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ABSTRACT

Tracking is a key application in Wireless Sensor and Ad-hoc
Networks. The development of distributed, energy-efficient
strategies for target tracking is of practical importance. In
this contribution we propose a distributed tracking strategy
based on cooperative localization using consensus. Nodes do
not need to care about the network topology or the number
of nodes present in the network. They use their own mea-
surements as well as the jointly estimated position of the
target in order to track it. The proposed approach appears
to be robust against small errors in the node positions as
well as in the presence of biased or misbehaving nodes.

1. INTRODUCTION

The deployment of a large number of scattered sensors in
a certain area constitutes a very powerful tool for sensing
and retrieving information from the environment (i.e.
temperature, humidity, motion). The main features of
Wireless Sensor Networks (WSN) are that of a large number
of low-cost nodes with limited computational and power
resources. WSNs must also be scalable and robust against
changes in topology (i.e. node failure or addition of new
nodes), as well as energy efficient. These are the major
design issues in WSNs that make the development of simple
and efficient algorithms a major issue. These limitations also
make centralized approaches not very suitable for being used
in WSNs. Localization is a key task (often mandatory) in
many applications [1] and therefore, distributed localization
and tracking algorithms are of high practical importance.

A great variety of methods exists for acquiring the
position of a target node by fusing different measurement
sources [1] like Time-of-Arrival (TOA), Time-difference
of Arrival (TDOA), Angle of Arrival (AOA) or Received
Signal Strength Indicator (RSSI). In this paper we focus
on single antenna nodes without tight synchronization
abilities, which leads us to the use of RSSI measurements
for the localization task. One of the main challenges when
using RSSI measurements is that the mapping between the
measurement and target’s position is nonlinear and hence,
classical tracking strategies like the Kalman filter [2] are
not suitable. More advanced techniques based on particle
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filtering [3] have also been proposed in the context of WSN
with RSSI measurements [4–8]. In general, particle filtering
approaches have shown very good performance when
dealing with RSSI measurements but they are centralized
and suffer from a high computational cost and hence, their
applicability in a real scenario is questionable.

In this work we propose a two-step tracking strategy
based on joint distributed localization and local tracking.
Nodes perform local target tracking using the Unscented
Kalman Filter [9–11] and then combine the smoothed data
(coming from the tracking fileters) in a distributed fashion
using consensus-based localization [12]. The obtained joint
position is then used as feedback information to the local
tracking filters. For that purpose, we use an augmented
state variable that takes into account the previous target’s
position. The proposed algorithm has the following desirable
properties: it is scalable (i.e. nodes do not care about the
network topology), computationally simple (nodes only
need to run a local UKF) and energy efficient (only 1-hop
broadcast messages are used). Further, the use of weights
in the joint estimation process make the proposed approach
robust against uncertainties in nodes’ positions and/or bias
in the measurements. We validate the performance of the
proposed approach by means of simulations and compare
it with a standard (centralized, one-step) UKF where the
tracking is performed directly from the measurements.

The paper is organized as follows: Section 2 describes
the problem and the considered scenario. In Section 3 we
describe the distributed consensus-based localization algo-
rithm proposed in [12] as it will be used for distributed data
fusion in the tracking algorithm of Section 4. Section 5 is de-
voted to validating the performance of the proposed solution
using synthetic data. We draw some conclusions in Section
6 and provide references at the end of the paper.

2. PROBLEM FORMULATION AND
DEFINITIONS

Consider a Wireless Sensor Network of N nodes randomly
deployed on a certain area. Nodes are static and able to
communicate with adjacent nodes that lie within a given
range for communications. Assume the presence of a target
node that moves within the network. The goal is to de-
termine the location of the target node and be capable of
tracking its position as time evolves. In the following we will
provide a separate description of the behaviour of both the
locating/tracking network and the target.

2.1 Network

For getting estimates of the target position, nodes employ
RSSI measurements. The use of RSSI readings is of practical
convenience when working with real hardware as they do not
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need tight synchronization requirements. We assume that
the RSSI follows a linear relationship with the received power
PR. A common assumption, see [13] and references therein,
is that the received power follows a lognormal distribution
with a distance-dependent mean as

PR[dB] = P0 − 10np log10

(
d
d0

)

+X, (1)

where P0 is the received power (in dB) at reference distance
d0, np is the path-loss exponent and X is a Gaussian ran-
dom variable of zero mean and variance σ2

dB. Let us denote
PR,n as the measured power at the n-th locating node. The
maximum likelihood estimate of the distance to the target is
then given by

d̂n = d0 10

(

P0−PR,n
10np

)

. (2)

Through the rest of the paper we will use RSSIn = PR,n for
all n.

2.2 Target

The target node can be placed at any arbitrary position in
the network area. It is assumed that the target moves freely
through the network by following a random force movement
given by

x
(k+1) = x

(k) + v
(k)T +

1
2
a
(k+1)T 2 (3)

v
(k+1) = v

(k) + a
(k+1)T , (4)

where x(k) is the target position, v(k) is the target speed, a(k)

is the acceleration at time instant k and T is the elapsed time
between consecutive samples. It is assumed that the target
is initially at some position x(0) = [x(0)

t , y(0)
t ]T with initial

speed of v(0) = [v(0)x , v(0)y ]T and that the acceleration follows
a Gaussian distribution, a ∼ N (0,σ2

aI).

3. DISTRIBUTED LOCALIZATION

In order to locate a target in the network, nodes employ
their estimated distances (2) in order to perform joint lo-
calization. Particularly, we have that the following set of
equations should be satisfied

d21 = (x1 − xt)
2 + (y1 − yt)

2

d22 = (x2 − xt)
2 + (y2 − yt)

2

...
d2N = (xN − xt)

2 + (yN − yt)
2

(5)

where dn, n = 1 . . . N is the distance between the target
and the n-th node, (xn, yn) are the node coordinates, and
(xt, yt) are the target coordinates.

By further developing (5) we have that

d21 = x2
1 + x2

t − 2x1xt + y2
1 + y2

t − 2y1yt
d22 = x2

2 + x2
t − 2x2xt + y2

2 + y2
t − 2y2yt

...
d2N = x2

N + x2
t − 2xNxt + y2

N + y2
t − 2yNyt

. (6)

Rearranging terms we can express (6) in a more compact
vector-matrix form as





d21 − (x2
1 + y2

1)
...

d2N − (x2
N + y2

N )




 =

(

xTx
)

· 1− 2






x1 y1
...

xN yN






︸ ︷︷ ︸

C=[c1, ..., cN ]T

x , (7)

where 1 is a N × 1 vector of all ones and x =
[xt yt]

T. However, we do not have the actual distances
to the target but a noisy version (2). Define the vector

b =
[

d̂21 − (x2
1 + y2

1), . . . , d̂
2
N − (x2

N + y2
N)

]T

and the vector-

valued cost function

f̃(x) =
(

x
T
x
)

· 1− 2Cx− b . (8)

In order to incorporate robustness and make the localization
task more applicable to realistic scenarios we propose to use
a weighted version of the cost function (8). In a WSN it may
happen that some of the nodes exhibit irregular behaviour
(i.e. bias in their measurements). Additionally, nodes may
not have precise information about their own locations in-
stead, some inaccuracies may be present. The incorporation
of weights will mitigate the effects of misbehaving or biased
nodes and uncertainties in nodes’ positions. So we define the
cost function f(x) to be

f(x) = Γf̃ (x) , (9)

where Γ is a weighting diagonal matrix. A proper choice for
the weights would be inversely proportional to the variance of
the measurements. As we are assuming the log-normal model
for the measurements it is well known that the variance of
the maximum likelihood estimate (2) is proportional to the
square of the true distance to be estimated [13,14]. With this
consideration in mind we choose to weight our measurements
inversely proportional to the measured distance, that is

Γ = diag
(

1/d̂1, . . . , 1/d̂N
)

. (10)

It is important to mention that in our tracking algorithm,
distances provided to the localization part do not coincide
with the maximum likelihood distance estimates in (2). In-
stead, distances are obtained from the local tracking filters
on each node as we will see in Section 4. However, we keep
this choice of the weighting matrix for simplicity.

It is easy to observe that the cost function f(x) in (9)
would be identically 0 (zero vector) under perfect distance
estimation. Due to the presence of errors, function f(x) rep-
resents the disagreement between the measured and the esti-
mated target position. It is clear then that a weighted non-
linear least-squares estimate of the target position can be
then obtained as the solution to the following optimization
problem

x̂ = min
x

1
2
f(x)Tf(x) = min

x

1
2
‖f(x)‖2 , (11)

where ‖·‖ denotes Euclidean vector norm.
It has been recently shown [12] that the optimization

problem (11) can be efficiently solved in a distributed fash-
ion by means of consensus [15]. By only local communi-
cation (1-hop neighbourhood) nodes can approach the cen-
tralized solution of (11) by performing a distributed version
of the Gauss-Newton algorithm. The weighted version of
the consensus-based distributed localization method is then
summarized in Algorithm 1, where K is the maximum num-
ber of iterations and J(k) is the Jacobian matrix of f(x(k)).
We immediately note that the steps 3-6 and 11-12 can all be
performed locally by each node. The only communication
occurs in the steps 8 and 9 via standard average consensus
algorithms [15]. After the consensus rounds, nodes can com-
pute the Gauss-Newton descent direction locally and update
their estimates (steps 11 and 12). Seeing how ∆

(k)
n ∈ R

2×2

and is symmetric, and γ
(k)
n ∈ R

2, we conclude that each
consensus round requires a broadcast of only 5 real values.
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Algorithm 1 Distributed Gauss-Newton localization

1: x̂(0) ← same initial value ∀ n ∈ N

2: for k = 0 to K − 1 do

3: J
(k)
n ← 2

d̂n

[

x̂(k)
t − xn ŷ(k)

t − yn
]

4: fn(x̂
(k)) ← x̂

(k)T
x̂
(k)−2 c

T
nx̂

(k)+x2
n+y2

n−d̂2n
d̂n

5: ∆
(k)
n ← J

(k)T
n J

(k)
n

6: γ
(k)
n ← J

(k)T
n fn(x̂

(k))

7: consensus

8: ∆
(k)
∗ ← 1

N

∑N
n=1 ∆

(k)
n = 1

N
J(k)TJ(k)

9: γ
(k)
∗ ← 1

N

∑N
n=1 γ

(k)
n = 1

N
J(k)Tf(x̂(k))

10: end consensus

11: h(k) ← ∆
(k)
∗

−1
γ

(k)
∗ =

(

J(k)TJ(k)
)−1

J(k)Tf(x̂(k))

12: x̂(k+1) ← x̂(k) + h(k)

13: end for

4. DISTRIBUTED TRACKING ALGORITHM

In order to track a target in the network we propose to use
a two-step approach based on local data smoothing and
joint localization using Algorithm 1. The idea is incorporate
knowledge coming from the joint estimate into the local
smoothing filter. The structure of the tracking strategy is
depicted in Figure 1. As it can be observed, each node
runs its local tracking filter and produces a smooth distance
estimate in order to jointly compute the target position by
means of consensus as described in Algorithm 1. The jointly
estimated position is then fed back to the tracking filter.

It is important to mention that the filtering structure
of Figure 1 is general in the sense that different local
filters could be used (i.e. Kalman filter, particle filter).
For the tracking filters we employ the Unscented Kalman
Filter (UKF) [9, 10]. The use of the UKF is motivated by
the fact that the available measurements are a nonlinear
function of the target’s position. The basic idea of the UKF
is to deterministically sample or generate a set of points
(called sigma points) from the covariance matrix of the
state variable. Then this set of sigma points are propagated
through the nonlinear function in order to approximate the
statistics of the true state variable / measurement. We
do not go into the details of the UKF because of space
limitations. A detailed description of the UKF and related
filters can be found in [11].

The general formulation of the tracking problem is repre-
sented by two equations, one describing the dynamics of the
state variable (i.e. variable to be tracked) and another one
that relates the state variable with some measurement. The
state and measurement equations respectively, are given by

s
(k) = f

(

s
(k−1),w(k)

)

(12)

z
(k) = g

(

s
(k),n(k)

)

(13)

where s(k) is the state variable at time instant k and w(k)

is the driving noise process. The variable z(k) represents the
measurement at time instant k and n(k) is the measurement
noise process. The functions f(·) and g(·) may be nonlinear
functions of the state and noise processes.

In our particular case, define the state variable to be
composed of the current target position and velocity and

Figure 1: Distributed filtering structure

the previous position. The inclusion of the previous target
position into the state variable has been done in order to
incorporate the information coming from the joint estimation
process (see Figure 1).

We then have the following representation of the state
evolution

s
(k) =





x(k)

v(k)

x(k−1)



 = Fs
(k−1) +Wa

(k) , (14)

where matrices F and W are given by

F =

[
I T I 0
0 I 0
I 0 0

]

, W =





(T 2/2) I
T I
0



 . (15)

The measurement available at each node is then com-
posed by the received power from the target and the jointly
estimated position with Algorithm 1 as illustrated in Figure
1.

Formally written, we have that the measurement avail-
able for the n-th node is then given by

z
(k)
n =

[

P0 − 10np log
(

‖Gs
(k)−cn‖
d0

)

+X(k)
n

x̂(k−1)

]

, (16)

where X(k)
n ∼ N (0,σ2

dB) , n = 1 , . . . , N is the measurement
noise variance and G = [I 0 0]. The joint position estimate
at time instant k can also be expressed as x̂(k) = x(k) +
ε
(k), where ε

(k) is the error term at time instant k. As the
number of nodes increases and by virtue of the Central Limit
Theorem we can model the error ε

(k) to have a Gaussian
distribution of zero mean and covariance σ2

εI. We can now
rewrite the measurement equation at node n as

z
(k)
n =

[

P0 − 10np log
(

‖Gs
(k)−cn‖
d0

)

x(k−1)

]

+ n
(k) , (17)

where n(k) is the total measurement noise term given by

n
(k) =

[

X(k)
n

ε
(k)

]

, (18)

As all components of n(k) are Gaussian, so it is the total
measurement noise (i.e. n(k) ∼ N (0,Q)). Note that the
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Algorithm 2 Distributed tracking algorithm

1: ŝ(0) = s0, P
(0)
s = P0, x̂

(0) = x0 /* Initialize */

2: Get RSSIn /* Sensing */

3: z(k+1) =

[
RSSIn
x̂(k)

]

/* Measurement Vector */

4: /* Unscented Kalman Filtering fed with z(k+1) */

5: σ
(k) ← ±

√

(L+ κ)P(k)
s /* Draw Sigma Points */

6: S(k) ←
{

ŝ(k), ŝ(k) + σ
(k)

}

/* Sigma Set */

7: S(k+1|k) ← FS(k) /* Propagate */

8: /* Predicted Mean & Covariance */
9: ŝ(k+1|k) ← α0S

(k+1|k)
0 + 1

2

∑2L
i=1 αiS

(k+1|k)
i

10: P
(k+1|k)
s ← α0S

(k+1|k)
0 + 1

2

∑2L
i=1 αiS

(k+1|k)
i

11: /* Measurement Prediction */

12: Z(k+1|k) ← P0 − 10np log10

(

‖GS(k+1|k)−an‖
d0

)

13: ẑ(k+1|k) ← α0 Z
(k+1|k)
0 + 1

2

∑2L
i=1 αi Z

(k+1|k)
i

14: P
(k+1|k)
z ← α0 Z

(k+1|k)
0 + 1

2

∑2L
i=1 αi Z

(k+1|k)
i

15: P
(k+1|k)
xz ← α0 Σ

(k+1|k)
0 + 1

2

∑2L
i=1 αi Σ

(k+1|k)
i

16: /* Add Noise Covariance */

17: P
(k+1|k)
z ← P

(k+1|k)
z +Q

18: ν
(k+1|k) ← z(k+1) − ẑ(k+1|k) /* Innovation */

19: K(k+1) ← P
(k+1|k)
xz P

(k+1|k)
z

−1
/* Kalman Gain */

20: /* Update Phase */

21: ŝ(k+1) ← ŝ(k+1|k) +K(k+1)
ν

(k+1)

22: P
(k+1)
s ← P

(k+1|k)
s −K(k+1) P

(k+1|k)
z K(k+1)T

23: /* Consensus Gauss-Newton Localization */

24: d̂(k+1)
n = ‖Gŝ(k+1) − cn‖

25: x̂(k+1) ← Algorithm 1 fed with x̂(k) and d̂(k+1)
n

components of n(k) are correlated through the nonlinear op-
eration of the optimization problem (11). However, as the
number of nodes increases this correlation becomes negligi-
ble so that we can approximate the noise covariance to be
diagonal with entries

Q =





σ2
dB 0 0
0 σ2

ε 0
0 0 σ2

ε



 . (19)

Unfortunately we cannot provide a closed-form expression for
the variance σ2

ε . This value is considered as a filter parameter
that has to be tuned. However, we have verified through
simulations that the value of σ2

ε is not critical for the filter
performance.

With all previous considerations, the proposed algorithm
for distributed tracking is given in Algorithm 2, where L is
the length of the state variable (i.e. 6), κ is a parameter of
the UKF, α0 = κ/(L + κ), αi = 1/(L + κ), i = 1, . . . , 2L
and the following matrix definitions are used

S0 =
(

S(k+1|k)
0 − ŝ(k+1|k)

)(

S(k+1|k)
0 − ŝ(k+1|k)

)T

(20)

Si =
(

S(k+1|k)
i − ŝ(k+1|k)

)(

S(k+1|k)
i − ŝ(k+1|k)

)T

(21)

Z0 =
(

Z(k+1|k)
0 − z(k+1|k)

)(

Z(k+1|k)
0 − z(k+1|k)

)T

(22)

Zi =
(

Z(k+1|k)
i − z(k+1|k)

)(

Z(k+1|k)
i − z(k+1|k)

)T

(23)

Σ0 =
(

S(k+1|k)
0 − ŝ(k+1|k)

)(

Z(k+1|k)
0 − z(k+1|k)

)T

(24)

Σi =
(

S(k+1|k)
i − ŝ(k+1|k)

)(

Z(k+1|k)
i − z(k+1|k)

)T

(25)

5. SIMULATIONS

In order to analyze the performance of the proposed ap-
proach we have run several simulations with synthetic data.
A network of 100 nodes scattered over a 100× 100 [m2] area
has been generated. We have also generated 100 different
target trajectories over the network area in order to test the
tracking algorithm. For comparison purposes we also con-
sider in our simulations a centralized version of the UKF
where a central entity is assumed to collect all data coming
from the nodes. In the simulations we label the proposed ap-
proach as Cooperative Filter (CF) to differentiate it from the
UKF. A perfect consensus is assumed among the nodes. In
Table 1 we summarize the values of the different parameters
used for the simulations.

5.1 Uncertainties in node locations

We have performed a simulation where we have introduced
a small variance in the actual node coordinates. That is,
we replace ci, i = 1, . . . , N with c̃i = ci + N

(

0,σ2
LI

)

. We
have varied σL in order to evaluate the robustness of the
proposed approach against uncertainties in nodes’ positions.
For each trajectory new values for the uncertainties have
been generated.

In Figure 2 we have represented the average error (over
time & trajectories) for both the proposed approach and the
centralized version of the UKF and for different values of
σL. As it can be observed, when perfect knowledge about
the nodes’ positions is available, the UKF provides better
results than the proposed approach. However, as the un-
certainties increase the difference among the two approaches
reduces and eventually, the proposed approach outperforms
the centralized UKF when the uncertainties in the positions
are high.

5.2 Presence of biased nodes

Another important fact that should be considered in WSN
is the presence of biased or misbehaving nodes. For this
purpose we have performed a simulation where for each tra-
jectory, 10 nodes have been randomly selected to exhibit a
bias in their measurements. The biases have been randomly
(uniform distribution) chosen within the interval (10, 20) dB.

The performance (average error over time) of the pro-
posed filter for the different trajectories is illustrated in Fig-
ure 3. It can be clearly seen that, for the considered scenario,
the proposed approach is more robust against the presence of
biased nodes and that it outperforms the centralized UKF.

Parameter Value Parameter Value

P0 0 [dBm] σa 0.1 [m/s2]
d0 1 [m] T 0.1 [s]
np 2 κ 1
σdB 2 [dBm] σε 1 [m]

Table 1: Simulation Parameters
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Figure 2: Performance degradation due to uncertainties in
the actual node’s positions
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Figure 3: Performance when biased nodes are present

6. CONCLUSIONS

In this paper we have presented a practical tracking algo-
rithm in the context of WSNs. The algorithm is based on a
two-step approach that combines local tracking and consen-
sus localization. The advantages of the proposed approach
are that it is distributed, scalable and requires only local
communication (1-hop neighbourhood). Further, it allows
the use of other (local) tracking strategies like the Kalman
filter or particle filters. We have verified by means of simula-
tions that the introduction of the weighted joint localization
makes the proposed approach robust against the presence of
biased nodes and uncertainties in the actual nodes’ positions,
outperforming in some cases a standard tracker based on the
UKF.
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