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ABSTRACT
Stereo audio signal is often modeled as a mixture of instan-
taneously mixed primary components and uncorrelated am-
bience components. This paper focuses on the estimation
of the primary-to-ambience energy ratio, PAR. This measure
is useful for signal decomposition in stereo and multichan-
nel audio coding, format conversion, and spatial audio en-
hancement. The conventional approaches for the estimation
of the ratio are based on the ratio of eigenvalues which re-
quires equal energies of the ambience signals. This often
leads to an inaccurate estimate of PAR. An alternative mea-
sure is proposed which reduces those estimation errors but
requires a priori information about the primary component
signal. The performance of the method is demonstrated with
synthetic signals and a large collection of stereo audio data.

1. INTRODUCTION

Stereo audio content such as music, movies, or radio or TV
program material typically consist of a time-varying mixture
of signals from multiple sound sources. In various audio re-
production applications it is beneficial to be able to mod-
ify the content such that the desired spatial stereo image is
preserved in a different reproduction system. For example,
in upmixing from stereo audio to five-channel surround the
goal is to route the sources from the center of the stereo im-
age to the center channels of the surround setup while some
other spectrum parts of the mixture are routed to the surround
channels. The logic in the modification is based on some as-
sumed signal model and the estimation of the parameters and
component signals of that model. A generic system for spa-
tial audio modification is shown in Fig. 1.

The modification of stereo audio data typically consists
of two steps: decomposition and remixing. The decomposi-
tion part can usually be further divided into estimation and
filtering. The topic of this paper is the estimation of sig-
nal parameters in the primary-ambience (PA) model which
is one of the most common signal models for stereo audio
manipulation [5, 1, 2, 9, 10, 6]. In this paper we study com-
putationally efficient methods to estimate the energy ratio be-
tween primary and ambient components in individual time-
frequency regions of the input stereo signals.

The properties of the PA signal model are discussed in
the following sections and it is shown how the signal char-
acteristics influence the statistical metrics such as correlation
coefficients. It is noted that many metrics introduced for au-
dio applications based on the PA model use the ratio of eigen-
values of the cross-correlation matrix. It is demonstrated that
this gives a biased estimate for the energy ratio. An alterna-
tive measure is introduced and it is shown that it gives more

Figure 1: A generic block diagram for the manipulation of
the spatial audio data.

accurate results especially in the cases where the energy of
the ambience signal is not equal in the two input channels.
However, the alternative method requires a priori informa-
tion about the panning direction of the primary component
signal.

2. SIGNAL MODEL

A stereo audio signal can be represented by the following
signal model

X1(n) = aP(n)+U(n) (1)
X2(n) = bP(n)+V (n).

where n is an index of short-time Fourier transform coeffi-
cients in a small time-frequency region. It is assumed that
P(n), U(n), and V (n) are mutually uncorrelated and the
model is applied separately to small time-frequency regions.
The source signals can be seen sparse such that only one
source at the time dominates a small time-frequency region in
the signal [8]. Therefore, the model applies also to a mixture
of multiple simultaneous primary sources. The panning co-
efficients of the primary component of the model are defined
so that a2 + b2 = 1. The model has been used in different
applications and it is often called primary/ambience, PA sig-
nal model, or non-diffuse/diffuse model [9]. The model con-
tains three independent component signals in a two-channel

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011  -  ISSN 2076-1465 1643



mixture, which makes the blind source separation problem
ill-posed [11]. The same applies to the problem of the es-
timation of the energy ratios between signals and therefore
some regularization of the problem, or additional informa-
tion about the signal, is needed.

The model can be used for many typical stereo au-
dio signals. For example, the case of a filtered source
signal X1(n) = A(n)P(n) +U(n) can also be represented
by the model. For example, we may write X1(n) = (a +
Ã(n))P(n)+U(n), where a is a constant and Ã(n) is a zero-
mean sequence. In this case the cross-correlation coefficient
< aP(n), Ã(n)P(n) >= 0, which means that the instanta-
neous component with the scalar gain aP(n) is orthogonal
to the ambience component Ã(n)P(n). Therefore, when the
PA model is applied separately at different frequency regions,
basically all stereo signals can be represented by the parame-
ters of the model. Therefore the estimation step in Fig. 2 can
be reduced to the estimation of the parameters of the signal
model and it is not necessary to have a separate measure to
characterize how well the signal matches the signal model,
which is for example the case in the Center-Ambience, CA,
stereo signal model [4] or more complicated models [3].

3. PARAMETER ESTIMATION

The most common measure to compare two signals is the
cross-correlation coefficient

σ
2
12 =< X1, X̄2 > (2)

where X̄2 is the complex conjugate of X2 and < ·> represent
expectation (e.g., the mean over the data points). The sig-
nal energies are represented by the variances σk =< Xk, X̄k >
,k = 1,2. Different combinations of these can be used to for-
mulate a number of useful measures such as the difference
and sum of energies given by

dE = |σ2
1 −σ

2
2 | and dS = σ

2
1 +σ

2
2 , (3)

respectively, the energies of sum and difference signals
dsum =< |X1 +X2|2 >, and ddif < |X1−X2|2 >.

One may also try to search for coefficients z = [z1,z2]
such that < |z1X1 + z2X2| > is minimized under some con-
straint. In matrix notation, this becomes the quadratic form

zT X̄(zT X̄)T = zT X̄ X̄Tz= zTCz, (4)

where C is the correlation matrix. With the constraint z2
1 +

z2
2 = 1 the maximum and minimum of the quadratic form

are obtained when z has the eigenvectors corresponding to
the largest or smallest eigenvalues of C, respectively. The
eigenvalues are given by

λ1,2 =
1
2
(σ2

1 +σ
2
2 ±
√

4σ2
12σ̄2

12 +(σ2
1 −σ2

2 )
2). (5)

The ratio of eigenvalues

δeig =
2λ1

λ1 +λ2
= 1−

√
4σ2

12σ̄2
12 +(dE)2

dS
, (6)

is often used as a measure characterizing the energy differ-
ence between primary and ambient sounds [7]. The denomi-
nator of δeig can be seen as a normalization term. The square

σ2
1 a2σ2

p +σ2
u + cross-terms

σ2
2 b2σ2

p +σ2
v + cross-terms

σ2
12 abσ2

p + cross-terms
ddif (a−b)2σ2

p +σ2
u +σ2

v + cross-terms
dsum (a+b)2σ2

p +σ2
u +σ2

v + cross-terms
dE |σ2

u −σ2
v +(a2−b2)σ2

p + cross-terms
dS (a2 +b2)σ2

p +σ2
u +σ2

v + cross-terms

Table 1: Expressions for some of the elementary measures
for the PA signal model.

root term is an Euclidean distance from the origin in plane
spanned by the values of σ2

12 and dE .
The expressions in terms of the variances σ2

p , σ2
u , and

σ2
v , of the signals P(n), U(n), and V (n) , respectively, can be

derived using the expressions above and they are shown in
Table 1. The cross-terms in several measures are terms that
contain inner products of component signals. If the compo-
nent signals are uncorrelated all the cross-terms vanish.

4. PRIMARY-TO-AMBIENCE RATIO

The Primary-to-Ambience Ratio is defined by

PAR =
σ2

p

σ2
u +σ2

v
(7)

For the PA signal the ratio of eigenvalues (6) becomes

δeig = 1−

√
4a2b2σ4

p +
(
(a2−b2)σ2

p +σ2
u −σ2

v
)2

(a2 +b2)σ2
p +σ2

u +σ2
v

(8)

This is a function of the panning coefficients a and b, but
also depends on the level difference between the ambience
components |σ2

u −σ2
v |. With the convention a2+b2 = 1, and

additional assumption that the ambience signal has the same
level in both channels, that is, σ2

u −σ2
v = 0, we obtain

δeig =
σ2

u +σ2
v

σ2
p +σ2

u +σ2
v
, (9)

which is a representation that is independent of the panning
coefficients a and b. Moreover, combining (9) and (7) gives
the estimator

PARe =
1

δeig
−1 (10)

=
dS

dS−
√

d2
E +4σ4

12

−1 (11)

The requirement that ambience signal has the same energy
in both channels is a common simplifying assumption [2, 9]
and its main benefit is to eliminate the panning coefficients
a and b from the estimate. Various different formulations
proposed in the literature lead essentially to the result shown
in (11). The equal-energy assumption is sometimes linked
to the room acoustic concept of diffuse sound, i.e., diffuse
room reverberation is basically at the same level in both ears
of a listener. This interpretation may be debatable when
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Figure 2: CDF of level difference estimates computed over a
large database of stereo ambience data.

the methods are applied at separate frequency bands. Au-
dio recordings with unequal levels of non-primary sound are
not unusual. For example, the cumulative distribution func-
tion (CDF) in Fig. 2 represents the amplitude differences be-
tween individual time-frequency regions in a database of typ-
ical ambience stereo audio data (see Sect. 5). Although the
amplitude difference in half of the cases is less than 3dB,
there is still a significant number of regions where level dif-
ference is larger, and the PAR estimate based on (9) then
becomes inaccurate.

If the energies are not equal, the value of the PAR esti-
mate based on (11) yields

PARe =
σ2

p +σ2
u +σ2

v

σ2
p +σ2

u +σ2
v −χ

−1 (12)

where

χ =
√

σ4
p +(4a2−2)σ2

p(σ
2
u −σ2

v )+(σ2
u −σ2

v )
2.

The values of (12) as a function of the panning direction
of the primary component for five values of the level dif-
ference σ2

u −σ2
v of the ambience component are shown in

Fig. 3. In the plotted example the true PAR is 5dB, which is
obtained when the energies of the two ambience signals u(n)
and v(n) are equal (solid curve). The error in the PAR esti-
mate is large for the case where the energies of u(n) and v(n)
differ and this difference also depends on the direction of the
primary component, i.e., the panning coefficients a and b. If
the true panning coefficients and ambience energy difference
were known, one could possibly derive a correction term (or
a lookup table) to eliminate the bias. However, the correction
term would then depend on the panning coefficients, energy
difference between the ambience components, and also the
energy of the primary component.

The Pearson cross-correlation coefficient given by

cp =
σ2

12√
σ2

1 σ2
2

(13)

−20 −15 −10 −5 0 5 10 15 20
0

2

4

6

8

10

12

14

P
A

R
 E

S
TI

M
A

TE
 [d

B
]

PANNING [dB]

 

 

−3 dB
0 dB (equal ambience)
3 dB
6dB
10dB

Figure 3: The values of (12) as a function of the panning di-
rection of the primary component in PA model as a function
of the level difference σ2

u −σ2
v of the ambience component.

is not an estimator of PAR but an energy-normalized version
of σ12 However, it has also often been used as a measure for
the primary v.s. ambience energy in the PA model signals,
see, e.g., [2], and therefore it may be informative to discuss
also in this context. In the case of the PA signal this measure,
using expressions from Table 1, yields

cp =
abσ2

p

(a2σ2
p +σ2

u )(b2σ2
p +σ2

v )
(14)

The values of the cp measure are plotted in Fig. 4 for dif-
ferent values of the panning coefficients and the ambience
amplitude difference. The value of cp depends on the pan-
ning coefficients and signals levels and it seems difficult to
convert cP into an estimator for PAR.

The expressions from Table 1 can be collected into a ma-
trix equation given by σ2

1
σ2

2
σ2

12

=

 a2 1 0
b2 0 1
ab 0 0

 σ2
p

σ2
u

σ2
v

+

(
ε1
ε2
ε3

)
(15)

or, equivalently,
d̄ =As̄+ ē. (16)

Ignoring the cross-terms in ē an estimate for the variances
can be computed from s̃ =A−1d̄. The PAR is then obtained
by insertion of the values of s̃ into (7). In fact, it turns out
that this solution will be the same as

PARa =
σ2

12

σ2
12−abdS

(17)

This PAR estimate is independent of the level difference of
the ambient components. However, it is a function of a and
b. The estimation of ab will be discussed below. When the
value of a or b is close to zero, the estimator becomes highly
sensitive to the non-zero cross-terms in values of σ2

12 and dS.
This problem can be partly alleviated by using a least squares
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Figure 4: The values of the normalized cross-correlation co-
efficient (or Pearson correlation) (14) as a function of the
panning direction of the primary component in PA model for
values of level difference σ2

u −σ2
v of the ambience compo-

nent.

solution of (16) and Tikhonov regularization. In this case the
estimate for the variances is obtained from

s̃ = (σ̃2
p , σ̃

2
u , σ̃

2
v ) = (ATA+Γ

T
Γ)−1AT d̄ (18)

where Γ is the regularization matrix. In the following ex-
periments we use Γ = λ max[a,b]I where λ is a small con-
stant and max[a,b] operator adds more regularization to side-
panned primary components. The PAR estimate is then given
by

PARa =
σ̃2

p

σ̃2
u + σ̃2

v
. (19)

4.1 Estimation of ab

The estimation of the panning coefficients is typically based
on eigenvectors of (4). In particular, the coefficients are com-
puted from

a =
ν√

1−ν2
and b =

√
1−a2 (20)

where

ν =
dE±

√
4σ2

12σ̄2
12 +(dE)2

2σ2
12

, (21)

where ± depends on which eigenvalue in (5) is larger. A
direct application of the computation of a and b from the
eigenvectors and substitution to (17) gives, after arithmetic
manipulations, exactly the formula in (12).

In the case of a typical stereo audio signal the pan-
ning position of a certain instrument signal, for example, re-
mains constant often over the entire duration of the record-
ing. Therefore, it is possible to get more accurate estimates
of the panning coefficients when the information is integrated
over time. In the experiments reported in the current pa-
per the values of a and b were estimated from long signal
segments in parts where the ratio of eigenvalues is close to
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Figure 5: The PAR estimates computed from synthetic mix-
tures of white noise signals top) using (17) bottom) using
(11). The true PAR was 10dB.

maximum. An alternative to this is adaptive estimation of
the panning coefficients, e.g., using various formulations of
adaptive eigenvalue decomposition.

5. EXPERIMENTS

First, let us compare the performance of the two PAR esti-
mation methods for synthetic mixtures of uncorrelated white
noise signals. The signals were mixed such that the real PAR
value was set to 10dB and the amplitude difference between
ambience components and the panning coefficients were var-
ied. The results for the method of (11) shown in the top panel
of Fig. 5 are similar to the analytic results of Fig. 3. The
PAR estimates based on (11) were computed with an accu-
rate a priori estimates of a and b. The results are close to the
original PAR value independently of the panning coefficients
or the energy difference between the ambience components.
The histograms of the differences between the true PAR and
the estimates shown in the top panel of Fig. 6.

The true PAR value is not available in the case of real
stereo audio data and this makes the comparison difficult.
In this paper, artificial mixtures of signals from a database
of clean multi-track recordings were used as test material.
Since the original signals are available, it is possible to com-
pute the true PAR value separately for each time-frequency
region prior to the mixing. The experimental data consisted
of 1000 artificially mixed songs where the primary compo-
nent was either vocal or music instrument signal, and an am-
bience signal. The ambience signals were selected stereo
signals of wide orchestral recordings, environmental sounds,
or movie audio backgrounds characterized by a low Pearson
correlation coefficient between the left and right channels.
The sample rate of the signals was 44.1kHz and the dura-
tion of each song was 60s. The signals were converted to
the frequency domain using the Fast Fourier Transform with
the frame size of 1024 samples and 50% overlap in consec-
utive frames. The obtained spectrogram was split into uni-
form 16× 16 sample time-frequency tiles and the estimates
were computed from those tiles. In a typical application the
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Figure 6: The difference between true PAR value and the
different estimates for 1000 mixes of top) white noise se-
quences bottom) synthetic songs.

frequency division would follow some perceptually relevant
frequency scale such as the ERB rate scale.

The histograms of differences between the true PAR
value and the estimate given by the methods proposed above
are shown in Fig. 6 (bottom). The PAR measure based on
(19) gives a more accurate estimate of PAR also in the case
of realistic stereo signals, however, the difference is now
smaller than with mixtures of white noise signals, which can
also be predicted from Fig. 2.

6. CONCLUSIONS

A stereo audio signal is often modeled consisting of an am-
plitude panned primary component and two uncorrelated am-
bience signal components in the two channels. Primary-to-
Ambience Ratio, PAR, is a useful measure that characterizes
the energy ratio between the primary signal and stereo ambi-
ence data. The limitations of a conventional method based on
the ratio of eigenvalues were discussed and a new estimator
for PAR was proposed. The measure is independent of the
levels of the ambience components but depends on the am-
plitude panning coefficients of the primary signal. The pos-
sibilities for the estimation of the coefficients was discussed
and it was demonstrated that the method gives more accurate
results for synthetic and realistic stereo audio data.

Potential topics for the future work are the development
of the methods for estimation of the panning coefficients
based on signal history and evaluation of the proposed new
measure in a complete audio format conversion application.
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