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ABSTRACT 

The efficiency of multiresolution decomposition using mor-

phological filters for 3D volume image decorrelation in 

lossless compression and computational complexity are 

evaluated. More efficient decorrelation is performed using 

morphological wavelets for multiresolution data representa-

tion than using Laplacian style pyramidal decomposition 

with morphological filters. Morphological wavelets are also 

faster in implementation than morphological pyramids. The 

computation time of the multiresolution decomposition im-

plemented by morphological wavelets is 3 times shorter than 

the computation time of the wavelet decomposition with 5/3 

filters used in JPEG2000 standard with similar decorrela-

tion efficiency for lossless compression. 

1. INTRODUCTION 

Compression techniques can be classified as lossless and 

lossy. Lossless techniques allow exact reconstruction of the 

original image. Lossy techniques achieve higher compres-

sion ratios because they allow some degradation. For medi-

cal data, lossless compression is preferred as the image is 

not degraded and allows accurate diagnosis. Lossless tech-

niques are important for seismic, satellite, biological data. 

The classical approach to lossless compression is decom-

posed into two steps: spatial decorrelation and entropy cod-

ing of the decorrelated signals. To achieve good compres-

sion it is desirable to decorrelate the image as much as pos-

sible. Neighbour voxels are highly correlated and a lot of 

information is redundant. Multiresolution volume represen-

tations remove correlation, redundant information is reduced 

and better compression can be achieved. Multiresolution 

representation of the image has been used for image coding, 

computer vision applications and progressive transmission. 

Multiresolution representation can be redundant, like Lapla-

cian pyramid and non-redundant, like wavelets [1, 2]. Video 

coding standards such as H.264 SVC support scalability 

using Laplacian pyramid [3]. Still-image coding standard 

JPEG2000 [4] and its extension for 3D volume images, 

Part10, JP3D [5], use Le Gall 5/3 biorthogonal filters in 

multiresolution wavelet scheme for lossless compression. 

Heijmans and Goutsias introduced nonlinear multiresolution 

transforms with morphological filters, both pyramids and 

wavelets [1, 2]. Mathematical morphology is non-linear 

theory for image processing based on set theory [3, 4]. It 

considers images as sets which permits geometry-oriented 

transformations of the images. The main advantages of mor-

phological filters are its ability to preserve geometric struc-

ture and simplicity in implementation. The shape and the 

size of the structuring element determine which geometrical 

features are preserved in the filtered image. The perform-

ances of redundant morphological pyramids for 2D image 

decorrelation are presented in the paper [8]. Morphological 

wavelets are applied in video coding on residual frames [9]. 

Their suitability for hardware implementation is shown 

through FPGA implementation. 

In this paper, the suitability of morphological filters in mul-

tiresolution schemes, both Laplacian type pyramids and 

non-redundant wavelets, for 3D volumetric image decorrela-

tion as part of lossless compression is explored. The effi-

ciency of decorrelation is calculated and the computation 

time of the decomposition is measured. The results are com-

pared with the performance of multiresolution representa-

tion with 5/3 filters used in standard JPEG2000.  

The paper is organized in 5 sections. Morphological 3D 

pyramids are presented in Section 2. Morphological wavelet 

decompositions using the lifting scheme are presented in 

Section 3. The experimental results illustrating the perform-

ances of the morphological pyramids and morphological 

wavelets for lossless compression are presented in Section 4 

and the conclusion is in Section 5. 

2. MORPHOLOGICAL PYRAMIDS 

The Laplacian pyramid (LP) is one of the earliest examples 

of multiscale representation of visual data [10], Fig. 1. A 

coarse approximation of the original volume s is obtained by 

filtering the higher resolution volume and downsampling by 

2 in all spatial dimensions. The detail signal d is calculated 

as the difference between the original signal x and the pre-

diction p which is the interpolated upsampled version of the 

coarse signal. The coarse version signal can be decomposed 

further. The set consisting of the detail signals of all decom-

position levels with decreasing spatial resolution and the 

coarse signal of the last decomposition level is referred to as 

the detail pyramid. For the linear case, the detail pyramid is 

called a Laplacian pyramid. The detail signal is highly 

decorrelated and LP can be represented with fewer bits than  
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Figure 1 – One-level of Laplacian pyramid decomposition (left part) 

and reconstruction (right part) with linear h and g filters. If morpho-

logical filters h and g are used morphological pyramid is created 

the original image. The original signal can be perfectly re-

constructed  summing the coarse signal prediction p and 

the detail signal d. 

A drawback of the LP is implicit oversampling and the 

advantage is that each pyramid level generates only one 

detail image. 

Morphological pyramid contains morphological reduce 

filter h and morphological expand filter g. The detailed 

study of the morphological pyramids is made by Heijmans 

and Goutsias [1]. The pyramid condition for morphological 

pyramid schemes states that synthesis of a signal followed 

by analysis returns the original signal and perfect recon-

struction holds. Morphological pyramids are applied in 

multiresolution visualization of large volume data sets 

[11]. Multiresolution approach allow fast visualization of 

coarse version of the data in the preview mode which can 

be progressively refined. 

For the signal f with domain F,  
dZF ⊆  and structuring 

element 
dZS ⊆ , morphological operators dilation and 

erosion are defined: 
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Dilation and erosion are calculated as the maximum or 

minimum in the neighbourhood defined by structuring ele-

ment. Morphological filters opening, O  and closing, C, are 

defined as : 
 )))((()()(: xferosiondilationxfopenO SSS =  

 )))((()()(: xfdilationerosionxfcloseC SSS =  

 

2.1 Morphological Haar pyramid 

Morphological adjunction pyramid E/D involves the mor-

phological operators erosion and dilation as reduce and ex-

pand filters. For the E/D pyramid the detail signals contain 

only nonnegative values as a consequence of the fact that the 

analysis and synthesis operators are adjunctions, advanta-

geous for image compression [1].  

When the structuring element used for morphological filter-

ing is the cube of size 2x2x2 the morphological Haar pyra-

mid is obtained. 1D and 2D morphological Haar pyramid is 

illustrated in the paper [1]. For the 3D volume data, coarse 

version signal s and prediction p are calculated as: 
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2.2 Symmetrized Morphological Haar pyramid 

When the structuring element used for morphological filter-

ing in the adjunction E/D pyramid is the cube of size 3x3x3, 

symmetrized version of the morphological Haar pyramid is 

obtained. 1D and 2D symmetrized morphological Haar 

pyramid is presented in the paper [1]. Coarse s and prediction 

signal p of 3-dimensional non-separable symmetrized mor-

phological Haar pyramid is calculated using the equations: 
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2.3 O/D pyramid 

In the O/D pyramid the analysis filter is the opening and the 

synthesis filter is the dilation. The cubic structuring elements 

of size 2x2x2 and 3x3x3 are used in the experiments. Sun 

and Maragos used O/D pyramid with square structuring ele-

ment of size 3x3 for 2D images compression [12] . 

2.4 Trivial morphological /D and /C pyramids 

Trivial, reduced, pyramid is obtained by omitting analysis 

filter from the decomposition scheme. The coarse version 

signal is only downsampled higher resolution signal. This 

pyramidal representation contains the same number of sam-

ples as the original signal. The scheme of the reduced pyra-

mid with linear filters for 2D image lossless compression is 

presented in [13].  

Trivial morphological /D pyramid contains only synthesis 

filter dilation. From the equation (1) one out of 8 samples of 

the prediction signal p is equal to the sample of coarse ver-

sion signal s and that sample is equal to the sample of higher 

resolution signal x. So the adequate sample of the difference 

signal is 0 and it is only needed to transmit 7/8 of the differ-

ence signals for 3D reduced morphological pyramid. This 

pyramidal representation is complete. 

Trivial morphological /C pyramids contain only synthesis 

filters closing. 
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3. MORPHOLOGICAL WAVELETS 
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Figure 2 – The forward (left part) and inverse (right part) wavelet 

transform using lifting. P and U stand for prediction and update, 

respectively. For reversible morphological wavelet transformation 

quantizers aren’t needed. For the integer to integer wavelet 

transformation quantizers are needed after prediction and update. 

 

A major impulse to the development of nonlinear wavelet 

transforms has been given by the introduction of the lifting 

scheme. Daubechies and Sweldens showed that any DWT 

can be computed by the lifting scheme with reduced 

computational complexity compared with the standard 

filtering algorithm [14]. Lifting allows an in-place 

implementation of the wavelet transform meaning that the 

wavelet transform can be calculated without allocating 

auxiliary memory. In the lifting scheme, Fig. 2, trivial 

wavelet transform, lazy transform, is computed first. The 

input signal is split in two arrays, one containing even 

indexed samples and the other containing odd indexed 

samples. These two arrays are closely correlated and one 

array is used as the predictor for the other. In the dual lifting 

step the prediction and the detail signal d is calculated. At 

lifting step a filter is applied to the detail signal and the 

aproximation signal s is calculated. The built-in features of 

lifting scheme is that it is always invertible and leads to 

critically sampled perfect reconstruction filter bank. Inverse 

transform is calculated by reversing the operations and 

flipping the signs. 

In the lifting schemes implementing integer wavelet 

transforms for lossless reconstruction the signal is rounded-

off after prediction and update filtering and quantizers are 

needed. The decorrelation efficiency of integer wavelet 

decomposition of 2D images are presented in [15]. 

In the lifting schemes implementing morphological wavelet 

transforms, morphological filters are used in the lifting steps 

without round-off operation, Fig.2. These morphological 

lifting schemes don't need quantizers, suitable property for 

lossless compression.  

The Haar wavelet transform is one of the simplest transfor-

mations from the space to the local frequency domain. An 

integer version of the Haar transform, the S transform, is the 

nonlinear modification of the Haar wavelet that maps integer 

onto integer-valued signals preserving the property of perfect 

reconstruction. In the lifting scheme the approximation signal 

s is calculated using the rounding operator   : 

 [ ] [ ] [ ]nxnxnd 212 −+= .  

 
[ ] [ ] [ ]
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3.1 Morphological Haar min wavelet transformation 

One of the simplest example of nonlinear morphological  
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Figure 3 – The calculation of the detail signal d and the 

aproximation signal s from signal x using the lifting scheme for (a) 

Haar linear and Haar morphological wavelet transform (b) integer 

5/3 and morphological min and max lifting wavelet transform. 

 

wavelets is the morphological Haar wavelet which is very 

similar in structure to the linear Haar but uses nonlinear 

maximum and minimum operators rather than linear ones. 

An example illustrating analysis and synthesis of 

morphological Haar min wavelet transform is presented in 

the papers [2, 16, 17]. The morphological Haar wavelet 

decomposition scheme preserves edges better as compared 

to linear case. The morphological Haar min wavelet 

decomposition is calculated as: 

 [ ] [ ] [ ]nxnxnd 212 −+= .  

 [ ] [ ] [ ] ),0min(2 ndnxns += .  

3.2 Morphological Haar max wavelet transformation 

Similarly, the dual morphological Haar max wavelet 

decomposition is calculated using the operator maximum in 

the lifting scheme: 

 [ ] [ ] [ ]nxnxnd 212 −+= .  

 [ ] [ ] [ ]),0max(2 ndnxns += . 

The detail signal d is calculated in the same way for the 

classical integer Haar and the morphological Haar wavelet 

as the difference between odd and even samples of the 

signal x, Fig.3a. The sample of the aproximation signal s is 

calculated updating even sample from the signal x with the 

sample from the difference signal d, but using different 

operators: rounding the half of the sample from signal d for 

the integer Haar and calculating the minimum of the sample 

d and 0 for the morphological Haar wavelet transformation.  

For lossless compression in JPEG2000 standard LeGall 5/3 

filters are used in the lifting scheme. The forward equations 

for the reversible 5/3 wavelet transform are given by: 
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3.3 Morphological min lifting wavelet transformation 

The detail d and aproximation signal s of the morphological 

wavelet transform by the min lifting scheme is calculated as: 

 [ ] [ ] [ ] [ ] )22,2min(12 +−+= nxnxnxnd .  

 [ ] [ ] [ ] [ ])1,,0min(2 −+= ndndnxns .  
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3.4 Morphological max lifting wavelet transformation 

The dual morphological wavelet transform is calculated 

using max lifting scheme: 

 [ ] [ ] [ ] [ ] )22,2max(12 +−+= nxnxnxnd .  

 [ ] [ ] [ ] [ ] )1,,0max(2 −+= ndndnxns .  

An example illustrating analysis of morphological min 

lifting wavelet is presented in the papers [2, 17]. Min and 

max lifting schemes have the nice property that preserving 

local minimum and maximum of a signal respectively over 

several scales. 

The samples of detail signal d are calculated from the same 

3 samples of the signal x in the min or max lifting scheme 

and in the 5/3 lifting scheme, Fig. 3b, but using different 

operators. In the min or max lifting schemes, the sample of 

the detail signal d is calculated as the difference of the odd 

sample from signal x and the minimum or maximum of its 2 

nearby even samples from signal x while in the integer 5/3 

wavelet lifting scheme it is calculated as the difference 

between odd sample from signal x and the rounded average 

of its two nearby even samples. The sample of the 

aproximation signal is calculated updating the same even 

sample from the signal x with the same 2 samples from the 

detail signal in the min or max lifting scheme and in the 5/3 

lifting scheme but applying different operators on the detail 

signal samples. 

For the volumetric 3D data set of slices pixels are correlated 

in all three dimensions. 3D DWT is implemented in 

separable fashion, employing 1D transforms separately in 

the row, column and slice directions producing 7 detail 

subbands and aproximation signal. After one scale of 

decomposition along each direction, aproximation subband is 

decomposed further, leading to the dyadic decomposition. 

Wavelet decomposition is complete, producing the same 

number of samples in the subbands as in the original finest 

resolution signal. In this paper, the performances of morpho-

logical wavelet transforms for the 3D volume image decorre-

lation for lossless compression are presented. 

4. EXPERIMENTAL RESULTS 

Volume data sets used in the experiments are 8 bpp mono-

chromatic 3D volume images: ‘Bonsai’, ‘Foot’, ‘Skull’ [18] 

and ‘Tooth’ [19]. The data sets are computed tomography 

data. For all data sets, the voxel samples are spaced 1 mm 

within each slice and the slices are 1 mm apart. Visualization 

images are calculated using software [20] which implement  

direct volume rendering technique, Fig.4. 3D data sets are 

decomposed using morphological pyramids and morpho-

logical wavelet transformations. The decorrelation efficiency 

of the multiresolution representation for lossless compression 

is calculated and the computation complexity is measured. 

4.1 The decorrelation efficiency 

The effeciency of the multiresolution representation for 3D 

data decorrelation is measured by the entropy, a measure of 

the achievable data compression.  

 
256x256x256 

 
256x256x256 

 
256x256x161 

 
256x256x256 

Figure 4 – Visualization images of 3D volume data sets: 'Foot', 

'Skull', 'Tooth', 'Bonsai'. 

The entropy of 2-level morphological pyramidal 

representation of 3D data sets are shown in Table I. 

Morphological pyramids E/D, O/D, /D, /C with cubic 

structuring elements S of size 2x2x2 and 3x3x3 are 

implemented. The best 3D data decorrelation is performed by 

E/D pyramid with structuring element of size 2x2x2 for data 

sets Foot and Tooth. For the data set Skull the best 

decorrelation is performed by trivial /C pyramid with 

S=3x3x3. For the data set Bonsai E/D and /C pyramids 

decorrelate the data equally. The lowest lossless decorrelation 

efficiency is performed by O/D pyramid with S=3x3x3. 

The weighted entropies of two-level 3D DWT 

decompositions with 4 morphological and 2 integer wavelet 

transforms are shown in Table II. The most efficient 

morphological decorrelator for lossless reconstruction is min 

lifting. For data sets 'Foot' and 'Bonsai' min lifting is more 

efficient than 5/3 decorrelator 4% and 15% but for the data 

sets 'Skull', and 'Tooth' its efficiency is lower 9%, and 5% 

respectively. 

For all data sets the morphological wavelets min lifting and 

morphological Haar min are more efficient for lossless 

representation than morphological pyramids. However, for 

the data sets Foot and Bonsai morphological pyramid E/D 

with S=3x3x3 is more efficient than the wavelet 

representation with 5/3 filters. 

4.2 The comutation complexity  

The morphological pyramids and wavelets have very low 

computational complexity as only minimum, maximum 

(comparisions) and addition of integers is involved in their 

computation.  

The computation times of 2-level morphological pyramids 

using S=2x2x2 are shown in Table III. The fastest is the 

calculation of trivial /D pyramid and the slowest is O/D. The 

computation times of E/D and /C are similar. 

The computation times of 2-level 3D DWT using for 4 

morphological and 2 integer wavelet transforms are shown in 

Table IV. The shortest computation time is measured using 

morphological Haar wavelet decompositions and the slowest 

is integer 5/3 wavelet decomposition. 
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TABLE I  

3D MORPHOLOGICAL PYRAMIDAL REPRESENTATION'S ENTROPY 

anal/synth. filter Foot Skull Tooth Bonsai 

S=2x2x2 2.51 4.27 3.35 1.75 
E/D     

S=3x3x3 2.64 4.43 3.47 1.82 

S=2x2x2 2.56 4.24 3.4 1.75 
   /C      

S=3x3x3 2.56 4.21 3.37 1.75 

S=2x2x2 2.68 4.5 3.5 1.98 
   /D        

S=3x3x3 2.74 4.35 3.42 2.2 

S=2x2x2 2.73 4.69 3.59 1.99 
O/D    

S=3x3x3 2.85 4.85 3.7 2.1 

TABLE II  

3D WAVELET REPRESENTATION'S ENTROPY 

DWT Foot Skull Tooth Bonsai 

original data set 2.81 5.16 3.99 2.17 

integer Haar 2.57 3.83 3.14 1.89 

morph. Haar min 2.5 3.91 3.24 1.62 

morph. Haar max 2.7 4.03 3.27 1.96 

min lifting 2.44 3.79 3.17 1.52 

max lifting 2.77 3.93 3.22 1.93 

5/3 2.55 3.4 2.99 1.76 

 

The computation time of 2-level 3D DWT using 

morphological min and max lifting scheme is 3 times shorter 

than the time using lifting scheme with 5/3 filters. The 

computation times of morphological pyramids are 2-2.5 

times shorter than the computation time of the wavelet 

representation using 5/3 filters. 

5. CONCLUSION 

The performances of 3D volume image multiresolution de-

composition, both redundant and non-redundant, using 

nonlinear morphological filters for lossless compression are 

evaluated. The implementation of morphological multireso-

lution decomposition is computationally very efficient as 

only integer arithmetic is used. More efficient decorrelation 

of 3D volume image data is accomplished using morpho-

logical wavelets than using morphological pyramids. The 

computation time of 3D morphological wavelet decomposi-

tion by morphological min or max lifting schemes is 3 times 

shorter than using the lifting scheme with 5/3 filters 

implemented in JPEG2000 standard while the efficiency of 

the decorrelation implemented by the two schemes are simi-

lar. 
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