
A 16-65 CYCLES/MB H.264/AVC MOTION COMPENSATION ARCHITECTURE FOR
QUAD-HD APPLICATIONS

Jinjia Zhou, Dajiang Zhou, Gang He, and Satoshi Goto

Graduate School of Information, Production and Systems, Waseda University.
2-7 Hibikino, Kitakyushu 808-0135, Japan.

E-mail: zhou@ruri.waseda.jp

ABSTRACT
This paper presents a motion compensation architecture for Quad-
HD H.264/AVC video decoder. For meeting the high throughput
requirement, reducing power consumption and solving the mem-
ory latency problems, three optimization schemes are applied in
this work. Firstly, a quarter-pel interpolator based on Horizontal-
Vertical Expansion and Luma-Chroma Parallelism (HVE-LCP) is
proposed to efficiently increase the throughput by at least 4 times
from the previous designs. Secondly, a novel cache memory organi-
zation (4Sx4) is adopted to improve the on-chip memory utilization,
contributing to memory area and power saving. Finally, a Split Task
Queue (STQ) architecture enhances the memory system latency tol-
erance, which reduces overall processing time. This design costs a
logic gate count and on-chip memory of 108.8k and 3.1kB, respec-
tively. The proposed architecture supports real-time processing of
3840x2160@60fps at 166MHz.

1. INTRODUCTION

While 1080 HD has already become a current standard for TV
broadcasting and home entertainment, even higher specifications
such as 4Kx2K Quad-HD format, have been targeted by next-
generation applications. To store and transmit these mass video
contents, video compression is indispensable. Compared with pre-
vious MPEG standards, H.264/AVC provides over two times higher
compression ratio with better video coding quality, which makes
it a promising tool for compression these massive data. The high
coding efficiency of H.264/AVC comes from various new features,
such as variable block size motion compensation, quarter-sample
fractional interpolation, multi-mode intra prediction, context adap-
tive entropy coding and so on. However, the use of these new
techniques, along with the ever-increasing demand for resolution,
greatly challenges the design of video decoders. The 4kx2k mo-
tion compensation(MC), which is speed bottleneck of the whole
decoder, is mainly challenged by the following aspects.

Firstly, compared with HD application, the throughput require-
ment for MC interpolation in Quad-HD cases is increased by at least
4 times. To meet this requirement, the straightforward way is to
process four rows in parallel instead of one row as previously pro-
posed in [8]. Although the parallelized architecture can increase the
throughput, the critical data alignment problem will lead to extra
overhead of both the memory read power and interpolation process-
ing time. This means the cost of parallelism will be larger than the
enhancement in throughput.

Secondly, with higher specifications, memory bandwidth re-
quirement increases significantly. [2] optimized the bandwidth for
motion-compensated temporal filtering, which is utilized for scal-
able video coding. [1][3][5] proved that cache system can be an ef-
fective way to reduce the external DRAM bandwidth for the general
motion compensation. However, the on-chip memory bandwidth
from the cache system to the interpolation component becomes
higher and costs larger power consumption, because the width of
data memory increases proportionally with the interpolation paral-
lelism.

Thirdly, the latency between cache sending the request to re-
ceiving the data from the memory system becomes longer due to

two reasons. One is that the DRAM latency increases because of
higher-speed DRAM specifications such as DDR2 and DDR3. On
the other hand, new techniques adopted to enhance the DRAM ac-
cess efficiency, such as reference frame recompression [10], though
reduces the total access amount, incurs longer access delay. As a
result, while the memory system latency is only around 10 clock
cycles in HD decoders, it can increase to over 40 clock cycles in the
new Quad-HD applications. Generally, to hide the DRAM latency,
task queue is utilized in a cache system. However, this architecture
requires conflict checking to avoid flushing the useful data in the
cache, which will be described in Section 3. The longer memory
system latency will drastically increase the probability of conflict in
the cache system, which results in long pipeline stall and decreases
the overall system performance.

To solve the above issues and achieve an efficient MC archi-
tecture for H.264/AVC real-time decoding of Quad-HD applica-
tions, three schemes are proposed in this paper. Firstly, Horizontal-
Vertical Expansion and Luma-Chroma Parallelism (HVE-LCP)
based interpolation is implemented to reduce the influence from
data alignment problem while increasing the decoding throughput
to at least over 4 times as the previous works. Secondly, an efficient
cache memory organization scheme (4Sx4) is adopted to improve
the on-chip memory utilization. By applying this scheme, memory
area is reduced and memory power is saved by 39%∼49%.

Finally, by employing a Split Task Queue (STQ) architecture,
the cache system becomes capable of tolerating much longer la-
tency of the memory system. Consequently, the cache idle time is
saved by 90%, which contributes to reducing the overall process-
ing time by 24%∼40%. The remainder of this paper is organized
as follows. Section 2 and Section 3 describe the proposed design
for the interpolation and cache components. Implementation results
and conclusion are given in Section 4 and Section 5, respectively.

2. PARALLELISM OF MC INTERPOLATION

Most of the previous works on MC interpolation decompose an MB
(Macroblock)into 16 4x4 blocks and for each 4x4 block load an area
of at most 9x9 reference pixels. As described in [8], 4 pixels in the
same row are processed simultaneously to improve the data reuse
and reduce the processing time.

However, the 4x4 block based row by row interpolation requires
at most 288 clock cycles for processing one MB, which can not meet
the requirement of 4Kx2K application. To increase the throughput,
one solution is to expand the row of 4 pixels to 8 pixels (horizontal
expansion), as shown in Figure 1 (a). However, when the parti-
tion size for inter prediction is 4x4 or 4x8, this method does not
seem efficient. Since the 8 pixels in one row are from two different
partitions, there are no loading data that can be shared and the pro-
cessing speed can not be improved. Moreover, when expanding one
row from 8 pixels to 16 pixels, this method results in almost no im-
provement on the throughput. Another way to increase the through-
put is to process two or more rows in parallel (vertical expansion),
as shown in Figure 1 (b). The processing time of 4x4 and 4x8 sized
partitions, can also be shortened when using the vertical expansion
method. However, the data alignment problem will decrease the
speed. Especially for 4Kx2K applications, when four lines are par-

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 729

2 4 5 6 73 8 91 10 11 120

2 4 5 6 73 8 91 10 11 120
2 4 5 6 73 810
2 4 5 6 73 810

2 4 5 6 73 8 91 10 11 120

Figure 1: Interpolation parallelism analysis.

allelized, the data alignment problem becomes more serious. For
example, loading a vertically unaligned 4x4 block requires 2 clock
cycles even when each word stores a 4x4 block. More loading clock
cycles will not only increase the memory power but also decrease
the processing speed. Another parallelization method for the in-
terpolation is to process two 4x4 blocks simultaneously, which is
employed by Sze et al. [7]. However, the corresponding internal
memory organization and data control can be very complicated.

To obtain a suitable parallelization method for 4Kx2K appli-
cation, we propose to combine the horizontal and vertical expan-
sion methods based on the following considerations. Firstly, re-
garding the high-level limits described in the H.264/AVC standard,
although the horizontal expansion method is not so efficient for
4x4 and 4x8 partitions, it will not influence the average speed.
H.264/AVC standard defines that the specification higher than or
equal to 720x576@25fps, bi-prediction Motion Vector (MV) is not
allowed for partition sizes smaller than 8x8. This means the data
loading times for interpolation of 8x4, 4x8 and 4x4 partitions can
be less than that of the larger ones. The other one is that on levels
higher than 3.1, maximum number of motion vectors per two con-
secutive MBs is 16, which further constrains the influences of small
blocks. Moreover, a 4Sx4 internal memory organization, which is
to be introduced in Section 3.2, can be utilized for the horizontal
expansion method to reduce the memory data width. However, 8-
pixel-parallel processing still can not meet the throughput require-
ment of 4Kx2K application. Therefore, based on the horizontal ex-
pansion, a vertical expansion is further applied to process 2 rows in
parallel, as shown in Figure 1 (c). Compared with the 4-row-parallel
vertical expansion, the memory width of the proposed horizontal-
vertical expansion method is reduced by half, and the influence from
alignment problem is decreased.

Moreover, in order to further enhance the throughput, the in-
terpolation of luma and chroma samples are parallelized. Since it
was originally not easy to reuse the hardware resources of luma and
chroma interpolation components, the luma-chroma parallelism can
provide 1.5 times the performance (for 4:2:0 sampling) with almost
no hardware cost overhead.

Consequently, compared with the general 4x4 block based row
by row interpolation architecture, the proposed Horizontal-Vertical
Expansion and Luma-Chroma Parallelism (HVE-LCP) based inter-
polation can enhance the throughput to at least over 4 times.

Figure 2: Cache mapping and internal memory organization.

3. PROPOSED CACHE ARCHITECTURE

As shown in Figure 2, for the cache system design, the cache map-
ping is targeted to reduce the off-chip DRAM bandwidth, and the
internal memory organization is aimed to improve the data through-
put and save the on-chip memory bandwidth. Cache mapping has
been well discussed in previous contributions, but few works pay
much attention to the internal memory organization. In a 4Kx2K
cache system, in order to meet the higher data throughput require-
ment, the width of internal memory should increase proportionally.
Moreover, the data alignment problem introduced in Section 2 fur-
ther increases the bandwidth of internal memory bandwidth. In
the meanwhile, with a higher parallelism, the area increase of the
other parts of the decoder is usually smaller than the speed-up [10].
Therefore, the power and cost portion of the internal memory part
becomes more significant in the whole decoder system, if a more
efficient memory organization is not proposed. The cache mapping
method of this work is given in 3.1, and the proposed internal mem-
ory organization is presented in 3.2.

Moreover, the memory system latency is increased from around
10 clock cycles in HD decoders to over 40 clock cycles in the new
Quad-HD applications. The longer task queue is required to hide
the longer memory system latency, and the longer task queue will
drastically increase the probability of conflict in the cache system,
which results in long pipeline stall and decreases the overall system
performance. Therefore, the general one task queue based conflict
checking mechanism is no longer efficient for the longer system
memory latency. The detail of the problem and the proposed solu-
tion are discussed in 3.3.

3.1 2-D Cache Mapping

Reference read operation of motion compensation (MC) composes
a dominant portion of a video decoder’s DRAM traffic. To reduce
this part of DRAM bandwidth, cache based architecture is utilized
for reusing the overlapped reference samples of neighboring blocks.
Figure 3 (a) shows the 2-set 2x2-MBs sized 2-D cache for this work,
which is similar to the design in [1]. The 2-D organization combines
the lower parts of the parX and parY physical coordinates of the Ac-
cess Units (AUs), which are the basic storage units in the DRAM,
to be the cache index. The higher parts of parX and parY coor-
dinates, together with the picture ID (used to specify the physical
storage slot of a decoded frame in the DRAM) are combined to be
the tag. Considering the use of bi-directional inter prediction in the
latest video coding standards, two cache sets should be required for
the two reference lists respectively. In our 4Kx2K video decoder
[10], because of a wider BUS width and the use of frame recom-
pression technique, AU size equals to the compression unit size,
which is larger than that in [1]. The other difference from [1] is that
the luma and the corresponding chroma samples are combined into
the same AU. Hence, in this work, the AU size is 384 bits contain-
ing the luma and chroma samples of an 8x4 block in the reference
frame, as shown in Figure 3 (b). Moreover, Partial-MB reordering
(PMBR) applied in our whole decoder [10] can increase the cache
hit ratio. For the MC cache architecture, PMBR is only related to
the cache size. In this paper, to make a fair comparison with the
other works, we use a non-PMBR configuration of the cache. As a
result, by applying the 2-D cache mapping, an average of 60% re-
duction of external DRAM bandwidth for reference frame read can
be achieved, on the bases of the previous VBSMC [6] scheme.

730

parX
parY

2 setsINDEX = {parYLO,parXLO}TAG = {picID,parYHI,parXHI}

a bc d4 422
a b c dc d a b
8x4 Y a bc d4x2 Cb 4x2 Cr
Data RAMs

RAM 0 RAM 1 RAM 2 RAM 3
L = 0L = 1
parXLO= evenparXLO= odd

Reference Frame0 1 20 Access Unit (AU)

(a) Cache Mapping

(b) AU size

(c) Internal memory orgnization

a bc d

Figure 3: Cache memory design.

2 4 5 6 73 80 1
2 4 5 6 73 80 1
2 4 5 6 73 80 1

2 4 5 6 73 80 1 9 10 11 12 13

Figure 4: Different internal memory organization analysis.

3.2 Internal Memory Organization
The proposed internal memory organization is targeted to meeting
the high data throughput requirement from interpolation, while not
significantly increasing memory area and memory power.

Generally, an MB is decomposed to 4x4 blocks. For each 4x4
block, an area of at most 9x9 pixels is loaded for interpolation. In
[8], one 32-bit (4-sample) width RAM is used, so that least 3 cy-
cles are needed to load 9 pixels. Thus, for each 4x4, 27 cycles are
required for data loading. Chen et al. [1] propose an interlaced stor-
age format to buffer the AUs in two 64-bit (8-sample) wide RAMs
(hereafter as 8Sx2). As shown in Figure 4 (a), by using this 8Sx2 in-
ternal memory organization, the required 9 pixels of one row can be
fetched in one cycle, which enhances the data throughput. However,
this is still not enough for the 4Kx2K applications. As described in
Section 2, there are two ways to increase the interpolation through-
put. One is vertical expansion, as shown in Figure 4 (b). When
using the 8Sx2 scheme with vertical expansion, the memory width
is increased proportionally with the data throughput requirement.
Even though the memory size is the same, the wider memory width
will increase memory area and memory power.

A 4Sx4 (interlaced storage in four 4-sample wide RAMs)
scheme is designed to maintain the total memory width while ex-
panding the horizontal parallelism. As described in Figure 4 (c),
when the two horizontal neighboring 4x4 blocks have the same MV
(or in one partition), at most 13 pixels for each row are required

Figure 5: Previous cache architecture.

for interpolation. Four 4-sample wide RAMs with interlaced stor-
age format are applied to ensure generating the 13 samples in one
cycle, while maintaining the total memory width to be 16 samples.
Based on this 4Sx4 scheme and the interpolator described in Section
2 which processes two rows of luma and chroma samples at same
time, the width of each RAM should contain luma and chroma sam-
ples of a 4x2 block. The proposed internal memory organization is
shown in Figure 3 (c): every AU is divided into four sub-blocks,
each of which contains 4x2 luma samples and the corresponding
2x1x2 chroma samples (4:2:0 sampling). These 4 sub-blocks are
stored into the 4 different RAMs, while the storing sequence is de-
termined by the lowest bit of parX, for ensuring the neighboring
pixels in same two lines are not stored in the same RAM. As a re-
sult, each AU can be written to data RAM in one cycle and 32 pixels
in 2 lines from different AUs can be read in one cycle.

3.3 Proposed split task queue architecture

In order to tolerate longer memory system latency in the 4Kx2K
decoder, Split Task Queue (STQ) architecture is proposed.

Figure 5 shows the previous cache architecture proposed in [1].
Firstly, tasks which describe the location and size of reference block
are sent to JUDGE unit which judges miss or hit of AUs inside the
reference block according to the TAG RAM. If the needed AUs are
not in the data RAM, read requests are sent to DRAM, and then, the
fetched AUs are written to data RAM. When all the required data
for the task is available in data RAMs and the interpolation unit is
ready, the data for this task is output. Because the time from cache
sending read requests to receiving the required data from memory
system is long, to hide the memory system latency, a task queue is
applied after JUDGE unit to store the tasks when waiting the data
from memory system. When using the task queue, subsequent ba-
sic blocks can be continuously processed during the waiting time.
However, in this architecture, conflict checking operation must be
processed before JUDGE unit sending current task into the queue
to avoid flushing the useful data in the cache. Conflict checking is
searching the task queue which stores the previous tasks, and de-
tecting whether the required data of current task will flush the data
required by previous tasks. If there is no conflict, the current task is
sent to the queue and read requests are sent to DRAM when the AUs
needed in this task are not in the data RAM. Otherwise, the JUDGE
unit stops sending task to the queue and requests to DRAM, until
all conflict tasks are output. Based on this design, the length of the
task storing queue is decided by the memory system latency and
the speed of interpolation. In the 4Kx2K decoder, the longer sys-
tem latency will increase the length of the queue. Consequently, the
conflict checking operation which checks all the tasks in the queue,

731

Figure 6: Split Task Queue Architecture.

Table 1: Interpolation throughput.

Sequences1) QP Inter MB No. Avg. speed2)

(cycles/MB)

IntoTrees 24 249236 44.87
32 211555 36.72

CrowdRun 24 218336 39.66
32 254880 32.21

ParkJoy 24 156061 35.93
32 177334 31.17

1): All the sequences are 3840x2160, 10 frames, IBBP.
2): Only considering the processing time of inter MBs.

costs larger gate count. Moreover, longer queue brings higher con-
flict probability, and results in more idle time.

In order to overcome the above problems, we design to sepa-
rate the task storing queue into two queues. One stores the data un-
ready tasks called DUT queue, and the other buffers the data ready
tasks, called DRT queue, as shown in Figure 6. In the proposed sys-
tem, JUDGE unit continuously sending tasks to the following DUT
queue, and when the required data of the task is available, this task
is sent to RECEIVE unit. Then, the RECEIVE unit checks whether
the required data of the current data ready task will flush the data
required by previous ones stored in DRT queue. If conflict happens,
RECEIVE unit stops sending the task to the DRT queue, until all the
conflict tasks in DRT queue are output. When the interpolation unit
is ready, the task in DRT queue is sent out. Thus, the DRT queue
which is utilized for conflict checking can be shorter than the one in
previous architecture, since the length of DRT queue is only based
on the speed of interpolation. As a result, with the STQ architecture,
the influence from longer memory system latency can be reduced,
which results in less pipeline stall and lower hardware cost.

4. IMPLEMENTATION RESULTS AND COMPARISON

The proposed architecture is implemented in Verilog HDL on RTL
level, and synthesized with Synopsys DesignCompiler by using
SMIC 90 G standard cell library. This design is verified both inde-
pendently in a test environment with inputs given as software gen-
erated data, and in a whole Quad-HD video decoder architecture
[10].

Table 2: Memory power comparison.

Sequence1)
8Sx2 scheme [1]2) Proposed 3) Power

(mW) (mW) Reduction
Rd. Wr. Rd. Wr.

IntoTrees 19.56 2.27 10.55 2.77 -38.98%
CrowdRun 15.72 0.80 8.16 0.98 -44.69%

ParkJoy 10.23 0.54 5.29 0.65 -44.79%
1): All the sequences are 3840x2160, 10 frames, QP24,IBBP.
2): Based on 8Sx2, two 384-bit-32-word data RAMs are applied.
3): Based on 4Sx4, four 96-bit-64-word data RAMs are applied.

Table 3: Decoding time comparison.

Sequences1) Without STQ With STQ Reduction(ms) (ms)
IntoTrees 258.26 158.46 -38.64%

CrowdRun 260.44 156.96 -39.73%
ParkJoy 190.69 145.85 -23.51%

1): All the sequences are 3840x2160, 10 frames, IBBP, QP24,
running @166MHz.

4.1 Interpolation Performance

Table 1 shows the average processing time of interpolation for dif-
ferent sequences, and this value is only for the inter MBs. Due to
different MVs and partition sizes, the interpolation processing time
for each MB is different. In our work targeting to 4Kx2K appli-
cation, considering the bi-prediction is not allowed for the partition
size smaller than 8x8 on high levels, the worst case is 80 cycles/MB.
This case happens when the MB is partitioned to 16 4x4 blocks,
each 4x4 block requires a 9x9 block from reference frame, and each
9x9 block is unaligned. Hence, the probability of this case is very
low. Moreover, since on level 3 or higher, the maximum MV num-
ber of two consecutive MBs should be less than 16, the worst case
for one MB which is 80 cycles, only happens when the neighboring
MB is intra. So, in this case, the average processing time for the two
consecutive MBs is 40 cycles. Considering the maximum MV num-
ber limits and Bi-prediction mode is forbidden for the partition size
smaller than 8x8, the worst case for two consecutive MBs is 130
cycles. Hence, the worst-case on average processing time for each
MB is 65 cycles. The speed requirement in our whole pipelined
4Kx2K decoder is 64 cycles/MB, which is described in [10]. The
average speed of the proposed interpolation shown in Table 1, can
meet the requirement.

4.2 Cache Memory Features

In order to reduce the internal memory power and area, 4Sx4
scheme is proposed. Based on this internal memory organization,
four 96-bit-64-word data RAMs are applied to ensure the interpola-
tion throughput of every cycle two lines with 8 pixels in each line.
By using the SMIC register file generator, the memory area of our
work is 108800 um2. The other way to realize a similar through-
put with our work, is parallel processing four lines with 4 pixels in
each line. For this method, based on 8Sx2 scheme, two 384-bit-32-
word data RAMs are required. The memory area of this method is
153836um2, which is about 40% larger than ours. Table 2 shows
the power comparison between the proposed 4Sx4 based memory
organization and 8Sx2 based one. With our memory organization,
the data reading power can be reduced by 5∼9mW, since the num-
ber of reading times and unit reading power are reduced. Because
the same cache size is utilized for these two methods, the total writ-
ing data size is the same. Hence, the writing power of our work is
a little higher due to the larger memory depth. However, since the
unit writing power is lower and the writing ratio is much lower than
reading ratio, the total writing power increasing is not significant.
Finally, the total memory power reduction can be 39%∼49%.

732

Table 4: Comparison between this work and state-of-the-art architectures.
[8] [9] [1] [4], [3]1) This work

Max Specification 1920x1080@30fps 1920x1080@30fps 1920x1080@60fps 4096x2160@24fps 3840x2160@60fps
Technology 180nm 180nm 130nm 90nm 90nm

Cache Gate Count N/A 9k 15.9k 2) 72k 37.6k
Interpolation Gate Count 20.6k 31k 25.5k N/A 71.2k

Memory size3) N/A SP 4kB TP 4kB SP 1.5kB TP 3.1kB
Interpolation Throughput 560 600 288 (384)4) N/A 655)
(Worst-case cycles/MB)

1): The cache gate count and max specification are from [4] and [3] , respectively.
2): It is composed of 11k for cache and 4.9k for shifter.
3): SP: single-port SRAM or register file with one R/W port; TP: two-port SRAM or register file with one read port and one write port.
4): Considering the bi-prediction limits on high levels, the throughput is 288 cycls/MB, if not, it is 384 cycles/MB.
5): Considering the maximum MV number and bi-prediction limits on high levels, and worst case on per two consecutive MBs is 130.

4.3 Overall Performance
In the previous cache structure, as shown in Figure 5, the queue
which is utilized for conflict checking is 60-bit wide and 20-word
deep. The area cost of this queue with conflict checking is 20.8k,
when synthesized with Synopsys DesignCompiler by using SMIC
90 G standard cell library. In the proposed STQ architecture as
described in Figure 6, the DUT queue is 60-bit wide and 16-word
deep, while the DRT queue is 36-bit-wide and 4-word deep. The
total area of DUT queue and DRT queue with conflict checking is
15.7k (10.6k for DUT queue and 5.1k for DRT queue with conflict
checking). Therefore, the total area can be reduced by 25%.

Beside the low area cost, the STQ architecture can significantly
reduce the idle time, which contributes to reducing the overall pro-
cessing time. Table 3 shows that the decoding time reduction is
from 24% to 40%, compared with the architecture without STQ.
The InToTree.264 sequence is tested by detail, compared with the
architecture without STQ, the cache idle time is reduced by about
90%, and the average processing time is saved by 39%.

4.4 Whole Architecture Performance Comparison
A comparison between this architecture and state-of-the-art works
is shown in Table 4. In our design, the worst-case of interpolation
throughput is 65 cycles/MB, when considering the maximum MV
number and bi-prediction limits on high levels. Compared with the
previous works, the throughput is enhanced to at least over 4 times.
At the cost of increased parallelism, the logic gate count is also in-
creased. When synthesized with SMIC 90nm process with a timing
constraint of 200MHz, the architecture costs a logic gate count of
108.8k including 37.6k for cache and 71.2k for interpolation, which
is competitive considering its high performance. Moreover, owing
to the 4Sx4 based internal memory organization, the memory area
and memory power are optimized. Finally, with the STQ scheme,
our design can tolerant longer memory system latency and reduce
the decoding time of whole system.

5. CONCLUSION

In this paper, three schemes are proposed to achieve an efficient MC
architecture for H.264/AVC real-time decoding of Quad-HD appli-
cation. Firstly, a high-performance interpolator based on HVE-LCP
scheme is proposed to efficiently increase the processing throughput
to at least over 4 times as the previous designs. Secondly, an effi-
cient cache memory organization scheme (4Sx4) is adopted to im-
prove the on-chip memory utilization, which contributes to memory
area saving and memory power saving of 39%∼49%. Finally, by
employing a STQ architecture, the cache system is capable of tol-
erating much longer latency of the memory system. Consequently,
the overall processing time is reduced by 24%∼40%. When im-
plemented with SMIC 90nm process, this design costs a logic gate
count and on-chip memory of 108.8k and 3.1kB respectively. We
also verified this design both independently in a test environment

with inputs given as software generated data, and in a whole Quad-
HD video decoder architecture [10].

Acknowledgment

This research was supported by “Ambient SoC Global COE Pro-
gram of Waseda University” of the MEXT, Japan, and by the JST
CREST project.

REFERENCES

[1] X. Chen, P. Liu, D. Zhou, J. Zhu, X. Pan, and S. Goto. A high
performance and low bandwidth multi-standard motion com-
pensation design for HD video decoder. IEICE Trans. Elec-
tronics, E93-C(3):253–260, Mar. 2010.

[2] Y. Chen, C. Cheng, T. Chuang, C. Chen, S. Chien, and
L. Chen. Efficient architecture design of motion-compensated
temporal filtering/motion compensated prediction engine.
IEEE Trans. CSVT, 18(1):98 – 109, 2008.

[3] T. Chuang, L. Chang, T. Chiu, Y. Chen, and L. Chen.
Bandwidth-efficient cache-based motion compensation archi-
tecture with DRAM-friendly data access control. In Proc.
IEEE ICASSP, pages 2009–2012, 2009.

[4] T. Chuang, P. Tsung, P. Lin, L. Chang, T. Ma, Y. Chen,
Y. Chen, C. Tsai, and L.-G. Chen. A 59.5mW scalable/multi-
view video decoder chip for quad/3d full hdtv and video
streaming applications. In Dig. Tech. Papers ISSCC, pages
330 – 331, 2010.

[5] Y. Li, Y. Qu, and Y. He. Memory cache based motion compen-
sation architecture for HDTV H.264/AVC decoder. In Proc.
IEEE ISCAS, pages 2906–2909, 2007.

[6] C. Lin, J. Chen, H. Chang, Y. Yang, Y. Yang, M. Tsai, J. Guo,
and J. Wang. A 160k gates/4.5 KB SRAM H.264 video de-
coder for HDTV applications. IEEE JSSC, 42(1):170 – 182,
2007.

[7] V. Sze, D. Finchelstein, M. Sinangil, and A. Chandrakasan. A
0.7-v 1.8-mw H.264/AVC 720p video decoder. IEEE JSSC,
44(11):2943 – 2956, Nov. 2009.

[8] S. Wang, T. Lin, T. Liu, and C. Lee. A new motion compen-
sation design for H.264/AVC decoder. In Proc. IEEE ISCAS,
pages 4558–4561, 2005.

[9] J. Zheng, W. Gao, and D. Xie. A novel VLSI architecture
of motion compensation for multiple standards. IEEE Trans.
Consumer Electronics, 54(2):687 – 694, May 2008.

[10] D. Zhou, J. Zhou, X. He, J. Kong, J. Zhu, P. Liu, and S. Goto.
A 530mpixels/s 4096x2160@60fps H.264/AVC high profile
video decoder chip. In Dig. Tech. Papers Symp. VLSI Circuits,
pages 171 – 172, 2010.

733

