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Abstract—We propose a low delay/complexity sensor system
based on the combination of Shannon-Kotel’nikov mapping
and compressed sensing (CS). The proposed system uses a
1:2 nonlinear analog coder on the CS measurements in the
presence of channel noise. It is shown that the purely-analog
system, used in conjunction with either maximum a-posteriori or
minimum mean square error decoding, outperforms the following
reference systems in terms of signal-to-distortion ratio: 1) a
conventional CS system that assumes noiseless transmission, and
2) a CS-based system which accounts for channel noise during
signal reconstruction. The proposed system is also shown to
be advantageous in requiring fewer sensors than the reference
systems.

I. INTRODUCTION

With the increasing popularity of wireless sensors networks

(WSNs), reliable transmission with delay and complexity con-

straints is more relevant than ever. Wireless sensor networking

is a technology that monitors the physical world through a

distributed network of wireless sensor nodes. These nodes,

often conceived as having limited lifetime and processing

power, communicate their sensed field information to a fusion

center (FC). Communication takes place over power and

bandwidth constrained noisy wireless channels [1]. To meet

these challenges, in this paper, we investigate using low

delay/complexity source-channel mapping with compressed

sensing (CS) in WSNs.

The sensor inputs are treated as samples from an analog

source. The traditional approach for analog source transmis-

sion is to use separate digital source and channel coders. This

separation is optimal from a theoretical perspective [2]. In such

systems, the analog source is encoded using a powerful vector

quantizer, and capacity approaching channel codes, such as

turbo or low-density-parity-check codes, are used for channel

error protection. This approach results in very high delay and

complexity, which is not desirable in WSNs. The approach

used here is analog joint source-channel coding which has

been shown to perform well under low delay and complexity

constraints [3]–[7]. More specifically, we propose to use 1:2

Shannon-Kotel’nikov mappings within the CS context. The

key idea is to use nonlinear dimension expansion, that acts

as an analog joint source-channel encoder on the compressed
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sensing measurements to increase their immunity against chan-

nel noise. In [8], a hybrid digital-analog system is used with

distributed compressed sensing over noisy channels. In this

paper, we consider a purely-analog system where all sensed

and transmitted signals are analog-valued. For reference, we

compare the proposed system with 1) a conventional CS

system that assumes noiseless transmission, and 2) a CS-based

system that accounts for channel noise during signal recon-

struction [9]. The rest of the paper is organized as follows. In

Section II, we briefly review the compressed sensing theory.

Section III describes Shannon-Kotel’nikov mapping using the

1:2 double Archimedes’ spiral. In Section IV, we develop

the system structure and its optimization. Simulation results

are included in Section V. Finally, conclusions are drawn in

Section VI.

II. OVERVIEW OF COMPRESSED SENSING THEORY

The theory of compressed sensing has been developed

in [9]–[11]. Specifically, it is shown that if x ∈ R
N is a sparse

signal in some basis Ψ with only K nonzero elements, then,

with high probability, M ≥ CK log2(N/K) random linear

measurements provide sufficient information for perfect signal

reconstruction [9], where C is some positive constant. These

linear measurements can be expressed as

y = Φx (1)

where Φ ∈ R
M×N is a measurement matrix that is incoherent

with the basis matrix Ψ (i.e. μ(Ψ,Φ) ≈ 1, where μ(Ψ,Φ)
is the coherence which measures the largest correlation be-

tween any two elements of the basis and the measurement

matrix) [12]. Knowing that the signal x is sparse in some

basis Ψ with transform coefficients u (x = Ψu), recovery of

x from the linear measurements y can be done by solving the

following convex optimization problem

min
x̂
||Ψ−1x̂||�1 , subject to Φx̂ = y (2)

where ||(·)||�1 is the �1 norm (||x||�1 �
∑N

i=1 |xi|). Several

optimization algorithms were developed to solve the �1 min-

imization problem such as basis pursuit (BP) [13], matching

pursuit [14], and orthogonal matching pursuit [15].
In practice, the collected measurements are usually dis-

turbed by noise n; thus y is modeled as

y = Φx + n. (3)

For CS to be widely applicable, signal recovery should be

robust against noise; a small disturbance in the measurements
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should result in a small disturbance in the signal reconstruc-

tion. Using a noise-aware version of (2), the signal can be

reconstructed as follows

min
x̂
||Ψ−1x̂||�1 , subject to ||Φx̂− y||2 ≤ ε (4)

where ε bounds the total amount of noise in the mea-

surements. Typically, the noise is assumed to be Gaussian

n ∼ N (0, σ2
N IM ), where IM is an M ×M identity matrix.

The squared norm ||n||2�2 is a Chi-square random variable

with mean σ2
NM and standard deviation σ2

N

√
2M . With high

probability, ||n||2�2 cannot exceed the sum of the mean and two

times the standard deviation. Thus ε in (4) is chosen such that

[9]

ε2 = σ2
N (M + 2

√
2M). (5)

III. A SHANNON-KOTEL’NIKOV MAPPING

In this section, a 1:2 double Archimedes’ spiral mapping is

described for a Gaussian memoryless source Y with variance

σ2
Y . Bandwidth expansion is performed by mapping each

source sample y ∈ R to a two-dimensional channel symbol,

which is a point on the double Archimedes’ spiral, given by [7]

s(y) =

[
z1(y)
z2(y)

]
=

1

π

[
sgn(y)Δ ϕ(y) cosϕ(y)
sgn(y)Δ ϕ(y) sinϕ(y)

]
(6)

where sgn(·) is the signum function, Δ is the radial dis-

tance between any two neighboring spiral arms, and ϕ(y) =√
6.25|y|/Δ is a stretching bijective function. For a given

channel signal-to-noise ratio (CSNR) defined as P/σ2
N , where

P and σ2
N are the average channel power and noise variance,

respectively, the radial distance Δ is optimized to minimize

the total distortion by solving the following unconstrained

optimization problem

Δopt = argmin
Δ

[ε̄2wn(Δ) + ε̄2th(Δ)] (7)

where ε̄2wn and ε̄2th are, respectively, the average weak noise and

threshold distortion under maximum likelihood (ML) decoding

as defined in [7]. For a Gaussian source, the average weak

noise distortion is given by [7]

ε̄2wn =
σ2
N

α2
(8)

where α is a gain factor related to the average channel power

constraint P , via

P =
1

2

∫
||s(αy)||2fY (y)dx (9)

and fY (y) is the probability density function of the source Y .

The threshold distortion is approximated by [7]

ε̄2th ≈
[
1− erf

(
Δ

2
√
2σN

)][(
π4η2Δ2

α2
+ 4σ2

Y

)
erf(a)

−
(
2π2ηΔ+ aσY α√

2πα

)
8σY e

− a2

2σ2
Y +

16π2ηΔσY√
2πα

]

(10)

where erf(·) is the Gaussian error function, a = 4σY , and

η = 0.16. Note that (10) is a good approximation at high

CSNR levels.

At the receiver side, we use the optimal minimum mean

square error (MMSE) decoder instead of the ML decoder

used in [7]. MMSE decoding has been shown to achieve

a substantial performance improvement over ML decoding

at low CSNRs under 2:1 bandwidth reduction [16]. For 1:2

bandwidth expansion, the MMSE decoding rule can be written

as follows

ŷMMSE = E[Y |ẑ1, ẑ2] =
∫

yp(y|ẑ1, ẑ2)dy

=

∫
yp(ẑ1, ẑ2|y)p(y)dy∫
p(ẑ1, ẑ2|y)p(y)dy (11)

where ẑi = zi+ni, i = 1, 2, are the received channel outputs.

For independent and identically distributed (i.i.d.) Gaussian

noise n1 and n2, we have p(ẑ1, ẑ2|y) = p(ẑ1|y)p(ẑ2|y), where

p(ẑi|y) = 1√
2πσN

e
− (ẑi−zi(y))2

2σ2
N i = 1, 2 (12)

and zi(y) is given by (6). Note that (11) is numerically

calculated by discretizing y using a uniform quantization step

d and calculating the mapped value (z1(y), z2(y)) for each

discretized point. This gives a discretized version of each

probability and the integration is simplified to only multipli-

cation and addition operations. Note that this approximation is

assumed to be good as long as the cardinality of the discrete

set is sufficiently large and d is small in relation to the standard

deviation of the channel noise.

In addition to the MMSE decoder, which is optimal in

the mean square sense, we propose to use the maximum a-

posteriori (MAP) decoder which can be formulated as follows

ŷMAP = argmax
y

p(y|ẑ1, ẑ2) = argmax
y

p(y)p(ẑ1, ẑ2|y).
(13)

To find (13), we discretize the spiral in a similar approach to

the MMSE case. Moreover, to make the MMSE/MAP decoder

implementation computationally efficient, we devise a decoder

based on quantization and table-lookup. This is achieved via

uniform quantization of the output of the channel ẑ ∈ R
2 and

looking up the decoded value ŷ for each quantization bin in a

table.

IV. SYSTEM MODEL

A. System Structure

Consider a group of sensors that is observing a discrete time

continuous amplitude source signal x ∈ R
N . This observation

is assumed to be sparse in some transform basis Ψ. Each

sensor encodes its observation and transmits it to the FC over

additive white Gaussian noise (AWGN) channels with variance

σ2
N . The objective is to recover the sensor observations under

a mean square error (MSE) fidelity criterion. The proposed

system structure is shown in Fig 1.

On the encoder side, the sensors measure the observation

using a random measurement matrix Φ. A practical method is
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to draw each entry of the measurement matrix independently

from a Gaussian distribution (i.e., [Φ]ij ∼ N (0, 1/M)) and

then orthogonalize the rows of Φ. The measurement vector is

given by

y = Φx, (14)

where Φ ∈ R
M×N is the measurement matrix for the

CS encoder. Each sample of the measurement vector y is

mapped to a two-dimensional channel space using the double

Archimedes’ spiral as in (6). It is observed that the measure-

ments from the CS encoder fit well a Gaussian distribution.

Hence, the results from Section III are hereafter used; the

radial spiral distance Δ is calculated using (7) given the power

allocated to the channel input (9) under a total transmission

power constraint (see below).

At the receiver side, we use either the MMSE or MAP

decoder to obtain the measurement estimate ŷ. To recover the

original signal, we use BP [13] to solve the �1 minimization

problem in (2), and for comparison also the minimization

in (4).

Fig. 1. The proposed system structure.

B. System Optimization

The proposed system is optimized for minimal end-to-end

MSE distortion E[||x−x̂||2] which is a function of two sources

of distortion: DCS from compressed sensing (without lossy

transmission) and Dexp from channel noise. Given a total

transmission power constraint Ptot, the aim is to minimize the

end-to-end distortion. From CS theory, it is known that the

distortion DCS decreases with increasing number of measure-

ments. However, due to the total power constraint, the average

power per channel (use) will decrease. This will increase the

distortion Dexp from bandwidth expansion transmission. Thus,

for a given channel quality, we aim to determine the optimal

number of measurements which balances these two distortion

contributions and results in a minimum overall distortion under

the power constraint Ptot.

Distortion Dexp from dimension expansion is minimized

by optimizing Δ using (7). In the CS literature, however,

there is not yet an explicit relation between the number of

measurements M and the distortion DCS obtained with BP.

Thus optimization is done numerically by searching for the

number of measurements that minimizes the end-to-end MSE

distortion E[||x− x̂||2]. We create a set of source vectors {x}
with signal dimension N . Each source vector is synthesized

as x = Ψu, where Ψ is the sparsity basis and u comprises K
sparse transform coefficients. There are

(
N
K

)
possible sparsity

patterns for u.1 Each realization is drawn uniformly from

these patterns. For each number of measurements M , we

1The sparsity pattern is the set of indices of the nonzero components of u.

create a fixed measurement matrix Φ whose entries are drawn

from a Gaussian distribution. The set of CS measurement

vectors {y} is calculated using (14). For a given noise variance

level, (Δ, α) are optimized using (7) under the average power

constraint P = Ptot/(2M), and a set of noise vectors {n}
is created to model the AWGN channel. A 1:2 bandwidth

expansion is applied on each component of the measure-

ment vector using the Archimedes’ spiral in (6). Then, the

measurement estimate ŷ is obtained using MMSE or MAP

decoding according to (11) or (13), and BP is used for

signal reconstruction according to (2). The end-to-end MSE

distortion E[||x − x̂||2] is evaluated over the data set {x}.
We keep increasing the number of measurements M until we

observe an increase in the end-to-end distortion. The design

suboptimal search algorithm is shown herein.2

Algorithm 1 System Optimization

Data Input: Input a data set X = {x1, . . . , xT }, a channel

noise variance σ2
N , and a transmission power constraint Ptot.

Initialization: Set the number of measurements M = m,

the incremental step Inc for the number of measurements,

and i = 1. Set the end-to-end MSE distortion D(0) = 1020T,

D(1) = 1019T, the spiral radial distance Δ = ∞, and the

gain factor α =∞.

while D(i) < D(i−1) do
i← i+ 1.

Set Δopt ← Δ, αopt ← α, and Dopt ← D(i−1).

Initialize the measurement matrix Φ(i) as a random

Gaussian matrix.

Obtain measurement vector y for each observation in X
according to (14).

Scale the average channel power constraint according

to P = Ptot

2M , so that power is equally divided between

channels.

Optimize (Δ, α) for the given channel noise variance σ2
N

according to (7) under the power constraint E[z2] = P .

Use the double Archimedes’ spiral mapping on y accord-

ing to (6) in order to achieve a 1:2 bandwidth expansion.

Decode ŷ using MMSE or MAP decoder according

to (11) or (13), and x̂ using BP according to (2).

Calculate numerically D(i) = E[||x− x̂||2] over the data

set X.

M ←M + Inc.
end while
M ←M − Inc.
Return (M,Dopt,Δopt, αopt).

In our simulations, we used T = 30000, m is set to a small

value (∼ K), and the incremental step Inc = 4. Fig. 2 shows

the system signal-to-distortion ratio (SDR � E[||x||2]/E[||x−
x̂||2]) as a function of the number of measurements M at

different TSNR � Ptot/σ
2
N levels.3 Notice that for a fixed

2One source of suboptimality is that the system parameters are not jointly
optimized to minimize end-to-end distortion.

3TSNR stands for ”total” SNR and is related to CSNR as TSNR/(2M).
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Fig. 2. Performance of the proposed system as a function of number of
measurements M with sparsity level K = 6 and signal length N = 100. For
TSNR=38dB, the CSNR [dB] levels at the data points are as follows: [22.9
21.2 20.2 19.7 19.2 18.7 18.4 18 17.6 17.2 16.5 15.9 15.4]. Note that there
is a 4dB difference in CSNR levels (as well as in TSNR) between adjacent
curves. MMSE decoding and BP are used on the receiver side.

TSNR level, the SDR increases with increasing M until

reaching a maximum and then starts to decrease. This occurs

because the compressed sensing part performs better as M

increases but at the same time, the distortion from channel

noise increases. For small M , the CS distortion dominates

over the distortion contributions from channel noise. This is

clearly shown from the closeness between the SDR curves as

well as from the steep increase in SDR of each curve, which

is a trend observed in CS theory. As M gets larger beyond a

certain level (∼38), the CS distortion contribution levels off,

and the trend in the SDR curves follow the performance of

the bandwidth expansion systems. We notice an ∼ 7 dB gap

in system SDR between neighboring curves. For a given M ,

there is a 4 dB difference in CSNR between adjacent SDR

curves. From Fig. 2, it can be seen that for M between 40-

90, the CSNR levels are in the range 8-19 dB. For a 4 dB

difference in CSNR in this range, a 1:2 bandwidth expansion

system using double Archimedes’ spiral gives 6 ∼ 8 dB SDR

gain [7]. This explains the ∼ 7 dB gap between neighboring

curves. Thus the trends in Fig. 2 show clearly the dominance

of CS distortion for small M and channel noise for large M .

V. NUMERICAL RESULTS

In this section, we assume a sparse source x in the discrete

cosine transform basis Ψ with signal length N = 100. The

signal x is synthetically generated as Ψu, where there are

K = 6 nonzero elements in the transform coefficients u
(||u||�0 = K 
 N). The results presented here are for the case

where the nonzero elements ui are i.i.d. Gaussian with unitary

variance and the sparsity pattern is uniformly distributed. We

use the spiral mapping, discussed in Section III, to apply 1:2

dimension expansion, and BP to recover the source signal x̂
from the received measurements.

The conventional CS system ”CS-BP” which uses BP for

signal recovery, does not account for channel noise during

reconstruction. However, as mentioned in Section II, there

is also a noise-aware version of �1 minimization in CS

theory given by (4) that can recover source signal from noisy

measurements [9]. The structure of the reference systems for

performance comparison is shown in Fig. 3. We scale the

channel input by a gain factor 1/γ in order to satisfy the av-

erage channel power constraint P = E[(y/γ)2] = 1/γ2E[y2].
At the receiver, we rescale the signal using γ and use either

BP or basis pursuit with denoising (BPDN) [13] for signal

reconstruction. This is conducted by solving the optimization

problem stated in (2) or (4).

Fig. 3. CS-BP/CS-BPDN structure.

The number of measurements M is optimized for all

systems under the total transmission power Ptot. This is done

using Algorithm 1 for the proposed system, whereas for the

reference systems, we search over a range of M to obtain

the one that produces the minimum end-to-end distortion.

Since the number of measurements varies with the channel

noise variance, system SDR is plotted based on TSNR. From

Fig. 4, it can be seen that the proposed system ”CS-Mapping”

outperforms the CS-BP system for all CSNR levels, and ”CS-

BPDN” from moderate to high CSNRs. At low CSNRs, CS-

BPDN gives similar performance as the CS-Mapping. This

can be explained by realizing that the 1:2 bandwidth expansion

using the double Archimedes’ spiral has a similar performance

as a linear encoder at low CSNR levels [7]. It can be seen that

the SDR from CS-BPDN improves by up to 3 dB when the

number of measurements is optimized. However, it needs to

be mentioned that the optimized number of measurements (i.e,

number of sensors) is around twice as in CS-Mapping. The

number of sensors could be a significant cost or complexity

variable in WSNs. Notice that the gain from CS-Mapping

as well as its gap to CS-BPDN gets more prominent as

CSNR increases. Moreover, using MMSE decoding with the

proposed system gives at most 0.7 dB gain in SDR over MAP

decoding. We also simulate the proposed system when using

BPDN instead of BP on the noisy decoded measurement ŷ.

This gives around 1 dB gain in SDR over the CS-Mapping

with BP.4 In Fig. 4, the ”Best least-square” decoding scheme

(applied on the output ŷ of the Shannon-Kotel’nikov decoder)

is also plotted as a reference. This decoding scheme requires

additional side information as it assumes that the support I
(i.e., the nonzero indices in u) is known a priori by the decoder.

Hence, the best way to recover the source signal from the

decoded measurement ŷ would be to apply the pseudo-inverse

4The number of measurements is optimized for CS-Mapping with BP.
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(ΦΨ)†I on the support, and set the remaining coordinates of

u to zero.
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Fig. 4. Performance of CS-Mapping and CS-BPDN with sparsity level K =
6 and signal length N = 100. The graph is made for ui ∼ N (0, 1). The
number of measurements used by CS-Mapping at the asterisk marks are:
[38 38 42 42 42 42], which correspond to the following CSNR[dB] levels:
[3.2 7.2 10.7 14.7 18.7 22.7]. The performance of CS-BP is also shown for
comparison.

In what follows, we summarize the results of our study

(without providing performance curves due to space limita-

tions) of the sensitivity of the CS-Mapping and CS-BPDN sys-

tem against mismatch in noise level. As in several applications,

the encoder has no knowledge on the actual noise variance and

a design noise level is assumed. However, the decoder can

be designed to operate at the actual noise level provided the

receiver can estimate the channel condition. The CS-BPDN

system uses an uncoded linear system at the transmitter side

which make it less sensitive to noise mismatch. However,

we notice a 0.5 dB loss in the CS-BPDN system due to

the mismatch in number of measurement between design and

actual TSNR levels.

For the proposed system, we notice that for low and

moderate design TSNR levels, the mismatch in system SDR

is insignificant when the actual TSNR is lower than the

design TSNR level (TSNRD). In contrast, when the actual

TSNR> TSNRD, a 2 ∼ 3 dB loss in system SDR is noticed

for each 4 dB mismatch in TSNR. For high TSNRD, the

proposed system is highly sensitive when the actual (i.e.,

true) TSNR is lower than TSNRD. Whereas, when the actual

TSNR is greater than TSNRD, the system SDR does not suffer

from leveling-off effect and increases linearly with TSNR–

for instance, an increase of 1 dB in TSNR results in a 1 dB

increase in SDR. This trend is due to the analog nature of the

proposed system in which the threshold effect is not a problem

(i.e., the system performance still improves as the noise level

decreases [3]). It is important to note that when the proposed

system is designed for moderate to high TSNR, it will certainly

perform better than the CS-BPDN when actual TSNR is

greater than the designed one. Hence, it might be better to

design the proposed system for the highest expected channel

noise. But at the same time, the gain from using the proposed

system over CS-BPDN will decrease. Finally, it needs to be

mentioned that the proposed purely-analog system is quite

robust against a reasonable mismatch in channel noise (hybrid

digital-analog systems are usually robust against channel noise

mismatch [17]).
VI. SUMMARY AND CONCLUSION

In this paper, we have presented a system which combines

compressed sensing and bandwidth expansion using Shanon-

Kotel’nikov mapping in the presence of noise. The proposed

purely-analog system is optimized for minimal end-to-end

distortion under a transmission power constraint. We have also

proposed to use MAP decoding with Shannon-Kotel’nikov

mapping, which demonstrates similar performance as the opti-

mum MMSE decoder. Simulation results have shown that the

system outperforms the conventional CS system that assumes

noiseless channels and a CS-based system that accounts for

channel noise at the decoder.
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