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ABSTRACT

In recent years, thousands of species populations declined
catastrophically leaving many species on the brink of extinc-
tion. Several biological studies have shown that especially
primates like chimpanzees and gorillas are threatened. An
essential part of effective biodiversity conservation manage-
ment is population monitoring using remote camera devices.
However, due to the large amount of data, the manual anal-
ysis of video recordings is extremely time consuming and
highly cost intensive. Consequently, there is a high demand
for automatic analytical routine procedures using computer
vision techniques to overcome this issue. In this paper we
present a technique for the identification of great apes, in par-
ticular chimpanzees, using state-of-the-art algorithms for hu-
man face recognition in combination with several classifica-
tion schemes. For benchmark purposes we provide a publicly
available dataset of captive chimpanzees. In our experiments
we applied several common techniques like the well known
Eigenfaces, Fisherfaces, Laplacianfaces and Randomfaces
approaches to identify individuals. We compare all of these
methods in combination with the classification approaches
Nearest Neighbor (NN), Support Vector Machine (SVM) and
a new concept for face recognition, Sparse Representation
Classification (SRC) based on Compressive Sensing (CS).

1. INTRODUCTION

The current biodiversity crisis and the accompanied catas-
trophical declining of species populations is startling and
many thousands of species populations, especially great apes
like chimpanzees or gorillas, are threatened [5, 3]. Therefore,
autonomous monitoring techniques become more and more
important. Especially individual identification is required for
many questions in behavioral ecological research, ranging
from wildlife epidemiology to interpopulation comparisons
of social dynamics or the evolution of social behavior and
cognition. In recent years the availability of digital recording
devices has facilitated the collection of large amounts of data
on species and individuals, for instance with remote camera
traps or autonomous recording devices. Since the manual
analysis of images and video recordings is not feasible for
such a huge amount of data, there is a high demand for auto-
mated analytical routine procedures.

Recently, computer vision algorithms have been success-
fully applied to recognize animals of different species. Ar-
dovini et al. [1] for instance proposed a system for semi-
automatic recognition of elephants from photos based on
shape comparison of the nicks characterizing the elephant’s
ears. Another automatic recognition approach to identify
African Penguins on Robben Island was presented by [4].
The authors suggested to use a number of reference points
on individually-specific coat patterns for identification. The

proposed model employs boosted point-surround classifiers
as local appearance descriptors. Most recently Lahiri et al.
[8] described an algorithmic and experimental approach for
the identification of zebras in the wild. Again, the authors
use soft biometrics to recognize individuals.

All of these methods use characteristic patterns of fur and
skin or other unique markings to distinguish between indi-
viduals. However, such a technique is hard to implement
for great apes, especially if the resolution of the used im-
ages or videos is not sufficient to detect individual markings
like wrinkles under the eyes. Starting from the assumption
that humans and their closest relatives share similar prop-
erties of the face, we propose to use face recognition tech-
niques for the recognition of primates. Over the past two
decades there has been a rapidly increasing demand on tech-
nology for face recognition. One of the most successful and
very well studied techniques for human face recognition are
appearance-based methods. Here the face images of h×w
pixels are usually represented as vectors of size 1×n, where
n = h ·w. In practice this n-dimensional space is too large for
robust and fast face recognition. A well-known and common
used attempt to overcome this issue is to use dimensional-
ity reduction techniques. The most famous methods for this
purpose are Principle Component Analysis (Eigenfaces) [9],
Linear Discriminant Analysis (Fisherfaces) [2] and Local-
ity Preserving Projections (Laplacianfaces) [7]. Recently,
also randomly generated projection matrices, so called Ran-
domfaces, in combination with a Compressive Sensing (CS)
framework for classification, also known as Sparse Rep-
resentation Classification (SRC), achieved excellent results
even under difficult conditions like varying lighting or occlu-
sion [10].

In this paper, we demonstrate that both state-of-the-art al-
gorithms and traditional methods for appearance based face
recognition are not only capable of identifying humans but
also great apes, especially chimpanzees (Pan troglodytes).
Experimentation is conducted over a self prepared dataset of
24 chimpanzees, gathered in the zoo of Leipzig, Germany, to
thoroughly compare each of the above mentioned approaches
using three different classifiers: Nearest Neighbor (NN), Sup-
port Vector Machine (SVM) and Sparse Representation Clas-
sification (SRC).

The rest of the paper is organized as follows: In Sec-
tion 2, we briefly explain the face recognition approaches
and classifiers we used in our experiments. The methods
for data collection and annotation are explained in Section 3.
In Section 4, all performed evaluation experiments compar-
ing the above-mentioned algorithms are described in detail to
demonstrate the feasibility for the identification of primates
using face recognition. Finally, we conclude our paper giving
a summary of our work and future ideas of improvement.
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2. BACKGROUND

2.1 Subspace Analysis

In appearance based face recognition techniques, the N high
dimensional vectorized face images {x1, · · · ,xN} of size n are
usually projected into a lower dimensional subspace of size
m using a unitary projection matrix W ∈ R

n×m.

yk = W T xk (1)

The resulting feature vectors yk ∈ R
m, with k = 1, · · · ,N, can

then be used for classification.

2.1.1 Principal Component Analysis (Eigenfaces)

The famous Eigenfaces approach, introduced by Turk and
Pentland in the early nineties [9], is one of the approaches for
dimensionality reduction. This method uses Principal Com-
ponent Analysis (PCA) to map the facial image vectors into
a lower dimensional space. PCA aims to extract a subspace
where the variance is maximized while the global structure
of the image space is preserved. It’s objective function is

wopt = argmax
w

(wT SPCAw). (2)

The scatter matrix SPCA is defined as

SPCA =
1

N

N

∑
k=1

(xk −µ)(xk −µ)T
, (3)

where µ = 1
N ∑N

i=1 xi denotes the mean of all images. The

output set of principle vectors {w1, · · · ,wm} is an orthonor-
mal set of vectors representing the eigenvectors of the sample
covariance matrix associated with the m ≪ n largest eigen-
values.

2.1.2 Linear Discriminant Analysis (Fisherfaces)

While the Eigenfaces method tries to preserve the global
structure of the image space, Linear Discriminant Analy-
sis (LDA) aims to preserve the discriminating information
searching for the directions that are efficient for distinction.
The Fisherfaces method was first introduced in [2]. Again
we consider a set of n-dimensional samples {x1, · · · ,xN} as-
sociated to one of C classes {K1, · · · ,KC}, where Ni denotes
the number of images in class Ki. The between-class scatter
matrix Sb and the within-class scatter matrix Sw are defined
as

Sb =
1

N

C

∑
i=1

Ni(µi −µ)(µi −µ)T (4)

and

Sw =
1

N

C

∑
i=1

[

Ni

∑
j=1

(x
(i)
j −µi)(x

(i)
j −µi)

T

]

, (5)

respectively, where µi is the mean of all images in class Ki,

µ is the total sample mean vector and x
(i)
j is the j-th image of

class i. LDA solves the Fisher criterion, i.e. the projection is
chosen to maximize the ratio of the determinant of Sb of the
projected samples to the determinant of Sw of the projected
samples. Consequently, the objective function is as follows:

wopt = argmax
w

(

wT Sbw

wT Sww

)

. (6)

The optimal projection basis for LDA is the set of general-
ized eigenvectors of Sb and Sw associated with the m largest
eigenvalues λi, i = 1, · · · ,m

S−1
w Sbwi = λiwi. (7)

The Fisherfaces method avoids the problem of the singular-
ity of Sw by projecting the image set to a lower dimensional
space using PCA before applying LDA. The set of eigenvec-
tors of SPCA corresponding to the N−C largest eigenvalues is
denoted as WPCA = [w1, · · · ,wN−C]. Then the new between-
class scatter matrix and within-class scatter matrix can be
rewritten as

S̃b = W T
PCASbWPCA (8)

and
S̃w = W T

PCASwWPCA. (9)

Now WLDA = [w1, · · · ,wC−1] is the set of eigenvectors of S̃b

and S̃w associated with the C−1 largest eigenvalues λi with
i = 1, · · · ,C−1. The final projection is then simply given by
the multiplication of WPCA and WLDA

WFinal = WPCAWLDA. (10)

2.1.3 Locality Preserving Projections (Laplacianfaces)

The Localitiy Preserving Projections (LPP) approach as-
sumes that the face images reside on a nonlinear submanifold
hidden in the image space. Unlike the Eigenfaces or Fisher-
faces method, which effectively only see the global euclidean
structure, LPP finds an embedding that preserves local infor-
mation and obtains a subspace that best detects the essential
face manifold structure. To preserve the local structure of the
face space, this manifold structure is modeled by a nearest-
neighbor graph. We start by defining an adjacency graph G
with m nodes. An edge is put between two nodes k and j if
they are within an ε neighborhood, i.e. if ‖xk − x j‖

2 < ε .
LPP will try to optimally preserve this graph in choosing

projections. After constructing the graph, weights have to be
assigned to the edges. Therefore a sparse symmetric matrix
S of size m×m is created with Sk, j having the weight of the
edge joining vertices k and j, and 0 otherwise. The weights
are calculated as follows:

Sk, j =

{

e
‖xk−x j‖

2

t , if ‖xk − x j‖
2 < ε

0, otherwise.
(11)

The constant values t and ε > 0 have to be chosen adaptively.
Here, ε defines the radius of the local neighborhood. There-
fore, the objective function of LPP is defined as

wopt = min∑
k j

(yk − y j)
2Sk j. (12)

Following some simple algebraic steps, it is possible to
show that Eq. (12) finally results in a generalized eigenvalue
problem:

XLXT w = λXDXT w, (13)

where D is a diagonal matrix whose entries are column sums
of S and L = D− S is the so called Laplacian matrix. The
k-th column of matrix X is xk.

The projection matrix W is constructed by concatenating
the solution to the above equation, i.e. the column vectors
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of WLPP = [w1, · · · ,wm] are ordered ascendingly according to
their eigenvalues. Similar to the Fisherfaces approach, the
image set is usually projected into the PCA subspace before
applying LPP by deleting the smallest principle components.
Thus, the final embedding is as follows:

Wf inal = WPCAWLPP. (14)

Details about the algorithm and the underlying theory can be
found in [7].

2.2 Classification

2.2.1 Classical Approaches

A Support Vector Machine (SVM) is a discriminative clas-
sifier, attempting to generate an optimal decision plane be-
tween feature vectors of the training classes. Oftentimes,
classification with linear separation planes is not possible in
the original feature space for real-world applications. Using
a so called kernel trick, the feature vectors are transformed
to a higher dimensional space in which they can be linearly
separated. We used the RBF kernel in our experiments.

The Nearest Neighbor (NN) classifier matches a given
test sample to a specific class based on the smallest distance
in the feature space between the test sample and all training
samples. We used the Euclidean distance for the NN classi-
fier in this paper.

2.2.2 Sparse Representation Classification

Another classification approach is the so called Sparse Rep-
resentation Classification (SRC), which is based on Com-
pressive Sensing (CS), a technique for signal measurement
and reconstruction. Recently, SRC has been successfully ap-
plied to face recognition and promising results were obtained
even under difficult lighting conditions and partial occlusion
[10]. It is assumed, that all training samples of a single class
lie on one mutual subspace. Given a sufficiently large num-
ber of training samples a testvector y of a class Ci can be rep-
resented as a linear combination of training samples of this
class. Taking the training samples of all classes into account,
y can be expressed as

y = Ap0, (15)

where A is a matrix containing all vectorized facial train-
ing images as column vectors and p0 is a vector holding the
coefficients for the linear combination of training vectors that
represent y. Since this vector is naturally sparse if the num-
ber of classes is large enough, an unknown sample y can be
classified by finding the sparsest representation p0 solving
the above equation.

Since this equation is usually underdetermined, the spars-
est solution can be found via a convex optimization problem
using l1-norm minimization:

x̂ = argmin
x

‖x‖1 subject to y = Ax, (16)

Ideally, the nonzero entries in the sparse coefficient vector x
will all be associated with the columns of A which represent
a single class Ci. However, in real-world examples, noise and
modeling error may lead to small nonzero entries associated
with different object classes.

Thus, the minimal residual ri(y) between y and Aδi(x̂) is
chosen to be most likely to indicate the class the test image y
belongs to:

min
i

ri(y) = ‖y−Aδi(x̂)‖2, (17)

where δi is the characteristic function of class Ci.
Usually, the high dimensional face images are first pro-

jected into a lower dimensional subspace using a sensing ma-
trix which underlies the so called Restricted Isometry Prop-
erty (RIP) [6]. It can be shown that even a randomly gener-
ated projection matrix can be used for that purpose. Such a
matrix can simply be generated by sampling zero-mean in-
dependent identically distributed gaussian entries.

A detailed description of the Compressive Sensing based
face recognition algorithm and Sparse Representation Clas-
sification in general can be found in [10].

3. VIDEO DATA COLLECTION AND ANNOTATION

The study subjects were 24 chimpanzees (Pan troglodytes)
separated into two groups, all from the zoo of Leipzig, Ger-
many. Video material from each individual was collected be-
tween June 2010 and December 2010. We placed a High
Definition camera (Sony Handycam, 3.1 MegaPixel, 25x op-
tical zoom) with a tripod on one of five observation plat-
forms from which we had a barrier-free view down into
the enclosures of the study groups. In general, individ-
uals were recorded for one to five minutes depending on
their activity level (the more active the focal animal, the
longer the recording time). The aim was to capture di-
verse poses and different expressions under varying light-
ing conditions for each individual. We then used an anno-
tation tool to mark the region of the faces and the position
of eyes, mouth and earlobes to normalize the facial images
before applying the face recognition algorithms explained
above. In addition to the position of the head and facial
feature points, we also added metainformation to the facial
images, such as lighting, species, gender, pose, expression,
age and identity. The whole chimpanzee database contains
1839 images of 24 different individuals. The entire anno-
tated dataset we used in our experiments is publicly available
at http://www.saisbeco.com/files/resources.html.

4. EXPERIMENTS AND RESULTS

The dataset we gathered in the zoo is very challenging for
face recognition because it contains images with huge varia-
tion in lighting, expression and pose. For an accurate identi-
fication of the individuals, it is necessary to either control the
conditions in which the images are taken or to apply a face
recognition technique that is robust to those kinds of varia-
tion.

Since the habitat of the primates should be kept in its
original state and the primates cannot be in direct contact
with humans, the latter method can hardly be realized in a
real-life scenario. Since the face recognition methods we ap-
ply in our experiments are very sensitive to extreme changes
in pose and occlusion, we only use frontal face images with
different vertical directions and reasonable occlusion. Ex-
amples of 3 different individuals with different expressions
and lighting conditions as well as partially occluded primate
faces can be seen in Figure 1. For our experiments we used
517 facial images of 24 individuals.
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Figure 1: Three different chimpanzee individuals (rows) with dif-
ferent expressions, lightings and partial occlusion (e.g. third row).
c©Laura Aporius - MPI EVA (2010); WKPRC (Zoo Leipzig)

The number of images per individual varies between 13
and 38. Using the data from the annotation process, we elim-
inated all images with low quality. We cropped and rotated
the images into an upright position and applied a projective
transformation to ensure comparability of the primate faces.
All images were scaled to a size of 100×80 pixel, converted
to gray scale, vectorized and normalized to unity. We applied
a 10-fold Monte Carlo cross-validation in our experiments to
validate our results, i.e. we randomly split our data into train-
ing and test data using 75% of all the data per individual for
training and the rest for testing. We repeated this procedure
for all of the 10 iterations and averaged the results over all
folds.

For PCA we used energy thresholding to remove the last
few eigenvectors and took only the first p eigenvectors to
improve the performance such that

min
p

∑
p
k=1 λk

∑n
k=1 λk

≥ τ, (18)

where λk (λk ≥ λk+1) is the eigenvalue of the k-th eigenvec-
tor, n is the total number of eigenvalues and τ is a threshold.
We found τ = 0.85 to perform best in a pre-experiment re-
sulting in 63 Eigenfaces. Note that for Fisherfaces, the max-
imal number of features is limited to C − 1, where C is the
number of classes. We chose to have the maximal number of
23 features for Fisherfaces in our test scenario. In the Lapla-
cianfaces approach, we achieved the optimal results using
160 Laplacianfaces. For Randomfaces, we used a feature di-
mension of 540 as suggested by [10] for high recognition re-
sults. The performance statistics are reported as cumulative
match scores. The horizontal axis of the cumulative accu-
racy graph is the rank and the vertical axis is the cumulated

Figure 2: Cumulative Accuracy for Eigenfaces (PCA), Fisherfaces
(LDA), Laplacianfaces (LPP) and Randomfaces (RF) with three
different classifiers: (a) Nearest Neighbor (NN), (b) Support Vec-
tor Machine (SVM) and (c) Sparse Representation Classification
(SRC).

accuracy in percent. Figure 2 provides the cumulative accu-
racy function for all three classifiers with Eigenfaces (PCA),
Fisherfaces (LDA), Laplacianfaces (LPP) and Randomfaces
(RF). The mean rank-1 accuracy and its standard deviation
over all 10 folds for every approach and every classifier are
shown in Table 1. With a 540 dimensional feature vector
the CS-framework in conjunction with RF achieved the best
results with a rank-1 accuracy of 74.89% and therefore out-
performed all other approaches.
The best results achieved by NN and SVM are 67.30%
and 71.28% respectively, using the Laplacianfaces algorithm
which finds an embedding that preserves local information.
It is worth noting that, surprisingly, Eigenfaces and Random-
faces outperformed Fisherfaces using an SVM classifier.

This might be because for SVM the higher feature dimen-
sionality of RF and PCA is more appropriate than the lower
dimension of LDA.
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Acc. [%]
(Std. [%]) NN SVM SRC

PCA 51.99 (4.54) 66.80 (2.64) 59.57 (2.46)
LDA 64.54 (2.80) 58.58 (4.44) 65.53 (5.71)
LPP 67.30 (2.10) 71.28 (2.25) 73.48 (2.88)
RF 52.27 (3.24) 63.48 (2.98) 74.89 (2.30)

Table 1: Rank-1 accuracy and standard deviation for Eigenfaces
(PCA), Fisherfaces (LDA), Laplacianfaces (LPP) and Randomfaces
(RF) with three different classifiers: Nearest Neighbor (NN), Sup-
port Vector Machine (SVM) and Sparse Representation Classifica-
tion (SRC).

For NN, Fisherfaces achieved expectably better results
than Eigenfaces and Randomfaces, where RF and PCA have
almost the same recognition results. Again, Randomfaces
performed slightly better than Eigenfaces because of the
higher feature dimension. Note that for LDA, LPP and RF
the Sparse Representation Classification achieved better re-
sults than the classification by Nearest Neighbor and even
Support Vector Machines.

5. CONCLUSION AND FUTURE WORK

In this paper, we proved that state of the art algorithms for
appearance based human face recognition are not only capa-
ble to identify humans but also primates like chimpanzees.
To perform our experiment we first annotated a new dataset
consisting of 24 chimpanzee individuals, collected in a zoo,
which we published as a public benchmark for the given
classification task. Because this primate face database was
gathered in an uncontrolled environment, it shows a huge
variety of different viewpoints, lightings, expressions and
even occlusion and is therefore a very challenging dataset
to thoroughly compare different face recognition techniques
for individual identification. Besides the position of the head
and facial landmarks, such as eyes and mouth, we addition-
ally annotated metadata like occlusion, lightning, pose and
image quality as well as other useful information like gen-
der, age and identity. Afterwards, we evaluated different
state-of-the-art algorithms for human face recognition, in-
cluding Eigenfaces, Fisherfaces, Laplacianfaces and a novel
technique called Randomfaces, in combination with differ-
ent classifiers for the identification of frontal primate faces.
Despite the fact that the dataset we used in our experiments
was gathered in a real life scenario, most of the applied face
recognition algorithms achieved good results. The best re-
sults were obtained by the Sparse Representation Classifi-
cation (SRC) using a randomly generated projection matrix
with a rank-1 recognition rate of 74.89% and therefore out-
performed all other appearance based face recognition ap-
proaches and classifiers. In future works we want to extend
our work by taking other primate species like gorillas and
gibbons into account. Therefore we need to build several
high-quality publicly available datasets of different great ape
species gathered in the zoo and in the field as a public bench-
mark for primate identification. We also expect more accu-
rate results for face recognition on great apes using global
and local descriptors in combination with a hierarchical clas-
sification paradigm or multiple kernel learning. Additionally
we will extend our work to face recognition in video record-
ings including the detection of primate faces and facial fea-
ture detection.
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