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ABSTRACT 
Polarimetric SAR image classification has been an active 
research field where several features and classifiers have 
been proposed in the past. Using numerous features can be 
a desirable option so as to achieve a better discrimination 
over certain classes, yet key questions such as how to avoid 
“Curse of Dimensionality” and how to combine them in the 
most effective way still remains unanswered. In this paper, 
we investigate SAR image classification using a large set of 
features, where the focus is particularly drawn on the exten-
sion of image processing features e.g. texture, edge and col-
or. We propose a dedicated application of the Collective 
Network of (evolutionary) Binary Classifiers (CNBC) 
framework to address these problems with the aim of achiev-
ing high feature scalability. We furthermore tested several 
SAR and image processing feature constellations over three 
well-known SAR image classifiers and make comparative 
evaluations with CNBC. Experimental results over the full 
polarimetric AIRSAR San Francisco Bay and Flevoland 
images show that additional image processing features are 
able to improve SAR image classification accuracy and 
moreover, the CNBC proves useful and can scale well espe-
cially whenever high number of features and classes are 
encountered. 

1. INTRODUCTION 

The accurate terrain classification of polarimetric synthetic 
aperture radar (PolSAR) data is a major and challenging 
task. It has been an active research area for the last decades, 
where various supervised classification schemes have been 
proposed, i.e. ANNs [17], SVMs [18] Random Forests [20] 
to the recent Collective Network of Binary Classifiers [7]. 

Besides the application of traditional PolSAR features 
obtained by target decompositions, the integration of image 
processing features such as texture is widely used to extend 
the feature set within the field of SAR image classification. 
However, in the area of content-based image retrieval, sev-
eral low-level features have been developed to characterize 
the color/texture/edge information of images. So far among 
popular edge and texture features such as Local Binary Pat-
tern (LBP) [13], the MPEG-7 Edge Histogram Descriptor 
(EHD) [12], and Gabor Wavelets [11], the gray-level co-

occurrence matrix (GLCM) [5] is the common texture fea-
ture used in SAR image classification [17], [18]; conse-
quently, other image processing features such as color and 
edges have not yet been investigated in this area. For in-
stance, in a recent survey article [10], covering several tech-
niques for improving classification performance of remote 
sensing data, no color-based feature has been considered. 
For visualization purpose it is a common practice to gener-
ate pseudo-color images by mapping SAR features to each 
color channel. Especially several approaches have focused 
on better color representations of SAR images such as as-
signing same colors to the same scattering information [19] 
or investigating different scattering parameters in various 
color space models for visualization [16]. Even though they 
obviously do not provide a natural color representation, the-
se pseudo-colors may provide useful information for terrain 
classification. 

In order to maximize the SAR classification accuracy, in 
this paper, we propose a dedicated application of the Collec-
tive Network of (evolutionary) Binary Classifiers (CNBC) 
framework, which is designed to seek for optimal classifier 
architecture for each distinct terrain type and feature set 
whilst utilizing a large set of major features within. The 
CNBC further supports varying number of features and clas-
ses so that any feature set and SAR terrain (class) type can 
be dynamically integrated into the framework without re-
quiring a full-scale set-up and re-evolution. Such dynamic 
feature/class scalability can be of paramount importance and 
can lead to an unprecedented development that has not been 
achieved in this field by any of the traditional classifiers 
mentioned earlier. Moreover, we will also examine the ef-
fects of different feature set sizes related to different training 
data sizes. We will conduct various experiments and make 
comparative evaluations of the CNBC against traditional 
classifiers such as Multi-Layer Perceptron, Support Vector 
Machines, and Random Forest. They will be tested on two 
widely known AIRSAR images. 

The rest of the paper is organized as follows. Section 2 
briefly presents the CNBC framework. Section 3 introduces 
the major polarimetric SAR features along with various im-
age processing features. Section 4 provides classification 
results and comparative evaluations over the two AIRSAR 
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images of San Francisco Bay and Flevoland. Finally, Sec-
tion 5 concludes the paper and discusses topics for future 
work. 

2. COLLECTIVE NETWORK OF BINARY 
CLASSIFIERS 

The Collective Network of Binary Classifiers adopts a “Di-
vide and Conquer” type of approach, which is based on a 
network of (evolutionary) binary classifiers (NBCs). Each 
NBC is devoted to a unique SAR terrain class and further 
encapsulates a set of evolutionary binary classifiers (BCs) 
discriminating the class of the NBC with a unique feature set 
(or sub-feature). The optimality therein can be set with a 
user-defined criterion. Once the evolution process is com-
pleted for all individual BCs in all NBCs, CNBC can then 
be used to classify an entire SAR image with the predefined 
classes. Furthermore, the employed network structure allows 
us to simply extend the existing network when new classes 
are introduced into the current or another similar classifica-
tion problem while performing only incremental evolution-
ary updates over some of the existing NBCs, if needed. This 
can in turn be a significant advantage when the current 
CNBC is used to classify SAR images with similar terrain 
classes since no or only minimal incremental evolution ses-
sions are needed to adapt it to a new classification problem. 

As shown in Figure 1, the main idea in this approach is 
to use as large number of classifiers as necessary, so as to 
divide a massive learning problem into many NBC units 
along with the BCs within. Each NBC corresponds to a 
unique SAR terrain class and encapsulates certain number of 
BCs in the input layer where each BC performs classifica-
tion using one single feature vector (FV), the dimension of 
which determines the input layer size. Therefore, whenever 
a new feature is extracted, its corresponding BC will be cre-
ated and inserted into each NBC, keeping the other BCs 
unchanged. Each NBC has a “fuser” BC in the output layer, 
which collects and fuses the binary outputs of all BCs in the 
input layer and generates a single binary output, represent-
ing the relevancy of each FV to the NBC’s corresponding 
SAR terrain class. 
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Figure 1: Topology of the proposed CNBC with C classes 

and N FVs. 

The evolution session of the entire CNBC or a subset of 
NBCs is performed for each NBC individually with a two-
phase operation. Using the feature vectors (FVs) and the 

target class vectors (CVs) of the training dataset, the evolu-
tion process of each BC in a NBC is performed within a 
defined architecture space (AS, see [6] for details) in order 
to find the best BC configuration with respect to a given 
criterion (e.g. training MSE, classification error) using e.g. 
MD PSO [6] or exhaustive Back Propagation for ANNs. 
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Figure 2: Illustration of the two-phase evolution session over 

BCs’ architecture spaces in each NBC. 

During Phase 1 (top of Figure 2), the BCs of each NBC 
are first evolved given an input set of FVs and a target CV. 
Rather than fixing the configuration of the BCs, we try to 
find the best possible classifier from a set of configurations 
(i.e. in a BC, there is no training of one single configuration) 
for each individual feature for each particular class. Once 
the evolution process is completed for all BCs in the input 
layer (Phase 1), the best BC configurations are used in the 
actual classification step. The second phase (bottom of Fig-
ure 2) is needed to merge/fuse the individual BC outputs 
into a final NBC output (i.e. class decision). Therefore, the 
fuser BC is trained to learn the significance of each individ-
ual BC (and its feature) for the discrimination of that partic-
ular class. Similarly, each BC in the first layer shall in time 
learn the significance of individual feature components of 
the corresponding FV for the discrimination of its class. 
Thus, in short the CNBC, if properly evolved, shall learn the 
significance (discrimination power) of each FV and its indi-
vidual components. 

3. SAR AND IMAGE PROCESSING FEATURES 

Polarimetric SAR (PolSAR) features can generally be divid-
ed into two categories: the first group belongs to the features 
extracted directly from the polarimetric SAR data and its 
different transforms such as the scattering matrix, from 
which the Stokes matrix, the covariance matrix, and the co-
herency matrix can be derived whereas the second group is 
based on the polarimetric target decomposition theorems, 
which are used for information extraction in PolSAR. Each 
of those features has its own strength and weaknesses for 
discriminating different SAR terrain class types. 

PolSAR systems often measure the complex scattering 
matrix, S, produced by a target under study with the objec-
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tive to infer its physical properties. Assuming linear hori-
zontal and vertical polarizations for transmitting and receiv-
ing, S is expressed as 

hh hv

vh vv

S S
S

S S
=
⎡ ⎤
⎢ ⎥⎣ ⎦

. (1) 

There are several coherent target decomposition theo-
rems [4], such as the Pauli, the Krogager and the Cameron 
decomposition, aim to express the measured S as the combi-
nation of scattering responses of coherent scatterers. Alter-
natively, the second order polarimetric descriptors of the 
3x3 average polarimetric covariance, C, and coherency, T, 
matrices can be derived from S. Incoherent target decompo-
sition theorems [4] such as the Freeman, the Huynen, the 
Cloude-Pottier and Touzi [13] decomposition, employ the 
covariance or coherency matrix of PolSAR data to charac-
terize distributed scatterers. Additionally, information about 
the target’s total backscattered power can be determined by 
the Span. Moreover, there are other measures derived from 
PolSAR data such as three complex correlation coefficients 
(ρ12, ρ13, ρ23) between scattering matrix terms. 

Besides extracting PolSAR features from the aforemen-
tioned target decompositions, we extract various texture 
features such as LBP, Gabor, and Ordinal Co-occurrence 
Matrix (OCM) [14] and an edge descriptor, the MPEG-7 
EHD. Particularly, we focus on the utilization of several 
efficient color features such as Hue-Saturation-Value (HSV) 
color space histogram, the MPEG-7 Dominant Color De-
scriptor (DCD) [12], and the MPEG-7 Color Structure De-
scriptor (CSD) [12]. These image processing features are 
extracted over the pseudo-color image obtained by mapping 
T11, T22, and T33 from the coherency matrix T to the red, 
green and blue (RGB) color channels, respectively. Each 
individual feature is extracted for every pixel over an 
(2w+1) by (2w+1) window. 

As a result, the following feature vectors, FVN , are 
formed and combined into different feature sets used as in-
put features for all classifier schemes. Each FV has the fol-
lowing components selected from the aforementioned Pol-
SAR and texture/color features: 

 

FV1 = [T11, T22, T33, 
C11,|C12|, 12C∠ , |C13|, 13C∠ , C22, |C23|, 23C∠ , C33], (2) 

FV2 = [Span, H, A, α , β , δ , γ , λ1, λ2, λ3] (Cloude-
Pottier), 

(3) 

FV3 = [|ρ12|, 12ρ∠ , |ρ13|, 13ρ∠ , |ρ23|, 23ρ∠ ], (4) 
FV4 = [|α|2, |β|2, |γ|2 (Pauli), ks, kd, kv (Krogager), αs 
, φαs, ψ, τm (Touzi)], (5) 

FV5 = [Ps, Pd, Pv (Freeman),  2〈A0〉, 〈B0〉+〈B〉, 
〈B0〉+〈B〉 (Huynen)], 

(6) 

FV6 = 16 bin LBP histogram, (7) 
FV7 = 5 bin MPEG-7 EHD, (8) 
FV8 = mean and standard deviation over 3 scales 
and 4 orientation of Gabor wavelets, (9) 

FV9 = 3 OCM with 3 distances and 4 orientations, (10) 
FV10 = 24 (6×2×2) bin HSV histogram, (11) 

 

FV11 = the three color components and the weight of 
the most dominant color, (12) 

FV12 = 32 bin CSD histogram. (13) 
 

4. EXPERIMENTAL RESULTS 

Two PolSAR images were used for numerical performance 
evaluations. The first one is the NASA/Jet Propulsion La-
boratory Airborne SAR (AIRSAR) L-band data of the San 
Francisco Bay (SFBay) shown in Figure 3. The original 
four-look fully polarimetric SAR data of the San Francisco 
Bay, having a dimension of 900x1024 pixels, provides good 
coverage of both natural (e.g. sea, mountains, forests) and 
man-made terrain types (e.g. buildings, streets, parks, golf 
course). We defined five distinct classes for both natural 
(such as water - sea, mountain - cliffs, forest - trees, flat 
zones i.e. beach, grass) and urban area (buildings, streets, 
roads) with a complex inner structure. The sizes of the train-
ing and test sets are 1305 and 151441 pixels, respectively. 
Note that the ground truth accuracy is not 100% guaranteed 
for SFBay dataset. For instance, the urban class may also 
cover trees (planted alongside roads or gardens of houses), 
thus classification is performed by taking the majority ter-
rain type into account. The second PolSAR image with ac-
curate ground-truth information available (see Figure 4) is 
the AIRSAR L-band dataset of Flevoland, The Netherlands 
with a size of 1024x750 pixels and collected in mid-August 
1989 during MAESTRO-1 Campaign. The Flevoland da-
taset is used to perform crop and land classification. There 
are 12 ground-truth classes in this image: water, forest, stem 
beans, lucerne, roads, bare soil, grass, peas, rapeseed, beet, 
potatoes and wheat [1]. In order to evaluate the effect of the 
variations in training dataset sizes, two training datasets, one 
with a small training sample size of 964 (called FL-1k) and 
the other with a larger size of 8676 (called FL-8k) pixels are 
used where the test dataset size is fixed to 179259 pixels. 
Over both images, the speckle filter suggested by Lee et al. 
[9] is employed with a 5x5 window. 

 

Water
Urban
Forest

Mountain/Rock
FlatZones

 
Figure 3: SFBay with its test set data (Best view in color). 

In order to evaluate the performance gain/loss that can be 
obtained by using different set of features, as enumerated in 
Table 1, five different feature sets (based on the different 
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feature vectors, FVN , as described in Section 3) over four 
classification schemes are considered for the SAR classifica-
tion experiments. Note, w is set empirically to 5 (trade-off 
between accuracy and visual appearance) for the local win-
dow from which the image processing features are extracted.  

Water
Forest
Stem_Beans
Lucerne

Potatoes
Wheat
Peas
Roads

Grass
Bare_Soil
Rapeseed
Beet

 

Figure 4: Flevoland and its ground truth data for 12 classes 
(Best view in color). 

Table 1: Feature Vector Sets 

Name FV Sets Description 
SAR FV1+FV2+FV3 28D SAR features 
SARExt SAR+FV4+FV5 44D SAR feature extension 
SARC SARExt+FV10+ 

FV11+FV12 
44D SAR + 60D color features 
= 104D 

SART SARExt+FV6+ 
FV7+FV8+FV9 

44D SAR + 81D texture features 
= 125D 

SARTC SART+FV10+ 
FV11+FV12 

44D SAR + 81D texture +  
60D color features = 185D 

 

As for the comparing methods, we selected three com-
monly used classifiers namely Multi-Layer Perceptron 
(MLP), Support Vector Machines (SVM) and Random For-
est (RF) despite the fact that none is able to provide all the 
capabilities CNBC does (e.g. feature and class scalability, 
evolutionary search and update). Since optimal BC (in this 
work architecture space of MLPs with a single hidden layer 
of 8 to 16 neurons) configurations within each NBC are 
searched by the underlying evolutionary search method (ex-
haustive Back Propagation employed with learning rate 
η=0.002 and 1000 epoch iterations), in order to provide a 
fairer comparison, the best possible classifier architectures 
and/or parameters are also searched for the competitors. For 
MLPs this means that the best possible network configura-
tion is searched within an architecture space encapsulating 
several MLPs with one and two hidden layers, each of which 
has 8 to 16 (hidden) neurons. For SVM, we employ the 
libSVM library [3] using the one-against-one methodology 
[8]. To determined the best SVM parameters, a sequential 
search for the best kernel type among the linear (LIN), poly-
nomial (POL), radial basis function (RBF) and sigmoid ker-
nel (SIG) and parameters, i.e. the respectable penalty parame-
ter, Γ (2n; n=0,..,3) and parameter γ (2-n; n=0,..,3) ( )RBF

γ

Γ , if 
applicable to the kernel type (POL, RBF), is performed. Note 
that this is more than a simple kernel search where also the 
parameters are optimised. This is in favor of SVM as it is not 

done for either MLP case, η and epoch iterations. For the 
RF classifier [2], the best number of trees within the forest is 
also searched from 10 to 50 in steps of 10. 

Table 2 and Table 3 show the classification results for 
FL-1k and FL-8k, respectively. For FL-1k, it is evident that 
larger set of features helps to improve the classification ac-
curacy. In particular the feature sets including color features 
show the highest accuracy improvement, i.e. ~4-5% whereas 
other image processing features’ contribution varies within 
~0-3%. Note that both SVM and RF exhibit an inferior per-
formance on SART compared to the one with SARExt de-
spite the fact that the former feature set is only a subset of 
the latter. This is a typical case where increased feature 
space dimensionality degrades the overall performance. The 
CNBC, on the other hand, is able to improve its perfor-
mance due to its ”Divide and Conquer” approach where the 
overall classification scheme can benefit from particular 
classifications over individual feature sets. The FL-8k re-
sults show similar classification improvements about 2-4% 
for all the feature sets including color. A similar observation 
can also be made on the effect of increased feature dimen-
sion over the classification performance of the CNBC and 
the compared schemes. 

Table 2: Classification results for FL-1k dataset with best con-
figurations 

FL-‐1k	   SAR	   SARExt	   SARC	   SART	   SARTC	  

MLP	   0.8361 
28x12x11x 

0.8526 
44x12x 

0.8748 
104x13x 

0.8530 
125x14x 

0.8813 
185x12x 

SVM	  
0.8622 

( )10.5RBF  
0.8715 

( )10.5RBF  
0.9093 

( )2LIN  
0.8623 

( )8LIN  
0.9098 

( )1LIN  

RF	   0.8224 
10 trees 

0.8539 
10 trees 

0.8737 
10 trees 

0.8248 
10 trees 

0.8637 
10 trees 

CNBC	   0.8513 0.8643 0.9106 0.8796 0.9103 

Table 3: Classification results for FL-8k dataset with best con-
figurations 

FL-‐8k	   SAR	   SARExt	   SARC	   SART	   SARTC	  

MLP	   0.8804 
28x14x 

0.8872 
44x14x 

0.9079 
104x14x 

0.8866 
125x13x 

0.9037 
185x11x 

SVM	  
0.8864 

( )20.5RBF  

0.8925 

( )10.5RBF  
0.9289 

( )10.5RBF  
0.9027 

( )10.5RBF  
0.9222 

( )2LIN  

RF	   0.8516 
10 trees 

0.8803 
10 trees 

0.9012 
10 trees 

0.8624 
10 trees 

0.8914 
10 trees 

CNBC	   0.8834 0.8826 0.9138 0.8889 0.9229 

 

Table 4 shows the classification results over the SFBay 
image. For this image it is worth mentioning that the classi-
fication results for larger feature sets are not as significant as 
for the Flevoland image, if any at all. This is related to the 
SFBay image where the five classes are already well distin-
guishable by the SAR features; and texture and color only 
have minor contributions on the classification accuracy. 
However, note especially that for SARC and SART feature 
sets only CNBC performs either equally or better compared 
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to SAR and SARExt sets. In general, it can be seen that RF 
performs rather unstable which is probably due to its nature 
of making decisions in each tree node based on randomly 
drawn features. SVM and CNBC perform neck on neck es-
pecially when it comes to more challenging classification 
tasks with limited training data and higher number of classes 
as in FL-1k indicating a high level of learning and generali-
zation ability with the least amount of data. 
Table 4: Classification results for SFBay dataset with best con-

figurations 

SFBay	   SAR	   SARExt	   SARC	   SART	   SARTC	  

MLP	   0.9600 
28x8x 

0.9599 
44x8x 

0.9467 
104x 

0.9551 
125x8x 

0.9622 
185x 

SVM	  
0.9662 

( )4LIN  
0.9646 

( )4LIN  
0.9571 

( )1LIN  
0.9560 

( )1LIN  
0.9566 

( )1LIN  

RF	   0.9383 
10 trees 

0.9149 
10 trees 

0.9573 
10 trees 

0.8961 
10 trees 

0.9277 
10 trees 

CNBC	   0.9512 0.9489 0.9672 0.9513 0.9604 

5. CONCLUSIONS 

In this work we focus on using several features for SAR clas-
sification so as to achieve a better discrimination over certain 
classes. A dedicated application of the CNBC framework 
presented mainly adopts a “Divide and Conquer” type of 
approach, so as to handle efficiently indefinite number of 
(SAR and image processing) features and (SAR terrain) clas-
ses, which otherwise may turn out to be difficult problem for 
a single classifier due to the well known “Curse of Dimen-
sionality” phenomenon. We furthermore tested several SAR 
and image processing feature constellations over three well-
known SAR image classifiers and make comparative evalua-
tions with CNBC. Our experiments with these four different 
classification schemes show that especially color features, 
which can be easily extracted over SAR feature pseudo-color 
images, can significantly improve classification accuracy 
compared to various texture features. Experiments further 
indicate that CNBC is capable of improving its classification 
performance due to its ”Divide and Conquer” approach 
where the overall classification scheme can benefit from par-
ticular classifications over individual feature sets. This ad-
dresses an important drawback of regular classifiers as their 
performance can degrade due to the well-known “Curse of 
Dimensionality” phenomenon. Note that classification accu-
racy might still be improved by extending the overall feature 
sets with image processing features from alternative pseudo-
color images that can be created by using different SAR fea-
tures; and we further plan to investigate other remote sensing 
data. This is subject to future work. 
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