−a −
2|2x−a−b|
(b−a)2 if a≤ x≤ b,

0 otherwise
(9)
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Figure 3: Probability density functions of Φr (left), Φ f (right) and Φb (center) in the case of independent Φr and Φ f .

where |x| denotes the absolute value of x and whose variance is
(b−a)2

24 . The mean of these two PDFs is given by a+b
2 . Note that

with these notations, and if b−a = d− c, we have [2, page 137]

U(a,b) (x)⊗U(c,d) (x) = T(a+c,b+d) (x) , (10)

where ⊗ denotes the convolution product.

4.2 Probability density function of Φr

Errors on Φr originate if a beacon is emitting a 0 symbol while
entering the receiver’s field of view. Assuming time stationarity and
as there is no synchronization between the beacons and the receiver,
the probability to determine the correct angle, that is to have Φr =
φr, while the beacon enters the field of view of the receiver is given
by p1. On the other hand, when the beacon emits a 0, the value of
Φr is uniformly distributed between φr and φr + φ0. Therefore, if
we define δ (x) as the DIRAC delta function, then the PDF of Φr is
given by

fΦr (φ) = p1δ (φ −φr)+ p0 U(φr ,φr+φ0) (φ) (11)

for φ ∈ [−π, π]. The mean and variance of Φr are

µΦr = φr + p0
φ0

2
, (12)

σ
2
Φr

= p0
φ 2

0
3
− p2

0
φ 2

0
4
. (13)

4.3 Probability density function of Φ f

Because the configuration is symmetric when the source leaves the
field of view of the receiver, a similar result yields for Φ f

fΦ f (φ) = p1δ
(
φ −φ f

)
+ p0 U(φ f−φ0,φ f ) (φ) , (14)

for φ ∈ [−π, π]. The mean and variance of Φ f are

µΦ f = φ f − p0
φ0

2
, (15)

σ
2
Φ f

= p0
φ 2

0
3
− p2

0
φ 2

0
4
. (16)

4.4 Characteristics of the Φr and Φ f estimators

The PDFs of Φr and Φ f are drawn in Figure 3. The expectations
of Φr and Φ f have a bias given by±p0

φ0
2 respectively (see eq. (12)

and (15)). The bias is proportional to the blank period φ0 and the
proportion of 0’s in a code p0. The variances of Φr and Φ f are
equal.

4.5 Characteristics of the estimator Φb

The aim of the system being to estimate the beacon angular position
φb, we are now interested in finding the mean and variance of Φb.
Generally the mean and variance of a random variable are calculated
with the help of the PDF. In the case of Φb, it is not necessary since
the estimator is a function of Φr and Φ f (eq. (6)), whose PDFs are
known. Let us first consider the mean of Φb

µΦb =
E {Φr}+E

{
Φ f
}

2
=

(
φr + p0

φ0
2

)
+
(

φ f − p0
φ0
2

)
2

,

=
φr +φ f

2
= φb. (17)

As can be seen, the mean of Φb is unbiased, despite that both the
entering angle Φr and leaving angle Φ f estimators are biased. This
justifies the construction of a symmetric receiver and the use of that
estimator.

Let us now derive the variance of Φb

σ
2
Φb

= var
{

Φr +Φ f

2

}
=

var
{

Φr +Φ f
}

4
. (18)

If Φr and Φ f are uncorrelated, we have [2, page 155]

σ
2
Φb

=
var{Φr}+ var

{
Φ f
}

4
=

σ2
Φr

2
=

σ2
Φ f

2
, (19)

since σ2
Φr

= σ2
Φ f

. This could also have been derived from the PDF
of Φb, that is given by, in the case of independent Φr and Φ f

fΦb (φ) = p2
1δ (φ −φb)

+ 2p1 p0 U
(φb−

φ0
2 ,φb+

φ0
2 )

(φ)

+ p2
0 T

(φb−
φ0
2 ,φb+

φ0
2 )

(φ) . (20)

This result is obtained by convolving the PDFs of Φr and Φ f [2,
page 136], using eq. (10) and rescaling the result by using these
properties [2]: 1) if Y = αX , then fY (y) = 1

|α| fX
( y

α

)
, and 2)

δ (αx) = 1
|α|δ (x). This density is also depicted in Figure 3 (cen-

ter). However, the non correlation or independence of Φr and Φ f
are questionable in our case as explained below.

To compute eq. (19) and (20), we have assumed that Φr and
Φ f were uncorrelated or independent. But, of course, the codes are
deterministic and not random. In fact, depending on the code and
the field of view φ f −φr, it is not certain that an error is possible on
Φr and Φ f simultaneously (because the durations between blank
periods are fixed and known). Depending on the receiver field of
view, the rotating speed and the code, four situations are possible:
(1) no error is encountered, (2) an error occurs for Φr only, (3) an
error occurs for Φ f only, and (4) an error occurs for both angles.
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These remarks show that the Φr and Φ f variables are linked,
and that the nature of the relationship depends on the field of view
and the coding scheme. To establish this relationship, we should
analyze, in full details, the four previous cases in function of the
field of view and the different codes. However, the mean of Φb
is always given by eq. (17), and despites the relationship between
Φr and Φ f , Φb remains unbiased. To the contrary, the variance of
Φb is no longer given by eq. (19) when Φr and Φ f are correlated.
Fortunately, it is possible to derive an upper bound for σ2

Φb
. We can

expand eq. (18) in [2, page 155]

σ
2
Φb

=
σ2

Φr
+σ2

Φ f
+2C{Φr,Φ f }
4

, (21)

where C{Φr,Φ f } is the covariance of Φr and Φ f . Since, the square
of the covariance is upper bounded [2, page 153]

C2{Φr,Φ f } ≤ σ
2
Φr

σ
2
Φ f

, (22)

and that σ2
Φr

= σ2
Φ f

, we can give the upper bound of σ2
Φb

by using
eq. (21) and (22), resulting in

σ
2
Φb
≤ σ

2
Φr

= p0
φ 2

0
3
− p2

0
φ 2

0
4
. (23)

5. EXPERIMENTAL RESULTS

The expression of the upper bound of σ2
Φb

and the exact values for
the variances of Φr and Φ f (see eq. (13) and (16)) leads to the same
conclusions that p0 should be kept as low as possible and φ0 as short
as possible to minimize the effects of the OOK modulation. In or-
der to validate this result, we have performed some simulations and
measurements. In a practical situation, we have to consider the nat-
ural (noise) variance of the system inherent to the complete system,
even for a non modulated carrier (perfect case with no blank pe-
riods). This noise originates from the quartz jitter, rotation jitter,
etc, and, to a larger extend, from the receiver jitter at the 0→ 1 and
1→ 0 transitions. The variance of Φb computed theoretically can
be seen as the power of additional noise induced by the OOK mod-
ulation. From a theoretical point of view, it is correct to consider
that both noise are independent and therefore that the total variance
is the sum of the natural noise and the noise induced by the codes.

5.1 Measurements for different codes
In our tests, we measured the variance of the beacon angular po-
sition estimator Φb for different codes and fields of view. The
codes used are the code 0 (non modulated carrier) to compute the
natural variance of the system and three variations of code 5 with
increasing blank durations (“111110111110”, “11111001111100”,
“1111100011111000”). The three last codes have a zero symbol
probability p0 equal to respectively: 1/6, 2/7, and 3/8, and a blank
angle φ0 equal to respectively 19.25, 38.5, and 57.75 angle units
(one angle unit represents 360

62400 = 0.00577 [degree]). In the follow-
ing, these codes are referred to, respectively, as C0, C5a, C5b, and
C5c (details about codes may be found in [3]).

5.2 Modifying the angle of view
The field of view can be modified by changing the distance be-
tween the beacon and the receiver or by changing the beacon emit-
ted power. For practical reasons, we choose, in our experiments,
to modify the emitted power, for a fixed working distance, but we
will plot the measures with respect to the field of view because the
value of the emitted power has no particular relevance in this study;
the receiver has only access to the field of view via the demodulated
signal and it is not capable to know if the distance or the power
have been modified. For each code, fifty different emitted power
values were chosen ranging from about 3 [mW ] to 150 [mW ] to get
an approximately linear increase of the field of view (these power
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Figure 4: Mean values of the field of view at the receiver: ex-
perimental values (left-hand side) and simulated values (right-hand
side). The table provides, respectively, the theoretical, simulated,
and experimental fields of view biases for C5a, C5b and C5c.

values/fields of view are practical values encountered in our setup).
For each code and power value, 1000 angle measurements are taken
to compute the variance of Φb. The field of view φw is defined as
φ f −φr. An estimator of the field of view is given by

Φw = Φ f −Φr. (24)

The mean of Φw is equal to

µΦw = E
{

Φ f
}
−E {Φr} ,

=

(
φ f − p0

φ0

2

)
−
(

φr + p0
φ0

2

)
,

= φw− p0φ0. (25)

As can be seen, the mean of Φw has a bias given by −p0φ0. There-
fore, the fields of view used to plot the data are the means of the
fields of view measured for C0, for each power value (since the bias
is null for C0 as p0 = 0). The fields of view are shown in Figure
4 (left-hand side). The curves are linear as expected but the biases
observed in the fields of view are larger than the theoretical biases
(the values are given in the table of Figure 4). However they in-
crease with p0 and φ0 as predicted, and the increments between the
experimental biases are consistent with the theory.

5.3 Simulator
We developed a simulator to evaluate our theory. The three param-
eters considered by the simulator are the coding scheme (symbols
and durations), the turret period, and the field of view. The code and
the turret period are known precisely in our experiments. However,
to match the reality, the simulator fields of view and natural vari-
ance were extracted from the experimental measurements of C0.
Simulated and experimental results are thus fully comparable. The
simulated fields of view and variances are presented respectively in
Figure 4 (right-hand side) and Figure 5 (left-hand side). Simulations
confirm our theoretical results as bounds on variances correspond to
predicted bounds and the fields of view have a bias almost equal to
values predicted by eq. (25) (the numerical values are given in the
table included in Figure 4).

5.4 Measurements of Φb

The variances of the measurements are shown in Figure 5 (right-
hand side). The upper bound for each code is computed after eq.
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Figure 5: Variance values of the beacon angular position: simulated values (left-hand side) and experimental values (right-hand side).

(13) and added to the natural variance (derived from code C0) for
each power value. From Figure 5, one can see that the variances
are close but not always smaller than the corresponding predicted
bounds for each power values, especially for C5a.

The slight discrepancy between the experimental results and
theoretical bound means that one or more hypotheses about the sys-
tem or the variance calculus are incorrect. But which ones? Our
simulator provides values for the variances and biases of the field
of view that matches our theory. This tends to confirm our major
assumptions for the simulator (and the theory), which are: (1) the
natural variance is independent of the variance added by a code and
(2) the natural variance is the same whatever the code used. How-
ever, a detailed analysis of the receiver hardware shows the presence
of an “Automatic Gain Control” (AGC) loop between the input and
the demodulator. Typically, the gain is set to a high value when no
signal is present for a “long time”, resulting in a very noisy first
transition (Φr in our case). This gain then decreases over time,
resulting in sharper transitions (especially the last one, Φ f in our
case). This characteristic is clearly identifiable from the variance
of Φr and Φ f for a non modulated signal (C0). Indeed, for C0, the
variance of Φr stretches from about 250 to 500 whereas the variance
of Φ f stretches from about 7 to 20. It appears that the gain value
depends on the past values of the received signal and the duration
of blank periods, and this produces a non constant natural variance
over time. If the natural variance evolves over time, we have to con-
sider this effect to tighten the agreement between theoretical and
practical results. But it is not trivial to consider this effect because
it relates to the hardware used. Finally, note that despite that evolu-
tions of both Φr and Φ f variance are quasi linear, the curve of Φb is
not linear with respect to the field of view. This confirms that there
exists a dependency between Φr and Φ f (this effect is most visible
for the C5c curve).

6. CONCLUSIONS

This paper analyzes the errors on the measured angles of a position-
ing system described in [3]; one of the main issues is that it uses
an On-Off Keying modulation mechanism. We propose a statisti-
cal estimator for the angular localization of a beacon and show that
this estimator is unbiased and that its variance is theoretically upper

bounded by p0
φ 2

0
3 − p2

0
φ 2

0
4 . This variance represents the power noise

due to the OOK modulation; it increases with the blank angle φ0 and
with the proportion of zero symbols in a code p0 (if p0 < 2

3 ). This
study also justifies some practical choices made in [3], in particular:
(1) the building of a symmetric optical part, (2) the reduction of p0
versus p1, and (3) the reduction of T0 (or equivalently φ0).

In the second part of this paper, we present experimental results

for the variance of the beacon position due to the OOK modulation
and also present the framework of a simulator that was developed to
evaluate our theory. The results of the simulator are coherent with
our theoretical results, but experimental results are slightly differ-
ent. Experimental results enlighten that the natural variance of the
system depends on the code used because of the Automatic Gain
Control loop of the receiver, explaining why the experimental re-
sults do not match the theoretical bounds exactly. Whereas the ex-
perimental and simulated results differ a little, their general shape
are the same, meaning that this theory seems coherent. In a prac-
tical situation, we want to limit the variance added by the codes
against the natural variance of the system. The theoretical bound
computed in this paper as well as the simulator may help this pur-
pose. Note that our system achieves a remarkably low noise level
on angles. Experimental values encountered in our system for the
standard deviation of Φb range from 0.056 to 0.078 [degree].

This study supposes the robot does not move during measure-
ment. Indeed, the robot has to stop from time to time to perform
some specific tasks (like grab a ball for example). We can take ad-
vantage of this situation to get better estimates of the angles to give
to the triangulation calculus. If the robot moves, the estimated value
for the beacon angular position has an additional error because the
robot position has changed during the measurement. This has no
real impact on the performance because the acquisition duration for
the measurement is small compared to the robot speed (a typical
acquisition duration is 2 [ms], which represents a displacement of
2 [mm] if the robot moves at 1 [m/s]). However, in our positioning
system, we take this additional error into account by increasing the
variance with a value proportional to the robot speed.
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