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ABSTRACT

Blind equalization of channels with z-transform having zeros on
the unit circle or even just close-by is a very difficult task as the
equalizer length tends to infinity. We propose a new blind equal-
izer for constant-modulus (CM) signals that uniformly equalizes
inter-symbol interference caused by two-path propagations with ar-
bitrary position of the zeros of the channel transfer function in the z-
domain. The equalizer achieves perfect signal recovery in the noise-
free case. It avoids the divergence of the inverse of the channel by
truncating the zero-forcing equalizer filter at a certain order and uses
the observation that the remainder is proportional to a single un-
known transmitted symbol. A CM cost function is then optimized
with respect to the unknown parameters of a two-path channel and
that one symbol. We investigate our new equalizer theoretically and
in numerical Monte-Carlo simulations and present results for the
variance of the path parameters and the equalized symbols. Fur-
thermore, we compare our algorithm with the classical parametric
CMA.

1. INTRODUCTION

Equalization is an essential task in wireless communications, be-
cause the received signals are often subject to inter-symbol inter-
ference (ISI) caused by multi-path propagation. A widespread ap-
proach is to include training sequences in the transmitted signal
which are used by the equalizer to estimate the channel and to
recover the original signal. In order to avoid wasting channel ca-
pacity training sequences can be omitted and a blind equalizer can
be used which exploits certain a priori known properties of signals
and channels. The constant-modulus-algorithm (CMA) is by far the
most known and studied method for blind channel equalization. It
was first introduced for blind equalization of quadrature amplitude
modulation (QAM) signals in [1] and of PAM and FM signals in
[2]. A review including a large list of publications on the constant
modulus criterion can be found in [3]. Like many equalizers, the
CMA suffers from the fact that a channel transfer function that ex-
hibits zeros on the unit circle cannot be inverted by a finite-impulse-
response (FIR) filter in the case of baud-spaced processing. When
a zero moves towards the unit circle, the equalization requires ex-
ceedingly long FIR filters [4]. If the received signal is oversam-
pled, the channel can be modeled as a single-input-multiple-output
(SIMO) system. Then, a finite zero-forcing filter exists (even if the
channel is non-minimum phase), if and only if the sub-channels do
not share common zeros, see [5] or [6]. However, Tugnait proved
that multi-path channels with delays equaling integer multiples of
the symbol rate do not fulfill this condition and are therefore not
identifiable from the fractionally sampled received data [7]. Our
algorithm makes use of the constant-modulus property of the trans-
mitted symbols and therefore can, as it is known for the classical
CMA [8], equalize this kind of channels as well.

In [4] a method is proposed which can equalize channels with
zeros located close to, but not exactly on the unit circle.

We focus on a two-path channel model and propose a paramet-
ric, batch-processing variant of the CMA that circumvents the prob-
lem of a diverging filter length as the zeros approach the unit circle
or even lie exactly on it. In our approach we use a finite-length

equalizer filter which is partitioned into two parts: The first part
consists of the exact zero-forcing filter truncated at a specific or-
der and the second part is proportional to the transmitted symbol at
the position of truncation. For a given batch of received data, we
estimate the channel parameters and the unknown symbol by mini-
mizing a CM cost-function. Thus, we include the estimation of this
symbol in the optimization process and use it to complete the filter.
Equalization is then performed based on the estimated parameters
using the truncated FIR filter. By this means, the algorithm can in-
vert two-path channels with zeros located exactly on the unit circle.

In principal, the method can be extended to channel models
comprising more than two paths, in doing so the dimension and
complexity of the problem increase. Here, we focus on a two-path
channel model which seems to be very restrictive at first glance, but
there exist many situations where it is commonly applied: It serves
as a simple model for a line-of-sight microwave channel known
as Rummlers model [9]. Applying this model in an urban envi-
ronment, microcellular path-loss can be predicted from ultra-high-
frequency to microwave bands [10]. Furthermore, it is generally ac-
cepted as a model for the HF-communication channel [11]. In that
context, it is known as the Watterson model [12] which underlies
the ITU recommendation [13] for testing HF modems. Almost all
HF-channel models proposed by the ITU are slowly time-varying
and can be considered as nearly stationary within short batches of
data which can be processed with our new blind equalizer.

The paper is organized as follows: In Section 2 we introduce
the parametric channel model and derive our equalizer algorithm.
Section 3 contains an analytical calculation of the first order vari-
ance of the estimated parameters. Then, in Section 4 we present a
comparison of analytical and numerical results for our new uniform
equalizer and a classical parametric CMA based on a FIR filter.

2. DATAMODEL AND ALGORITHM DEVELOPMENT

The blind equalizer outlined below is a batch-processing algorithm
relying on a parametric channel model and exploiting the CM prop-
erty of the transmitted symbols. The substantial new modification
consists in employing a truncated parametric equalizer filter which
is therefore finite. We omit noise in the derivation of the algorithm,
but investigate statistical efficiency in the presence of noise in a
theoretical analysis and with help of simulations. The considered
channel model has the form

h(t) = δ (t)+λδ (t− τ) (1)

with complex-valued path attenuation λ = αe jφ (α,φ ∈R) and path
delay τ ∈ R. (As the channel can only be identified up to an un-
known overall factor, we set the amplitude of the first path equal to
one.)

The received lowpass signal x(t) is the convolution of the chan-
nel response h(t) with the transmitted signal

y(t) =
∞

∑
i=−∞

sig(t− iT ) , (2)

where g(t) is the combined transmitter and receiver filter and {sn}
the discrete information-bearing sequence of symbols. In the fol-
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lowing, we assume that the received data xn = x(nT/M) are over-
sampled by a factor ofM times the symbol rate T and the path delay
is τ = LT/M. The delay estimation can be carried out beforehand,
see e.g. [14], independently of the estimation of λ . For a stationary
delay, the estimation is rather robust for sufficiently large observa-
tion periods.

As we assume a two-path channel, the equation for the distorted
signal in the noise-free case

xn = yn+λyn−L (3)

can be rewritten as
yn = xn−λyn−L . (4)

A K-fold recursive expansion of the above equation leads to the
following representation for the transmitted sample yn

yn =
K

∑
k=0

xn−kL(−λ )k+yn−(K+1)L(−λ )K+1 (5)

which can be verified by inserting the formula in (3). We observe
that the transmitted signal can be recovered with help of a truncated
zero-forcing filter and a residual term which is proportional to the
transmitted signal at the position of truncation.

Based on (5) we define the parametric filter for calculating the
symbol sequence {zn}:

zn =
K

∑
k=0

xnM−kL(−λ )k+ znM−(K+1)L(−λ )K+1 (6)

The difference to {yn} in (5) is, that {zn} is baud spaced and syn-
chronized, i.e. the signal is sampled at positions where the pulse-
shape filter fulfills the first Nyquist condition. Consequently, there
is no ISI due to the pulse-shape filter and {zn} shows the CM prop-
erty in the case of no noise and perfect equalization. In the cost-
function we will consider equalizer outputs for certain n ∈ [1, Ñ]
(where Ñ is the number of samples in a block) which can be re-
lated to the same starting symbol z0. First of all, the condition
nM− (K+1)L = 0 yields K =Mn/L−1. Next, we have to select
those n = n̄κ for which n̄ runs consistently from 1, . . . ,N (where N
is the number of samples involved in the equalization process) and
κ = 4L/M. 4 has to be chosen as the smallest possible integer for
which4·L is an integer multiple ofM. Then, the equalizer outputs
for n̄= 1, . . . ,N are given by

zn̄ =
n̄4−1

∑
k=0

x(n̄4−k)L(−λ )k+ z0(−λ )n̄4 (7)

Due to the CM property we can set z0 = e jθ0 . Furthermore, the
received signals have to be properly scaled in order to be able to
yield CM equalized signals. Therefore, we multiply them by an un-
known real constant γ which is determined within the optimization
of the cost-function.

The cost-function in which N equalized symbols are considered
depends on the received data, the path parameter, the path delay,
the initial symbol, the overall scaling factor γ , and the particular
transmitted symbol sequence s:

c(x;λ ,τ,γ ,z0|s) =
N

∑
n̄=1

(|z̃n̄|
2−1)2 (8)

with

z̃n̄ = γ
n̄4−1

∑
k=0

x(n̄4−k)L(−λ )k+e jθ0 (−λ )n̄4 . (9)

Because all equalized symbols within one block are related to the
same z0, the length of the filter depends on n̄. We note, that the cost-
function has a trivial local minimum for γ = 0 and α = 1 which has
to be excluded in the optimization procedure.

For fixed τ the cost-function is a polynomial in the parameters
α,φ ,z0,γ . In principle, even in the noise-free case there could exist
further local minima besides the one at the values of the true param-

eters, i.e. for which |z̃n̄|
2 = 1 holds for all n̄. But, it is very unlikely

that at these further local minima the cost-function has zeros, as
well.

3. STATISTICAL EFFICIENCY FOR LARGE N

In our theoretical performance analysis we will compute the first-
order variance of the estimated path parameter and compare it with
the results for a parametric CMA using an infinite-length equalizer.
The corresponding cost-function for this parametric CMA is defined
as follows

c(x;λ ,γ |s) =
N

∑
n=1

(|zn|
2− γ)2 (10)

with

zn =
∞

∑
k=0

xnM−kL(−λ )k (11)

and depends only on the parameters α,φ ,γ . In the following anal-
ysis it is assumed that the beforehand estimated delay τ equals the
true one.

α

st
d
(α

)

0.0 0.2 0.4 0.6 0.8
1

1

2

3

4

5

6

7
×10−3

Analytical approximation
Small-α approximation

MC-Simulations

Figure 1: Standard deviation for the path parameter α: Comparison
of analytical approximations and simulations for varying α . Block
length is N = 100 and additive noise has σn = 0.01.

Let ρ denote the vector of parameters to be estimated from the
cost-function. In the absence of noise in the data x0, the minimum
of the cost-function is located at the position of the true parame-
ters ρ0. In the presence of additional noise δx on the signal, if
the signal changes to x = x0 + δx, the position of the minimum
will change correspondingly from ρ0 to ρ̂ = ρ0 + δρ . (In case
of complex-valued receive data, we define the real-valued receive

vector x = (x
(r)
1−WL,x

(i)
1−WL, . . . ,x

(r)
NM,x

(i)
NM)T , where W is the filter

length and ·(r), ·(i) indicate real and imaginary parts of the sam-
ples, respectively. We consider the real-valued cost-function as a
function of real variables only.) It is assumed, that δx is Gaussian

distributed and zero-mean with E
[

δxδx
T
]

= σ2
n I.

We use the general results of [15],[16] to calculate analytical
expressions for the performance of the uniform equalizer: The vari-
ance of the parameters which are estimated batchwise from the
global minimum of a cost-function c reads:

var(ρ) = E
[

δρδρT
]

= σ2
n (D

(ρρ))−1D(ρx)
D

(xρ)(D(ρρ))−1 (12)
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with

D
(xρ)
ik

=
∂ 2c

∂xi∂ρk

∣

∣

∣

∣

ξ 0

, D
(ρρ)
kl

=
∂ 2c

∂ρk∂ρl

∣

∣

∣

∣

ξ 0

(13)

and ξ 0 = (xT0 ,ρT0 )T . The variance can be computed for a particular
symbol sequence s. On the other hand we are interested in the av-
erage over all possible symbol sequences with a given probability
distribution w(s).

In the following, we assume that the information bearing sym-
bols are uncorrelated, i.e.

E[sns
∗
m] = δn,m ; E[snsm] = 0 . (14)

The elements of the Hessian matrix of the cost-function (8) at
ξ 0 where z̃n̄ = sn read

∂ 2c

∂ηm∂ηn

∣

∣

∣

∣

ξ 0

= 2
N

∑
n̄=1

(
∂ z̃n̄
∂ηn

z̃∗n̄+ z̃n̄
∂ z̃∗n̄
∂ηn

)(
∂ z̃n̄
∂ηm

z̃∗n̄+ z̃n̄
∂ z̃∗n̄
∂ηm

) . (15)

The calculation of the first-order partial derivatives yields

∂ z̃n̄
∂α

= −
n̄4

∑
k=1

y(n̄4−k)L(−α)k−1e jkφ (16)

∂ z̃n̄
∂φ

= j
n̄4

∑
k=1

y(n̄4−k)L(−α)ke jkφ = jα
∂ z̃n̄
∂α

(17)

∂ z̃n̄
∂θ0

= je jθ0 (−λ )n̄4 ,
∂ z̃n̄
∂γ

= sn−e
jθ0 (−λ )n̄4 . (18)

In case of the infinite-length filter (11) we have

∂ zn
∂α

= −
∞

∑
k=1

ynM−kL(−α)k−1e jkφ (19)

∂ zn
∂φ

= j
∞

∑
k=1

ynM−kL(−λ )k = − jα
∂ zn
∂α

. (20)

Under the assumptions of statistically independent information

bearing symbols we see that the partial derivatives ∂ z̃n̄
∂ α and ∂ z̃n̄

∂ φ as

well as ∂ zn
∂ α and ∂ zn

∂ φ are uncorrelated with z̃∗n̄ and z
∗
n respectively.

Furthermore, ∂ z̃n̄
∂ θ0

is only correlated with s∗0, and
∂ z̃n̄
∂ γ

correlates with

s∗n and z
∗
0.

Then, it is straightforward to compute the elements of the Hes-
sian matrix for large block length N, i.e. if the sum over n can be
replaced by the expectation operator:

H|ξ 0
= 4









N−t
1−α2 0 0 − t

α

0
α2(N−t)
1−α2 t 0

0 t t 0
− t

α 0 0 2N+ t









(21)

with

t = α24 1−α24N

1−α24
. (22)

For the CM cost-function (10) we find

H|ξ 0
= 2N





2
1−α2 0 0

0 2α2

1−α2 0

0 0 1



 . (23)

In the derivation we assumed a rectangular pulse shaping filter
and a path delay larger than the symbol period. For different kinds

of filters we would effectively have a different multi-path model
than the two-path model (1).

For asymptotic block length N → ∞ the variance of the path
parameter obtained by optimizing the uniform CM cost-function (8)
is

var(δα2) =

σ2
n

(1−α4)(1+2α2N+2)+ α2

N (α2N −1)(α2N+4 +2α2 +3)

N(1+α2)(α2−1+ α2

N (1−α2N ))2
.

(24)

For small α we have the approximation

var(δα2) =
σ2
n

N(1−α2)
. (25)

For α = 1 we obtain using the rule of L’Hôpital

var(δα2) =
σ2
n

3

N+2

N
. (26)

It turns out that the variance of the estimated path parameter does
not diverge even if α = 1.

To compare our uniform equalizer with the classical CMA, we
cite some theoretical performance results for the CMA from [15]:
For asymptotic block length N→ ∞ the variance of the path param-
eter obtained by optimizing the CM cost-function (11) is, see [15]

var(δα2) =
σ2
n

N(1−α2)

(

1+
1

N

α2N+2−α2

1−α2

)

. (27)

Applying twice the rule of L’Hôpital yields for α = 1

var(δα2) =
σ2
n

2

N+1

N
. (28)

Also in case of the classical CMA the estimation of the path param-
eter does not diverge. But the MSE of the symbols estimated by the
classical CM cost-function (11) diverges, if α approaches one (see
[15]):

Es [var(z)] =
σ2
n

1−α2
+O(N−1) . (29)

This is obvious, because an infinite number of non-decreasing filter
taps would be required, if α = 1.

In contrast to the classical CMA the MSE of the symbols esti-
mated by our uniform CM cost-function (8) does not diverge even
if α = 1. This enables our algorithm to uniformly equalize 2-path
channels with stronger first or second path or even cases were both
paths have exactly equal amplitude. This is important for exam-
ple, if the channel is time-varying and the trajectories of both path
amplitudes are crossing.

4. SIMULATIONS

We carried out Monte-Carlo (MC) simulations with several hun-
dreds of thousands MC runs for estimating the performance of the
new uniform algorithm as a function of the path weight α . The
case α = 1 corresponds to the situation where the channel transfer
function has zeros on the unit circle. We used PSK-4 signals in all
experiments.

Figure 1 depicts analytical and numerical results for the stan-
dard deviation of the path parameter α estimated with our uniform
blind equalizer. The batch size Ñ is chosen such that a maximum of
N = 100 samples are involved in the filtering process, so the maxi-
mum value of k in (9) is 100. We observe good agreement of both
curves and establish that there is no divergence for α approaching
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Figure 2: Relative error of the standard deviation for the path pa-
rameter α between MC-simulations and analytical approximation.
Block length is N = 100 and additive noise has σn = 0.01.

one. The curve ”Small-α approximation” corresponds to the term
(25). It shows good agreement with the theoretical results as well,
except for α-values close to one.

Figure 2 affirms the closeness of the MC-results and the ana-
lytic approximation (24): The relative error is nearly constant in the
whole range of α and rarely larger than 10−2.
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Figure 3: Analytic results for the standard deviations of the path
parameter α . Block length is N = 10 and additive noise has σn =
0.01.

In order to compare the classical parametric CMAwith our uni-
form blind equalizer, we show the analytic standard deviations of
the path weight for both equalizers in Figure 3 and the correspond-
ing results of MC-simulations in 4. In this case, the batch size is
chosen such that N = 10. The results are very similar for small val-
ues of α . For α close to one, the classical CMA shows a larger
standard deviation, however, both estimators do not diverge.

A different behavior can be observed in Figure 5 where the re-
sults of MC-simulations for the MSE of the equalized symbols are
depicted. The symbol MSE for the classical parametric CMA di-
verges as α approaches one, because in this case an infinite num-
ber of filter coefficients would be necessary. For the uniform blind
equalizer this divergence is removed, as it is expected due to the use
of the truncated filter. The MSE curve shows only a slight increase
when α increases. Similar results can be observed in Figure 6 which
depicts the symbol MSE for a block length of N = 100. However, it
turns out that the uniform equalizer shows better performance using
shorter block lengths, at least if α approaches one.

The shown curves are based on simulations with a noise stan-
dard deviation of σn = 0.01. For larger values of σn we observed
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Figure 4: MC-simulations for the standard deviation of the path
parameter α . Block length is N = 10 and additive noise has σn =
0.01.

α

M
S
E

0.0 0.2 0.4 0.6 0.8 1.0

classical parametric CMA
uniform blind equalizer

10−4

10−3

10−2

Figure 5: MC-simulations for the average MSE of the equalized
symbols. Block length is N = 10 and additive noise has σn = 0.01.

a similar behavior regarding classical CMA and our uniform algo-
rithm.

α
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classical parametric CMA
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10−3

10−4

Figure 6: MC-simulations for the average MSE of the equalized
symbols. Block length is N = 100 and additive noise has σn = 0.01.

5. CONCLUSION

We proposed a zero-forcing blind equalizer which can cope with
two-path channels that have zeros on the unit circle in the z-domain.
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As the proposed method exploits the constant-modulus property of
the transmitted symbols it can handle as well cases in which sub-
channels have common zeros, a situation in which blind equalizers
using second order statistics fail. In theoretical calculations and MC
simulations we studied the performance of the new blind equalizer
and found that it is able to equalize uniformly channels, unlike a
parametric CMA that diverges for path weights of equal power.
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