
SPARSITY BASED ADAPTIVE THRESHOLDING FOR DFE IN SC-FDMA

Jovana Ilic and Thomas Strohmer

Department of Electrical and Computer Engineering, Department of Mathematics
University of California, Davis

One Shields Avenue, Davis, CA 95616
jilic@ucdavis.edu, strohmer@math.ucdavis.edu

ABSTRACT
For single-carrier systems with frequency domain equalization,
such as SC-FDMA, decision feedback equalization (DFE) performs
better than linear equalization and has much lower computational
complexity than sequence maximum likelihood detection. The
main challenge in DFE is the feedback symbol selection rule. In
this paper, we give a theoretical framework for a simple, sparsity
based thresholding algorithm. We feed back multiple symbols in
each iteration, so the algorithm converges fast and has a low com-
putational cost. We show how the initial solution can be obtained
via convex relaxation instead of linear equalization. Numerical re-
sults illustrate significant performance improvement in terms of bit
error rate compared to the MMSE solution.

1. INTRODUCTION

In broadband, high data-rate, wireless communication systems, the
effect of multipath propagation can be severe. While orthogonal
frequency division multiplexing (OFDM) successfully deals with
multipath, it is a multicarrier modulation that suffers from a large
peak to average power ratio (PAPR). On the other hand, a more tra-
ditional single carrier modulation with time domain equalization ap-
proach is unattractive, due to the high complexity of the receiver and
required signal processing time. When single carrier modulation
is used in combination with frequency domain equalization, one
attempts to approach the performance and complexity of OFDM,
while maintaining a lower PAPR compared to OFDM [1].

Single carrier frequency division multiple access (SC-FDMA),
is a single carrier technique that has lately received much attention
as an alternative to orthogonal frequency division multiple access
for 4G technology. SC-FDMA has been adopted for uplink trans-
mission technique in both 3GPP Long Term Evolution (LTE) and
LTE Advanced standards [2]. Since most of the cost in commu-
nication terminals comes from the power amplifier, a lower PAPR
can significantly reduce the cost of mobile units. This results in a
more power efficient and less complex mobile terminals. Since the
orthogonal frequency division multiple access (OFDMA) is used in
the downlink, both the burdens of complex frequency domain equal-
izer needed for the SC-FDMA and accommodating large PAPR in
OFDMA rest upon the base station.

Frequency domain equalization includes frequency domain lin-
ear equalization (LE), decision feedback equalization (DFE) and
turbo equalization (TE) [3]. For frequency selective channels, DFE
gives much better performance than LE and has a lower complexity
and computational cost than optimum equalizers and TE. The basic
idea behind the DFE is to subtract (feed back) correctly equalized
symbols in order to reduce the interference for the currently equal-
ized symbols. If the wrong symbols are fed back, the interference
will be further increased, so choosing which symbols are correct
and should be fed back is a crucial step for any DFE algorithm.
In most existing algorithms [4, 5] only one symbol is fed back in
each iteration, so the complexity is linear in the block length. Even
if multiple symbols are fed back, there is no general or systematic
rule on how many symbols should be fed back. In this paper we

Both authors were supported by NSF project DMS 0811169

Figure 1: Transmitter and Receiver Model for SC-FDMA

address these issues with an adaptive thresholding rule for feedback
symbol selection. Motivated by recent work in sparse recovery and
compressive sensing [6], our algorithm gives a theoretical frame-
work, based on sparsity, for multiple symbol feedback selection.
Our algorithm converges in very few iterations and its performance
substantially improves upon MMSE equalization.

The rest of the paper is organized as follows. In section 2 we
give the problem statement. In section 3 we will present two ways
of obtaining an initial solution for our algorithm and make the con-
nection between sparsity of the error signal and the optimal thresh-
olding rule for the DFE. Furthermore, we will introduce an adaptive
thresholding algorithm. Section 4 is devoted to numerical results.
Finally, in section 5 we will give our concluding remarks.

2. PROBLEM STATEMENT

2.1 SC-FDMA
Figure 1 depicts the high level model of an SC-FDMA receiver
and transmitter. m modulated source symbols are converted to fre-
quency domain. The frequency domain symbols are then mapped
onto m out of n (m < n) possible orthogonal subcarriers. Subcar-
riers can be mapped in two ways: localized mapping, where each
user is assigned a set of m consecutive subcarriers, and distributed
mapping, where subcarriers assigned to the user are equally spaced
across the entire channel bandwidth. After converting the sym-
bols back to the time domain using an n-point IDFT and inserting
the cyclic prefix, the SC-FDMA time domain symbol is transmit-
ted through the channel. At the receiver all the steps are reversed.
The crucial difference between the SC-FDMA and OFDMA comes
from the additional DFT block before subcarrier mapping (shaded
in the figure). The DFT block ”spreads” the modulated source sym-
bols, so that each subcarrier in frequency domain contains infor-
mation about all the source symbols. While this has an advantage
of multipath diversity, it also destroys the decoupling of the source
symbols, since we no longer have one-to-one mapping between the
source symbols and subcarriers. The result is that, unlike in OFDM,
simple, one-tap equalization combined with symbol-by-symbol de-

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 2210

tection is not equivalent to maximum likelihood detection (MLD).
In fact, the complexity of MLD for SC-FDMA grows exponentially
with the block size, m, making it unsuitable for practical purposes.
Sphere decoding can be successfully implemented with lower com-
plexity than MLD, however, for large block sizes, m, the complexity
is still too high.

It is convenient to consider a matrix formulation of an SC-
FDMA system. In particular, for one user, the received vector,
Y ∈ Cm in time domain, (see e.g. equation (11) of [3]) is given
by

Y =F−1(FH′F−1)Fx+ω, (1)

where F is an m×m DFT matrix, H′ ∈ Cm is a circulant chan-
nel matrix, x ∈ Cm is a vector of modulated source symbols, and
ω ∈Cm additive white Gaussian noise (AWGN) with zero mean and
variance σ2 . Since we are interested in frequency domain equal-
ization, from (1) we can get the following

y =HFx+ω, (2)

where y ∈Cm is a received vector for one user in frequency domain
and H ∈Cm×m is the diagonalized channel matrix. We assume that
the channel is Rayleigh fading, and that the rows of H are normal-
ized. Defining A=HF, our system becomes

y =Ax+ω. (3)

We note that in this paper we assume that the receiver knows
both the channel matrix H and the spreading matrix U. While we
assumed for convenience that A is a square matrix, we emphasize
that all results in our paper can be easily extended to the case of tall
matrices A.

Ideally, we would like to find the maximum likelihood (ML)
solution of (3), given by

xML = argmin
x∈Sm

‖y−Ax‖2, (4)

where Sm is the space of all vectors of length m whose elements
are picked from a given constellation S (e.g., for BPSK we have
S = {−1,+1}). As mentioned above, the ML solution is optimal,
but the complexity of solving (4) grows exponentially with m, and
therefore it cannot be used for practical purposes even for small
m. While sphere decoding reduces the computational complexity of
ML considerably, it is still too costly for moderate or large m.

In the literature, the terms equalization and detection are of-
ten (mistakenly) used interchangeably, but in our case it is really
important to distinguish between the two. Equalization refers to
operations done on the observation vector y in order to obtain the
estimate of the transmitted vector (such as minimum mean square
error equalization, or least squares equalization). However, at this
stage, the estimate still contains the ”soft” information, and not the
actual symbols from the used constellation. The mapping of the es-
timate into the symbols of the used constellation (such as BPSK, or
QPSK) is detection. The point of equalization is to allow for a sim-
ple coefficient-by-coefficient detection of the equalized vector in-
stead of the computationally so expensive sequence detection done
in (4) (for ML there is of course no need for equalization, as we im-
mediately obtain the detected solution). In this paper, we feed back
the detected symbols, and not the soft information, so from here on,
when we talk about obtaining and feeding back the initial solution,
we are referring to the detected symbols.

2.2 Decision Feedback Equalization
To explain the idea behind the decision feedback equalization, let
us assume that we want to equalize the lth symbol in vector x. We
can rewrite y as

y =Alxl +∑
i∈L

Aixi +ω,

where L = {i ∈ Z | 0 ≤ i ≤ n− 1, i 6= l} and Al denotes the
lth column of matrix A. The first term in the last equation is simply
the symbol we want to equalize, xl , scaled by the channel. The
summation term, I = ∑i∈LA

ixi, at least as far as equalization of
xl is concerned, is viewed as interference. The hope is that if we
have previously correctly equalized and detected some of the xi i ∈
P, where P ⊆ L, we can use that knowledge to reconstruct IP =

∑i∈PA
ixi and subtract it from y. In this way, we are subtracting the

contributions of interference from our observation. Basically, for
the purpose of equalization of xl , the interference is reduced, which
gives us a better chance of recovering xl correctly. In the subsequent
iterations, we will have a reduced system, since we will omit the
columns of A that correspond to the index set of correctly equalized
symbols in the previous iteration. So our system for all iterations
k > 0 will be overdetermined, which increases our likelihood of
recovering correctly the remaining symbols.

While this concept sounds very nice in theory, in practice we
face a very difficult question: how do we know which symbols are
equalized correctly and should be fed back? Unfortunately, there is
no way to ensure that we are feeding back the correct symbols. It is
even more unfortunate that if we feed back the wrong symbols, we
further increase the interference and cause error propagation. Ob-
viously, the performance of any DFE algorithm is determined by
the selection rule of the feedback symbols. The other question that
arises is how many symbols should we feed back in each iteration.
While feeding back one symbol at a time, as is done in V-BLAST,
may seem like the safest option, the computational time that it re-
quires for larger block sizes, m, might be unacceptable for some
applications. Also, in a good signal to noise ratio (SNR) situation,
the majority of the symbols would most likely be correct, so feeding
back one symbol at a time would be a waste of resources. Hence
there is a tradeoff: from the performance point of view, we would
rather feed back fewer symbols, that are guaranteed to be correct,
while from a computational point of view we want to feed back as
many symbols as possible in each iteration, in order to have fewer
iterations.

Let us assume for the moment that x is known at the receiver.
Then we would be able to compute the error signal given by

e= x− x̂, (5)

where x̂ is the estimate of x obtained at the receiver after equaliza-
tion and detection. Note that for each x̂i, i = 0, ...,n−1 that matches
xi, the corresponding entry in vector ei would be 0. So, assuming
that we did a decent job of estimating x, then e is a sparse vector,
where the locations of the non-zero entries of e correspond to the
locations of errors we made in our estimate of x. One realization
of e is shown in Figure 2(a). We can immediately see that know-
ing this error vector would be ideal for our DFE selection rule: if
we knew the locations of errors, we would simply not feed back
the symbols that correspond to them, while we could safely feed
back all symbols whose entries correspond to the zero entries of e.
Unfortunately, a true solution for x is not known at the receiver, so
we cannot construct the error signal e given by (5). We can try to
obtain an estimate ê of e, and use this information for our feedback
selection rule. One such estimate is shown in Figure 2(b). We can
see that the largest peaks in Figure 2(b) correspond to the locations
of errors in Figure 2(a). However, there are a lot of small peaks that
come from the noise, and our goal is to come up with a threshold
rule that will be able to distinguish the ”true” peaks in the estimated
error signal from the noise. Also, as we reduce the interference in
the subsequent iterations the error signal will look differently, which
means that the chosen threshold should adapt appropriately.

From our previous discussion we can see that in order to design
an efficient decision feedback equalization algorithm that utilizes it-
erative adaptive thresholding of the error signal, we need to provide
answers to the following crucial questions: 1. How do we find the
initial solution, x̂? 2. How do we obtain the error estimate ê? 3.
How do we design a threshold that will separate true peaks from the
noise, and adapt to the error signal in each iteration?

2211

(a) Absolute value of the true error signal in the first
iteration, |e|

(b) Absolute value of the estimated error signal in the
first iteration, |ê|

Figure 2: Comparison of the true and estimated error signals

3. SUCCESSIVE INTERFERENCE CANCELLATION
WITH ADAPTIVE THRESHOLDING

3.1 Finding An Initial Solution
In a decision feedback algorithm, in each iteration, we first must
obtain an initial solution that will be used to determine which sym-
bols are correctly equalized and should be fed back. Obviously, a
solution closer to the actual transmitted vector will give more ac-
curate information for our decision feedback rule, so obtaining a
good estimate of x in each iteration obviously has an impact on the
performance of our algorithm.

The simplest way to obtain x̂ is using zero forcing (ZF)

xZF = A∗(AA∗)−1y,

or an MMSE solution

xMMSE = A∗(AA∗+σ
2I)−1y.

For instance for MMSE, x̂ is now obtained from xMMSE by project-
ing each coefficient of xMMSE onto S. Unfortunately large noise en-
hancement severely degrades the performance of ZF. MMSE offers
better performance than ZF, but the ISI is still present [3].

From a computational viewpoint the problem with the opti-
mization problem (4) is that we need to find the minimum over a
non-convex set, the symbol space Sm. A natural idea is then to con-
sider a convex relaxation of (4) by replacing S by its convex hull
convS (for a definition of a convex hull see [7]). Thus instead of (4)
we are concerned with

x = argmin
x∈convSm

‖y−Ax‖2. (6)

Clearly, convSm = (convS)m. For instance for QPSK convS =
{x ∈ C : max{|ℜ{x}|, |ℑ{x}|} ≤ 1}. Thus in that case (6) can be
expressed as:

min‖Ax−y‖ s.t ‖ℜ{x}‖∞ < 1, ‖ℑ{x}‖∞ < 1. (7)

Some theoretical results for the noise-free, underdetermined setting
and the special case S = {±1} can be found in [8, 9]. However, in
our case the issue is not underdeterminedness, but noise. Therefore
the results in the aforementioned papers have little bearing on our
situation.

We note here that while the solution obtained via (6) leads to a
better performance than MMSE (as we will show in section 4) the
computational cost of solving (7) is higher. Nevertheless, due to re-
cent progress in convex optimization (partly driven by the thriving
area of compressive sensing) we have now a number of fast algo-
rithms for the solution of problems like (6).

Remark: Because of the noise, the solution we obtain by solv-
ing (6) or (7) will not necessarily be from a finite alphabet of our
constellation. So in order to obtain our x̂ we still have to perform
symbol by symbol detection step as discussed in the previous sec-
tion. The same is true for xZF or xMMSE.

3.2 Error Signal And Adaptive Thresholding
In the area of compressed sensing greedy algorithms have been suc-
cessfully used in finding the sparsest solution for large, underdeter-
mined systems. We emphasize that in our case, the system is not
underdetermined, however the solution (error signal) is sparse. Our
approach is inspired by the Stagewise Orthogonal Matching Pursuit
(StOMP), an iterative thresholding algorithm to identify the non-
zero coordinates of the solution [6]. We use a similar idea for deter-
mining which symbols in our current solution are correct and should
be fed back in order to reduce the interference for the next iteration.

Let us assume that in the kth iteration we have obtained x̂k.
Then we can form the corresponding residual, rk, as

rk = yk−Akx̂k, (8)

where Ak denotes the matrix that is obtained from matrix A by
leaving out the columns that correspond to the index set of correctly
equalized symbols in each previous iteration (the number of rows
of Ak is still m, but the number of columns gets smaller in each
iteration). Then the estimate of e in the k-th iteration is given by

êk = A∗krk. (9)

The key observation is that the vector ê can be viewed as a sparse,
spiky signal embedded in noise, and therefore we can represent it as

êk = ek +zk, (10)

where zk is the noise term in the k-th iteration. We will later
show that under certain conditions z is approximately additive white
Gaussian noise (AWGN).

Now that we were able to obtain an estimate of e we need to
come up with a threshold which will help us determine which en-
tries in ê are small enough to be considered just noise (no error was
made for that index) and thus should be fed back.

It is a well known result, that the maximum of a random Gaus-
sian sequence, c ∈ Cm, ck ∼ C N (0,σ2), is bounded by [10]

max(|c|)<
√

2σ2 logm, k = 0, ...m−1 (11)

with high probability. So if we had an unknown “spiky” function
embedded in AWGN, (11) would be a natural choice for the thresh-
old that would distinguish between the spikes and the noise: we
could assume with very high probability that everything that is be-
low (11) is indeed just noise and not a “true” spike. In [11], the
authors use (11) to obtain an optimal threshold rule for recovering a
sparse signal embedded in AWGN noise that adapts to the level of
sparsity. They modify (11) by exploiting the number of spikes (level

2212

of sparsity) of the function that they are thresholding. In particular,
their proposed threshold is given by

tβ = σm
√

2(1−β) logm, 0 < β < 1, (12)

where ρ = mβ is the level of sparsity, and σm the variance of the
noise term. Via a simple calculation (12) can be expressed as

tρ = σm
√

2logm/ρ, (13)

which is more convenient for our purposes. The threshold depends
on logm/ρ , rather than just logm, and the penalty factor of logm/ρ

accounts for the number of spikes that we are expecting. So the
more spikes we have (the less sparse the signal is), the lower the
threshold gets. Clearly in case that the signal has only one spike,
ρ = 1, equation (13) is reduced to (11).

We emphasize here that our objective is different from the one
in [11] or [6]: we are not interested in recovering the amplitudes
of non-zero elements (spikes) of the error signal as it is the case
in the compressed sensing applications. We are only interested in
the positions that are zero, or very close to zero since those are
the entries that we need to feed back to reduce the interference. In
other words, we are only interested in locations of entries that are
below the threshold. Furthermore, we point out that in our case,
if we ”miss” some zero locations in a given iteration, we do not
face a performance penalty, it just means that we might have more
iterations. However, if we feed back a location that is actually a
spike, we increase the interference and cause error propagation. In
that sense, our problem is not symmetrical, so for our purposes, it
is better to feed back fewer entries, (which corresponds to choosing
a lower threshold), than to feed back the wrong entries. Obviously,
the ”safest” threshold rule would be to find the error estimate ê,
and feed back only the smallest entry of |ê|, but then the number
of iterations needed would be equal to the block length m. We will
show in section 4 that while feeding back one symbol per iteration
does have a superior BER performance compared to our adaptive
thresholding rule, the computational times are very high.

In our case the threshold in the kth iteration becomes

tk =
√

2log(mk/ρk)
√

E [‖zk‖2]. (14)

From (14) we can see that we still need to obtain the level of spar-
sity, ρ , as well as the variance of the noise term zk. The level of
sparsity is determined by the number of errors we make in our solu-
tion. This number will be different in every iteration, so our thresh-
old has to adapt appropriately. We obviously cannot know the num-
ber of errors, ρ , that occurred in our current solution, but we need to
know at least approximately the level of sparsity of the actual error
vector e. We can obtain this estimate in the kth iteration as

ρk = ‖rk‖2/s2
min, (15)

where smin is the minimum distance among symbols for the used
constellation. Note that the number of unknowns decreases from
one iteration to the next, hence the length, mk of êk will also change
in every iteration.

The validity of using (14) as an optimal threshold is based on
the assumption that the noise z in (10) is AWGN. The following
theorem will show that this is indeed the case (asymptotically) at
least in the first iteration, and therefore, using (14) is justified.

Theorem 3.1 Let z0 be defined as z0 = ê0−e0 where ê0 and e0
are defined in (9) and (5), and e0 has zero mean. Let matrix A
from (3) be a square matrix (m = n). Then the entries of z0, zi,0,
i = 0, ...,n− 1 are asymptotically i.i.d. normally distributed with
zero mean and variance of E [‖e‖2]/m+σ2

The proof of this theorem is omitted, but it can be found in [12].
As the theorem states, the variance of the entries of z is given by:

E [‖zi‖2] =
E [‖e‖2]

m
+σ

2. (16)

since if there are errors in the estimated solution x̂, we can as-
sume, especially for higher SNR values, that σ is much smaller than
the term that comes from the interference in (16). Since H is nor-
malized and U is unitary, there holds

E [‖e‖2]≈ E [‖HUe‖2].

Furthermore we have

E [‖rx̂‖2] = E [‖y−Ax̂‖2] = E [‖HUe‖2]+E [‖ω‖2]

And thus E [‖rx̂‖2] = E [‖HUe‖2]+σ2. Using the same assump-
tion about σ as before, we have the following approximation

E [‖e‖2]≈ ‖rx̂‖2. (17)

Substituting (15) and (16) into (13), we finally obtain our threshold
in the k-th iteration as

tk =
√

2log(mk/ρk)
‖rk‖√

mk
(18)

We emphasize that the result in the theorem is valid only in the first
iteration of our thresholding algorithm. Once we start removing the
interference for the subsequent iterations, the entries in z are no
longer uncorrelated. The result in Theorem 1 is significant, because
it allows us to find the optimal threshold in the first iteration. For all
the following iterations, this threshold is no longer optimal, but our
numerical results show that the majority of the indices are fed back
in the first iteration. The chosen threshold gives satisfactory results
for the other iterations too, even though it might not be optimal.

Now that we have laid out all the necessary pieces, we are ready
to present our complete adaptive thresholding decision feedback al-
gorithm. From the observed vector y we first obtain an initial es-
timate of the transmitted vector x using ZF, MMSE or convex op-
timization described in (6), which we detect in order to obtain x̂k.
We find the residual rk, as in (8) and we obtain êk as in (9). We
calculate the threshold tk as in (18). We threshold |êk| and obtain
the index set, Ick = {i ∈ Z| |êi,k|< tk}. The index set Ick contains
the positions of all entries in the solution x̂k that are assumed to be
correct. We then remove the interference caused by the “correct”
symbols:

yk+1 = yk−Ak(:, Ick)x̂k(Ick).

Here, the notation A(:, Ic) denotes that all rows of A are selected,
but only columns that correspond to index set Ic are selected. We
form the matrix Ak+1 to be used in the subsequent iteration to ob-
tain x̂k+1 by leaving out all the columns of matrix Ak that corre-
spond to index set Ick . Using yk+1 and Ak+1 we generate the new,
smaller, initial solution and repeat the process until all indices from
I = 0, ...m−1 are exhausted.

4. SIMULATION RESULTS

In this section we present our numerical results. We consider the
model as given in (3). We used x with a length of 128 sym-
bols chosen from a QPSK constellation. The optimization toolbox
CVX [13] has been used for solving (6).

We simulated the bit error rate (BER) performance for the fol-
lowing cases: standard LE, labeled as “MMSE” in the plot; solution
of (7) (“inf”), our adaptive thresholding algorithm with an MMSE
initial solution (“MMSE+thresh”), our adaptive thresholding algo-
rithm with the initial solution obtained via optimization problem (7)
(“inf + thresh”) and feeding back the smallest entry of |ê| in each
iteration (“Feed back 1”).

Figure (3) depicts the results of our simulation. We first com-
pare the case when we obtain the initial solution using MMSE and
using (7). The performance of (7) is significantly better - around
3.5dB at BER levels of 10−3, however, we emphasize that finding
x̂ using MMSE has a significantly lower computational cost, espe-
cially when considering that an initial solution has to be found in

2213

Figure 3: BER performance comparison for a block length of 128
and QPSK modulation in case A =HU where H is a normalized
Rayleigh fading diagonal matrix, and U is an DFT matrix

each iteration. We can then compare all the thresholding scenarios.
The adaptive thresholding with MMSE has a 4dB gain compared
to using just MMSE at BER levels of 10−3. Adaptive thresholding
with (7) has around 0.5dB improvement compared to using MMSE
for an initial solution for BER= 10−3. Finally, we can see that
feeding back one coefficient at a time has the best performance,
however, the drawback is that the number of necessary iterations is
equal to the block length m. We note here that our adaptive thresh-
olding algorithm usually converges within three iterations for low
SNR scenarios, independently of the block size m. To illustrate the
computational time difference between feeding back 1, our adaptive
thresholding algorithm and standard MMSE, we have measured the
time it took to run our simulation for 1000 QPSK symbols. Feeding
back 1 took 9645 seconds, our thresholding algorithm took 321 and
standard MMSE took 144 seconds. From the previous discussion,
we can see that in addition to the superior performance compared to
linear equalizers, our algorithm is very versatile: depending on how
we find the initial solution we can choose to sacrifice some perfor-
mance in terms of BER for faster convergence. Also, the threshold
itself depends very little on the actual system, so it can be easily
adapted for different applications. In addition, the algorithm is scal-
able, and can be easily be applied to larger block sizes, with same
convergence rates and performance. In Figure 4 we show the perfor-
mance of our algorithm when 16-QAM modulation is used. In this
case our thresholding algorithm in combination with initial solution
obtained via 6 for BER = 10−3 has around 10.5dB improvement
over MMSE. Unfortunately, poor MMSE performance has also sig-
nificantly degraded the performance of our thresholding algorithm
when the initial solution is obtained using MMSE, as well as feed-
ing back 1 at a time.

5. CONCLUSION

In this paper we propose a new decision feedback equalization al-
gorithm for SC-FDMA system. The algorithm is based on adaptive
thresholding that exploits the sparsity of the estimated error signal.
We provide a theoretical framework for multiple feedback symbol
selection in each iteration which leads to a very fast convergence.
Our algorithm has a low computational complexity it shows a sig-
nificant performance improvement compared to linear equalizers,
while the computational time is much lower compared to feeding
back one symbol at a time.

REFERENCES

Figure 4: BER performance comparison for a block length of 128
and 16-QAM modulation in case A = HU where H is a normal-
ized Rayleigh fading diagonal matrix, and U is a DFT matrix

[1] A. B.-S. D. Falconer, S. L. Ariyavisitakul and B. Eidson,
“Frequency domain equalization for single-carrier broadband
wireless systems,” IEEE Communications Magazine, vol. 40,
pp. 58–66, 2002.

[2] H. Myung and D. Goodman, Single Carrier FDMA a New Air
Interface For Long Term Evolution. John Wiley and Sons,
Ltd, 2008.

[3] G. H. A. Nix and S. Armour, “Decision feedback equalization
in SC-FDMA,” in PIMRC, 2008.

[4] N. Benvenuto and S. Tomasin, “Block iterative dfe for single-
carrier modulation,” Electronics Letters, Sep. 2002.

[5] ——, “On the comparison between OFDM and single-carrier
modulation with a DFE using a frequency-domain feedfor-
ward filter,” IEEE Transactions on Communications, vol. 50,
Jun. 2002.

[6] I. D. D. Donoho, Y. Tsaig and J. Starck, “Sparse solution
of underdetermined linear equations by stagewise orthogonal
matching pursuit,” 2006.

[7] B. S. and L. Vandenberghe, Convex optimization. Cambridge:
Cambridge University Press, 2004.

[8] O. Mangasarian and B. Recht, “Probability of unique integer
solution to a system of linear equations,” 2009.

[9] D. Donoho and J. Tanner, “Counting the faces of randomly-
projected hypercubes and orthants, with applications,” Dis-
crete and Computational Geometry, vol. 43, 2010.

[10] G. L. M. R. Leadbetter and H. Rootzen, Extremes and Related
Properties of Random Sequences and Processes, New York,
1983.

[11] D. D. F. Abramovich, Y. Benjamini and I. Johnstone, “Adapt-
ing to Unknown Sparsity by Controlling the False Discovery
Rate,” Mar. 2000.

[12] J. Ilic and T. Strohmer, “Sparsity enhanced decision feedback
equalization,” submitted for publication.

[13] M. Grant and S. Boyd, “CVX: Matlab software for disci-
plined convex programming, version,” http://cvxr.com/cvx,
Jan. 2011.

2214

