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ABSTRACT 
This paper provides a constructive framework to unify and 
expand various existing discrete Stockwell transforms. Un-
der the developed framework, we are able to flexibly adjust 
the time/frequency sampling resolution as well as the 
amount of information redundancy tailored to a specific 
signal and certain computational consideration.  The dis-
crete Stockwell transforms designed under the framework 
are invertible and reserve the absolutely referenced phase.  

1. INTRODUCTION 

Being a hybrid of the short-time Fourier transform and the 
wavelet transforms, the Stockwell transforms (the ST, [1]) 
provides a time-frequency representation of a signal with a 
frequency-dependent resolution. Due to its easy-
interpretation, multi-resolution analysis and the ability of 
maintaining the meaningful local phase information, the ST 
has established successes in many areas including geophys-
ics [2] and biomedicine [3, 4].   
One main drawback of the ST is the amount of information 
redundancy in its resulting time-frequency representation. 
That causes large computing consumption and limits its use 
in dealing with large size of data.  To improve its computa-
tional efficiency, the discrete orthonormal Stockwell trans-
form (DOST) is proposed [5, 6]. The DOST is based on a set 
of orthonormal basis functions that localize the Fourier spec-
trum of the signal. It samples the time-frequency representa-
tion given by the ST with zero information redundancy and 
retains the advantageous phase properties of the ST. The 
development of the DOST releases the potential of the ST 
for more practical applications.   
However, due to its non-redundancy, the DOST provides a 
rather coarse time-frequency representation with its fre-
quency resolution proportionally scaled to the logarithm of 
the frequency. Such a representation may not be always easy 
to interpret and be sufficient to reveal all the details within a 
specific signal. Certain amount of information redundancy 
producing a finer representation is sometimes preferable 
when analyzing a signal.  
Thus, the main objective of this paper is to provide a con-
structive framework that not only embraces the conventional 
discrete ST and the DOST, but also allows us to design a 
discrete ST that flexibly samples in the time-frequency do-
main and easily adjusts the amount of information redun-
dancy tailored to a specific signal. Thus we consider it as the 
generalization of the discrete STs (GDSTs).  

 

2. REVIEW OF THE ST, DST AND DOST 

2.1 The Stockwell Transform 
The continuous Stockwell transform (ST) of a signal ℎ(𝑡) is 
defined as: 

𝑠(𝜏, 𝑓) = ∫ ℎ(𝑡) |𝑓|
√2𝜋

∞
−∞ 𝑒−(𝜏−𝑡)2𝑓2/2𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡       (1) 

where 𝑓 is the frequency variable, 𝑡 is the time variable and 
𝜏 is the time translation. Note that the width of the Gaussian 
window function is proportionally to the inverse of the fre-
quency. With multi-resolution, the Stockwell spectrum 
𝑠(𝜏, 𝑓) reveals how frequency components in the signal vary 
over time. 
Since the integration of the Stockwell spectrum with respect 
to time yields the Fourier spectrum of the signal, i.e., 

𝐻(𝑓) = ∫ 𝑠(𝜏, 𝑓)𝑑𝜏∞
−∞                                (2) 

the inverse Stockwell transform can be given by 
ℎ(𝑡) = ∫ �∫ 𝑠(𝜏, 𝑓)𝑑𝜏∞

−∞ �𝑒𝑖2𝜋𝑓𝑡𝑑𝑓∞
−∞                  (3) 

In addition, the ST can be expressed in the Fourier domain  

𝑠(𝜏, 𝑓) = ∫ 𝐻(𝜉 + 𝑓)∞
−∞ 𝑒−

(2𝜋𝜉)2

2𝑓2 𝑒𝑖2𝜋𝜉𝜏𝑑𝜉          (4) 
where 𝐻(𝑓)   is the Fourier spectrum  of ℎ(𝑡).  

 
2.2 The Discrete Stockwell Transform 
Let ℎ[𝑙] = ℎ(𝑙 ∙ 𝑇), 𝑙 = 0,1,⋯ ,𝑁 − 1, be the samples of the 
continuous signal ℎ(𝑡), where 𝑇 is the sampling interval. Its 
discrete Fourier transform is given by: 

 𝐻[𝑚] = ∑ ℎ[𝑙]𝑒−𝑖2𝜋𝑚𝑙/𝑁𝑁−1
𝑙=0                         (5) 

where the discrete frequency index 𝑚 = 0,1,⋯ ,𝑁 − 1. 
Discretization of Eq. (4) leads to the discrete ST (DST):  

𝑠[𝑘,𝑛] = ∑ 𝑒−
2𝜋2𝑚2

𝑛2 𝐻[𝑚 + 𝑛]𝑒
𝑖2𝜋𝑚𝑘
𝑁𝑁−1

𝑚=0         (6) 
where 𝑘 is the index for time translation and 𝑛 is the index 
for frequency shift. Function exp (−2𝜋2𝑚2/𝑛2)  is the 
Gaussian window in the frequency domain. Implementation 
of the DST based on Eq. (4) can utilize the Fast Fourier 
transform (FFT) and hence lead to fast computation. 
Similarly, discretizing Eq. (3) yields the inverse DST 

ℎ[𝑙] = 1
𝑁
∑ �1

𝑁
∑ 𝑠[𝑘,𝑛]𝑁−1
𝑘=0 � 𝑒𝑖2𝜋𝑛𝑙/𝑁𝑁−1

𝑛=0          (7) 
For a signal of length 𝑁, the DST produces 𝑁2 number of 
coefficients in the time-frequency domain. 

 
2.3 The Discrete Orthonormal ST  
The DOST is an orthonormal version of the DST, producing 
𝑁 point time-frequency representation for a signal of length 
𝑁. Thus, the DOST reduces the information redundancy of 
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the DST to zero and leads to the maximum efficiency of a 
representation.  
The DOST can be defined as an inner product between a 
time series ℎ[𝑙]  and a set of orthonormal basis 
tions 𝑔〈𝜐,𝛽,𝜏〉[𝑙]: 

 𝑔〈𝜐,𝛽,𝜏〉[𝑙] = 1
�𝑁𝛽

∑ 𝑒𝑖2𝜋𝑙𝑓/𝑁𝑒−𝑖2𝜋𝜏𝑓/𝛽𝑒−𝑖𝜋𝜏
𝜐+𝛽2−1

𝑓=𝜐−𝛽2
        (8) 

where  three  parameters 〈𝜐,𝛽, 𝜏〉   sample the time-
frequency domain: 𝜐 is the frequency label representing the 
𝜐-th sampled frequency band, 𝛽   is the width of the fre-
quency band, and 𝜏 is the time label indicating the 𝜏-th time 
sampling interval corresponding to the 𝜐-th frequency sam-
pling band in the time-frequency domain (i.e,. 𝜏 =
{0,1,2,⋯ ,𝛽 − 1}). 
Here, to ensure the orthogonality of the basis functions, 𝜐, 𝛽 
and 𝜏 must satistify the following conditions:  

• 𝜏 = {0,1,2,⋯ ,𝛽 − 1}.  
• 𝜐  and 𝛽 must be selected such that each of frequency 

sample is used once and only once 
 
One popular choice of sampling the time-frequency domain 
is the octave sampling [5], in which the frequency sampling 
bandwidth 𝛽 doubles for each increasing frequency. Denote 
the discrete Fourier frequency point 𝑛 = 𝑛(𝜐) = 3𝛽/2  be 
the centre of the 𝜐 -th frequency sampling band and the dis-
crete time point 𝑘 = 𝜏𝑁/𝛽 be the left end point of the 𝜏-th 
time sampling interval. Then the 〈𝑘,𝑛〉  are the sampling 
points in the time-frequency domain and 𝑠[𝑘,𝑛]  is the 
DOST coefficient corresponds to the point 〈𝑘,𝑛〉. The coef-
ficients of the DOST at the rest discrete points in the time-
frequency domain can be obtained via interpolation. 
 
By the Parseveal Theorem, the DOST has the two equivalent 
expressions: 

𝑠[𝑘,𝑛] = 〈ℎ,𝑔〈𝑘,𝑛〉〉 = � 𝑔〈𝑘,𝑛〉(𝑚)������������ℎ(𝑚)
𝑁−1

𝑚=0

=
1
𝑁
〈𝐻,𝐺〈𝑘,𝑛〉〉 

(9) 
where the Fourier spectrum of the orthonormal DOST basis 
function 𝑔〈𝑘,𝑛〉 is a rectangular function with a phase modu-
lation:  

𝐺〈𝑘,𝑛〉(𝑓) = �𝑁
𝛽Π[𝛽,2𝛽−1](𝑓)𝑒

−𝑖2𝜋(𝑓−𝑛)𝑘
𝑁              (10) 

Here  

ΠΩ(𝑓) = � 1      𝑓 ∈  Ω + pN
 0      𝑓 ∉  Ω + pN

� 

where p = 0, ±1, ±2,⋯ , ±∞. Hence, similar to the DST, 
the DOST can be calculated in the Fourier domain:  

 

𝑠[𝑘,𝑛] = �
1

�𝑁𝛽
Π[𝛽,2𝛽−1](𝑙)𝑒

𝑖2𝜋(𝑙−𝑛)𝑘
𝑁 𝐻[𝑙]

𝑁−1

𝑙=0

 

             = � 1
�𝑁𝛽

Π[−𝛽/2,𝛽/2−1](𝑚)𝑒
𝑖2𝜋𝑚𝑘
𝑁 𝐻[𝑚 + 𝑛]

𝑁−1

𝑚=0
       

      (11) 
 

Note that due to the periodicity of the functions within the 
summation, the sum range for m from 0 to N-1 is the same 
as that from -n to 𝑁 − 𝑛 − 1. Substituting 𝑘 = 𝜏𝑁/𝛽  and 
𝑛 = 3𝛽/2 into Eq. (11) yields 
𝑠[𝑘,𝑛] = 𝑠[𝜏, 𝜐] 

= �
1

�𝑁𝛽
Π[−𝛽/2,𝛽/2−1](𝑚)𝑒

𝑖2𝜋𝑚𝑘
𝑁 𝐻[𝑚 + 𝑛]

𝑁−𝑛−1

𝑚=−𝑛
 

= �𝛽
𝑁
1
𝛽
∑ 𝑒

𝑖2𝜋𝑚𝜏
𝛽 𝐻�𝑚 + 3

2𝛽�
𝛽/2−1
𝑚=−𝛽/2                 

= 𝑒−𝑖𝜋𝜏�𝛽
𝑁
1
𝛽
∑ 𝑒

𝑖2𝜋𝑚𝜏
𝛽 𝐻[𝑚 + 𝛽]𝛽−1

𝑚=0                    (12) 

Equation (12) enables us to utilize an 𝛽-point DFT to im-
prove the computational speed, especially when 𝛽  is the 
power of 2. 

3. GENERALIZATION OF THE DSTS  

3.1 The Framework of the DST 
For a signal of length 𝑁, the numerical implementation of 
the forward and inverse DST can be summarized as below:  
Forward DST:  

• Apply an 𝑁-point DFT to calculate the Fourier spec-
trum of the signal H[m]; 

• Multiple 𝐻[𝑚 + 𝑛] with the Gaussian window func-
tion 𝑊[𝑚] = 𝑒−2𝜋2𝑚2/𝑛2; 

• For each fixed frequency shift  𝑛 = 0,1,⋯ ,𝑁 − 1 , 
apply an 𝑁-point inverse DFT to 𝑊[𝑚]𝐻[𝑚 + 𝑛] in 
order to calculate the DST coefficients  𝑠[𝑘,𝑛] , 
where 𝑘 = 0,1,⋯ ,𝑁 − 1; 

Inverse DST:  
•  Apply an 𝑁-point DFT to 𝑠[𝑘,𝑛]with respect to time 

index 𝑘  to obtain the windowed Fourier spectrum 
𝑊[𝑚]𝐻[𝑚 + 𝑛] . Note that 𝑊[0] =1 yields 
 𝑊[0]𝐻[𝑛] = 𝐻[𝑛] , the 𝑛-th Fourier coefficient of 
the signal; 

• Apply an 𝑁-point inverse DFT to 𝐻[𝑛] to recover the 
original signal ℎ[𝑙] 

Value at the centre of the frequency window function, i.e., 
W[0] = 1 ≠ 0,  guarantees the invertibility of the DST. 
 
Note that there is a DST coefficient calculated for every pair 
of 〈𝑘,𝑛〉in the time-frequency domain. Therefore, we define 
the frequency sampling resolution (FSR) of the DST equal 
to 1 and the time sampling resolution (TSR) of the DST 
equal to 1 as well.  
Hence, we can introduce the following key parameters that 
essentially control the numerical computation of the various 
versions of the DST:  

• FSR: 1 
• TSR: 1 
• Frequency window width equal to the central fre-

quency 𝑛; 
 
3.2 The Framework of the DOST 
The forward and inverse DOST can be implemented in a 
similar framework to those of the DST, but have a number 
of significant differences as summarized below: 
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Forward DOST:  

• Apply an 𝑁-point DFT to calculate the Fourier spec-
trum of the signal 𝐻[𝑚]; 

• Multiple 𝐻[𝑚 + 𝑛] with the rectangular window 
function 𝑊[𝑚] = Π[−𝛽/2,𝛽/2−1](𝑚); 

• For each central frequency  𝑛 = 0,1,3,⋯ ,3𝛽/2⋯ , 
apply an 𝛽-point inverse DFT to 𝑊[𝑚]𝐻[𝑚 + 𝑛] in 
order to calculate the DST coefficients 𝑠[𝑘,𝑛], where: 
𝑘 = 0, 𝐿/𝛽, 2𝐿/𝛽,⋯ , (𝛽 − 1)𝐿/𝛽; Inverse DOST:  

• For each central frequency  𝑛 = 0,1,3,⋯ ,3𝛽/2⋯ ,  
apply an 𝛽-point DFT to 𝑠[𝑘,𝑛] with respect to time 
index 𝑘  to obtain the windowed Fourier 
trum  𝑊[𝑚]𝐻[𝑚 + 𝑛] . Note that 𝑊[𝑚] = 1 , for 
𝑚 ∈ �−𝛽

2
,⋯ , 𝛽

2
− 1�  that returns  𝐻[𝑛] ,  𝑛 = 𝛽,𝛽 +

1,⋯ ,2𝛽 − 1,  𝛽 Fourier coefficients of the signal; 
• Apply an N -point inverse DFT to 𝐻[𝑛]to recover 

the original signal ℎ[𝑙]; 
 
The corresponding key parameters for the DOST are given 
as follows:  

• FSR: 𝛽  appropriated to the central frequency 
𝑛 = 3𝛽/2 

• TSR: 𝐿/𝛽 
• Window bandwidth: 𝛽. 
 

3.3 Generalization of Discrete STs 
As we can observe, the computational framework of both 
the DST and the DOST is essentially the same, that is, they 
rely on the DFT operations to the Fourier spectrum of the 
signal within different frequency sub-bands.  The differences 
between the DST and the DOST are the selections of the key 
parameters as listed above. This motivates us to unify and 
extend the current DST and DOST to a more general setting 
by varying the frequency/time sampling resolution, the win-
dow function and the window bandwidth.  
One of the main issues is the partition of the frequency do-
main into the union of non-overlapping sub frequency bands. 
Let 𝐹 denotes the entire frequency domain and {𝐹𝜈}𝜈=0𝐿−1  as a 
partition of 𝐹, such that: 

 
𝐹 = ⋃ 𝐹𝜈𝐿−1

𝜈=0      and  𝐹𝜈1 ⋂𝐹𝜈2 = ∅  if  𝜈1 ≠ 𝜈2     
(13) 

 
We denote the length of interval  𝐹𝜈 by  𝛼𝜈, i.e., defining the 
frequency sampling resolution of the time-frequency repre-
sentation.   
For each sub-band 𝐹𝜈  (𝜈 = 0,1,⋯ , 𝐿 − 1), we define a fre-
quency sub-band 𝐷𝜈 such that 
  

𝐹𝜈 ⊆ 𝐷𝜈                                       (14) 
 
Let 𝛽𝜈 denote the length of interval 𝐷𝜈 , where 𝑁/𝛽𝜈 deter-
mines the time sampling resolution corresponding to the 
frequency sub-band 𝐹𝜈. We also denote the center frequency 
of 𝐹𝜈 by 𝑛𝜈. 

For each pair (𝐹𝜈 ,𝐷𝜈), we can define a frequency window 
function 𝑊𝜈[𝑚] satisfying: 

 

� 𝑊𝜈[𝑚] ≠ 0         when 𝑚 ∈ 𝐹𝜈
𝑊𝜈[𝑚] = 0          when 𝑚 ∉ 𝐷𝜈

�                        
(15)

 

The frequency window bandwidth can be defined as 
 

            
∑ ‖𝑊𝜈[𝑚]‖2𝑚∈𝐹𝜈 (𝑚 − 𝑛𝜈)

                       (16)
 

Now, following the notation of 𝐹𝜈 , 𝐷𝜈 ,  𝛼𝜈 , 𝛽𝜈 , 𝑛𝜈and 𝑊𝜈 , 
and generalizing Eq (6) and (11), we define the generalized 
discrete Stockwell transform (GDST) as the following:  

 

𝑠[𝜏, 𝜈] = 𝑠[𝑘,𝑛] = �
1

�𝑁𝛽𝜈
𝑊𝜈[𝑙]𝑒

𝑖2𝜋(𝑙−𝑛𝜈)𝑘
𝑁 𝐻[𝑙]

𝑁−1

𝑙=0

  
where 𝜈 ∈ [0,⋯ , 𝐿 − 1] is the index of frequency sub band, 
time index 𝑘 = 𝜏𝑁 𝛽𝜈⁄ , 𝜏 ∈ [0,⋯ ,𝛽𝜈 − 1], is left end sam-
pling point of the 𝜏-th time interval corresponding to sub-
band 𝜈,  and the central frequency of sub-band 𝜈 is 𝑛𝜈.  
By a variable change 𝑙 − 𝑛𝜈 + 𝛽𝜈 2⁄ = 𝑚, we get 
 
𝑠[𝜏, 𝜈] = 𝑠[𝑘,𝑛] 

= �𝛽𝜈
𝑁
𝑒−𝑖𝜋𝜏

1
𝛽𝜈
� 𝑊𝜈[𝑚 + 𝑛𝜈 − 𝛽𝜈 2⁄ ]𝑒

𝑖2𝜋𝑚𝜏
𝛽𝜈 𝐻[𝑚 + 𝑛𝜈 − 𝛽𝜈 2⁄ ]

𝛽𝜈−1

𝑚=0

 
(17) 

Eq (17) leads to a fast implementation of the GDST by util-
izing the FFT. 
Similar to the DST and the DOST, the inverse GDST can be 
defined straightforwardly as the following:  

 
 

ℎ[𝑘] =
1
𝑁
� ��

Π𝐷𝜈(𝑙)
𝑊𝜈[𝑙]

� 𝑒𝑖𝜋𝜏�
𝑁
𝛽𝜈
𝑠[𝜏,𝜈]𝑒

−𝑖2𝜋(𝑙−𝑛𝜈+𝛽𝜈 2)𝜏⁄
𝛽𝜈

𝛽𝜈−1

𝜏=0

𝐿−1

𝜈=0

� 𝑒
−𝑖2𝜋𝑙𝑘

𝑁

𝑁−1

𝑙=0

  
 (18) 

Therefore, Eqs (17) and (18) define the forward and inverse 
GDST, respectively.  
To summarize, the GDST can be implemented in a similar 
numerical procedure as the DOST: 

 
Forward GDST:  

• Apply an 𝑁-point DFT to calculate the Fourier spec-
trum of the signal 𝐻[𝑚]; 

• Multiple 𝐻[𝑚 + 𝑛𝜈 − 𝛽𝜈 2⁄ ]  with the rectangular 
window function 𝑊𝜈[𝑚 + 𝑛𝜈 − 𝛽𝜈 2⁄ ]; 

• For each central frequency 𝑛𝜈, apply an 𝛽𝜈-point in-
verse DFT in order to calculate the GDST coeffi-
cients 𝑠[𝑘,𝑛]; Inverse GDST:  

• For each central frequency 𝑛𝜈, apply a 𝛽𝜈-point DFT 
to 𝑠[𝑘,𝑛]with respect to time index 𝑘 to obtain the 
windowed Fourier spectrum 𝑊𝜈𝐻𝜈[𝑚 + 𝑛𝜈 − 𝛽𝜈 2⁄ ]. 
Note that 𝑊𝜈[𝑚] ≠ 0, for 𝑚 ∈ 𝐷𝜈 that returns 𝐻[𝑛], 
𝑛 ∈ 𝐹𝜈,  Fourier coefficients of the signal; 
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• Apply an 𝑁-point inverse DFT to 𝐻[𝑛] to recover the 
original signal ℎ[𝑙]; 

 
For each sub frequency band v , the corresponding key pa-
rameters for the GDST: 

• FSR:  𝛼𝜈 
• TSR: 𝑁/ 𝛽𝜈  
• Windows bandwidth given by (16) 

 
Within the framework defined by the GDST, the following 
set of parameters defines the DST:  

𝐹𝜈 = {𝜈},𝐷𝜈 = [0,⋯ ,𝑁 − 1] 
 𝛼𝜈 = 1,𝛽𝜈 = 𝑁,𝑛𝜈 = 𝜈, 

𝑊𝜈[𝑚] = 𝑒−
2𝜋2(𝑚−𝜈)2

𝜈2  
where 𝜈 = [0,⋯ ,𝑁 − 1].  
 
And the DOST can be given by the parameters: 

𝐹𝜈 = 𝐷𝜈 = [𝛽𝜈 , 2𝛽𝜈 − 1] 
 𝛼𝜈 = 𝛽𝜈 = {0,1,2,4,⋯ , 2𝑝−1},𝑛𝜈 = 3𝛽𝜈/2, 
𝑊𝜈[𝑚] = Π[𝛽𝜈,   2𝛽𝜈−1](𝑚)

 

where 𝜈 = [0,⋯ , 𝐿 − 1], 𝑝 = 𝑙𝑜𝑔2(𝑁) − 1. 
 

As we can see, the GDST offers a flexible way to define a 
class of the DSTs by varying the partition of the frequency 
domain and the values of the other parameters. The block-
ness appearance of the resulting time-frequency representa-
tion of the GDST is determined by the time and frequency 
sampling resolutions, while the frequency window band-
width affects the time-frequency resolution.   
Depending on the selection of parameters, the various forms 
of the DSTs produce time-frequency representations with 
different amount of information redundancy. Using the nota-
tion of the GDST, for each frequency sub-band 𝜈, we can 
define a redundancy ratio measuring the relative amount of 
information redundancy of a time-frequency representation 
along time:  
 

𝑅𝑅𝜈 = (𝛽𝜈 − 𝛼𝜈)/(𝐿 − 𝛼𝜈)                         (19) 
 
where 0 ≤ 𝑅𝑅𝜈 ≤ 1. For instance, the redundancy ratio for 
the DOST is zero consistent with the orthonormality of the 
DOST, while the redundancy ratio for the DST is one giving 
the maximum amount of information redundancy. More 
interestingly, as long as 𝛽𝜈 = 𝛼𝜈 , the redundancy ratio is 
zero which implies that the associated GDST is orthogonal.  

4. OTHER EXAMPLES OF THE GDST  

Section 3.3 provides a flexible and constructive way to de-
sign any new GDST tailored to specific needs. These in-
clude orthogonal or non-orthogonal DSTs. Here we give two 
new DSTs with different partitions in the frequency domain.  

 
4.1 The GDST with Uniform Par tition  
We partition the frequency domain uniformly into sub-bands 
of the same length denoted as 𝑁 𝐿⁄ .  The parameters can be 
set as:  

𝐹𝜈 = �
𝜈 ∗ 𝑁
𝐿

,
(𝜈 + 1) ∗ 𝑁

𝐿
� ,𝐹𝜈 ⊆ 𝐷𝜈 

 𝛼𝜈 =  𝛽𝜈 = {𝑁/𝐿},𝑛𝜈 =
(𝜈 + 1/2) ∗ 𝑁

𝐿
, 

𝑊𝜈[𝑚] = 𝛱𝐹𝜈(𝑚) 
 

where 𝜈 = [0,⋯ , 𝐿 − 1].  
In this case, the redundancy ratio is zero and therefore the 
resulting time-frequency representation is non-redundant. 
This defines an orthogonal DST, yielding 𝑁 time-frequency 
coefficients, the same length as the original signal.  
We can relax the restriction condition of 𝐷𝜈  and 𝑊𝜈 . For 
example, increasing the length of 𝐷𝜈 will improve the time 
sampling resolution in the time-frequency representation, 
but will introduce higher level of information redundancy 
and increase the number of coefficients. The window func-
tion can be replaced by Gaussian or other admissible win-
dow functions as well.  
 
4.2 The GDST with Adaptive Spectral Energy Par tition 
It is common to modulate and band-pass filter signals arose 
from applications of signal processing. In practice, energy of 
a signal often concentrates in certain frequency bands where 
better frequency sampling resolution should be applied in 
order to reveal more details. On the other hand, for the fre-
quency bands where less spectral energy exists, we can have 
large frequency sampling resolution to save computational 
resources.  
Therefore, we propose a partition whose frequency sampling 
resolution is adaptive to spectral energy: better frequency 
sampling resolution is assigned to higher spectral energy 
areas and coarser frequency sampling resolution for lower 
spectral energy areas. By further choosing of other parame-
ters 𝐷𝜈 , 𝛽𝜈 and 𝑊𝜈, we can design a spectral energy GDST 
tailored to a specific signal. One of the practical ways to 
implement such a GDST is to employ the binary set partition 
to automatically partition the frequency domain into a set of 
non-overlapping sub-bands, so that all frequency sub-bands 
have roughly the same amount of spectral energy.  
 

5. EXPERIMENT AND SIMULATION  

Fig.1 demonstrates performance of various forms of the 
GDSTs for a synthetic signal: 

 

ℎ[𝑛] = 𝑐𝑜𝑠 �2𝜋𝑛 �0.2 + 6
1+𝑛

cos (6𝜋𝑛/1024)��      (20)
 whose frequency has a cosinoidal fluctuates around 0.2 

sampling frequency over time as shown in Fig. 1 a). Figures 
1 b)-f) are the amplitude of the time-frequency spectrum 
given by the DOST, the orthogonal GDST with uniform 
partition, the orthogonal GDST with energy adaptive parti-
tion, the GDST with uniform partition and its redundancy 
ratio being one, the GDST with adaptive spectral energy 
partition and its redundancy ratio being one, and the original 
DST, respectively. For the DOST and the various GDSTs in 
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Fig 1. b)-f), we partition the frequency domain into 12 non-
overlapping frequency sub-bands.  
As we can see, the original DST provides a smooth and de-
tailed description on the temporal variation of the frequency 
variable using 𝑁2 coefficients. The DOST and the orthogo-
nal GDST with uniform or adaptive energy partition all gen-
erate a time-frequency representation with 𝑁 coefficients. 

 Figure 1 – Generalizations of discrete Stockwell transforms of  a)  
a discrete signal given by Eq. (20) ,  b)  the DOST,  c)  the or-

thogonal DST with uniform partition,  d)  the orthogonal DST with 
adaptive spectral energy partition,  e)  the DST with uniform parti-

tion,  f)  the DST with adaptive spectral energy partition and  g)   
the DST, respectively. 

All of the three orthogonal DSTs give a rough description on 
how frequency changes over time. But the DOST with the 
octave partition as shown in Fig.1 b) assigns more coeffi-
cients to the low frequency range that contains little infor-
mation. The GDST with uniform partition spread the coeffi-
cients evenly in the time-frequency domain, sufficiently 
revealing the cosinoidal fluctuation of the frequency. The 
GDST with adaptive spectral energy partition however as-
signs more coefficients to energy concentrated frequency 
regions at which better frequency resolution is given.   
 
Compare Fig. 1 e)-g), the time-frequency spectra given by 
the non-orthogonal GDSTs and the DST. The DST certainly 
produces the most smooth spectrum using 𝑁2coefficients. 
On the other hand,  the non-orthogonal GDSTs use only 2.5% 
of the 𝑁2 coefficients clearly revealing the cosinoidal pat-
tern in the frequency, as shown in Fig. 1 e) and f).  Similar 
to Fig. 1 c)-d), the difference between Fig.1. e) and f) is that 
the adaptive energy partition results better frequency resolu-
tion at high energy frequency regions and poor frequency 

resolution at low energy frequency region and the uniform 
partition treats all the frequencies the same.   

6. SUMMARY 

In this paper, we propose a class of generalized discrete 
Stockwell transforms in a constructive framework.  The key 
features of a GDST are driven by the four parameters: the 
frequency/time sampling intervals, the ratio of redundancy 
and the window functions. By adjusting these parameters, 
we can not only yield the existing DST and the DOST, but 
also flexibly design a GDST tailored to a specific signal or 
application. For the spectral partition in Eqs (13) and (14), if  
𝐹𝜈 = 𝐷𝜈 , the resulting GDSTs are orthogonal and provide 
coarse non-redundant time-frequency representations; if 
𝐹𝜈 ⊂ 𝐷𝜈 , the GDSTs have nonzero redundancy ratios pro-
viding smoother redundant representations. The window 
functions will determine the time-frequency resolutions in 
the representation, the ability to distinguish different fre-
quency components and their time occurrence. Due to the 
page limit, the detailed investigation of the impact of these 
parameters to the generalized discrete Stockwell transforms 
will be discussed in a separate paper. In summary, the pro-
posed GDST framework will provide us a highly flexible 
way to analyze and process a signal. More practical exam-
ples of the GDST are worth of exploring for specific appli-
cations.   
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