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ABSTRACT

Consider a wireless sensor network where n remote
nodes deliver observed data to a common fusion cen-
ter. A recent work by Blum and Sadler [1] proves that,
by means of an ordered transmission policy, optimal de-
tection performance is achieved when only a subset of
the n samples has been received at the fusion center.

Here we show that, when the network size n is made
large enough, arbitrarily small detection errors can be
achieved with a fusion center receiving just the first sam-
ple out of n: One-bit detection can be asymptotically
consistent. In our scheme the “winner takes all”: the
network global decision is the local decision of the first
firing sensor, and key is the sample selection criterion
— ordered transmissions — where more informative ob-
servations are delivered first.

1. INTRODUCTION

Consider a distributed detection system in which the
remote nodes collect observations about a commonly
monitored state of the nature for binary detection pur-
poses [2–4]. These observations are sent to a fusion cen-
ter to which the final decision is demanded, and a certain
level of detection performance is achieved that clearly
depends upon the network size, i.e., the total number
of sensors or collected samples. In a recent work Blum
and Sadler [1] showed that, surprisingly, nothing is lost
in terms of detection capability when only a subset of
the observations are delivered to the fusion center, pro-
vided that such subset contains the most “informative”
samples. This can be achieved in practice by exploiting
the idea of ordered transmissions: Each remote sensor
delivers the observed sample towards the fusion center
after a time interval that is inversely proportional to
the informativeness of the sample. As soon as a cer-
tain number of sensors’ messages are received, the fu-
sion center can inhibit further transmissions, making its
final decision with the same performance that would be
obtained using the whole set of data. The number of
sensors’ messages (i.e., the number of samples used for
the decision) is a random variable whose value is smaller
than the network size: transmissions can be saved with-
out degradation in the detection performance.

The focus of [1] is to maintain good performance
given the number of available sensors. Many wireless
sensor networks are composed by relatively simple, tiny
and cheap remote devices such that a large number of
such devices can be easily deployed. The constraint
on the total number of sensors is not that tight and,

therefore, one can improve performance by increasing
the network size. In this case, it makes sense to relax
the network size constraint and to take to one extreme
the ordered transmission idea of [1]. In other words, re-
versing the perspective, it makes sense to make the final
decision using only the first, most informative, received
sample: we wonder if acceptable performance can be
achieved in this way, provided that the network size is
large enough. The main finding of this paper is that
in this distributed detection system the decision based
on one single sample is asymptotically consistent with
increasing network sizes.

The provoking title of this work emphasizes that just
one sample (loosely speaking “one bit”) is sufficient for
asymptotically optimal performance, provided that the
ensemble from which the sample is extracted is suffi-
ciently large (the term asymptotically is referred to the
cardinality of the ensemble) and that the selection cri-
terion is suitably chosen. Clearly, since one single ob-
servation is to be collected, there is the further benefit
that the sensor can send its local decision — thus deliv-
ering just one bit — rather than the continuous-valued
observed sample. It is worth noting that the communi-
cation task is one of the major, and often the largest,
source of energy expense in sensor networks [5]. Our
one-bit system is extremely efficient in this respect.

It is evident that the approach of this work bears
similarities to the censoring detection schemes initially
proposed by [6]. The censoring idea consists of inhibit-
ing the transmission of poorly informative sensors, by
using some convenient measure of informativeness at the
remote nodes. Our detector can be thought as one where
just one sample survives to the censoring, which is im-
plemented by appropriately tuning the delivering time.

In this paper we address the problem from a rather
theoretical viewpoint emphasizing methodological and
analytical tools. Practical implementations of the pro-
posed idea would require addressing several important
issues, such the following. First, it should be noted that
some feedback mechanism from the fusion center to the
nodes must be implemented in order to inform all the
sensors that one sample has been received and therefore
the detection task is terminated, i.e., all the sensors can
be switched off. This halting protocol can be conceived
in many ways, for instance by sending a broadcast mes-
sage or by a multi-hop message passing. Certainly this
implies an energy burden, but at the expense of the
fusion center that is usually much more powerful than
the remote nodes. In addition, one should consider the
specific network topology, as well as possible channel im-
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pairments. Special attention should be paid also to the
system synchronism: a common time origin must ex-
ist, and local clocks must be aligned, thus ensuring that
the fusion center actually receives the first fired message
(even when multi-hop protocols are assumed). Finally,
although our analysis is asymptotic, we assume inde-
pendence among the measurements, for mathematical
tractability. Some of these issues are dealt with in [7].

2. PROBLEM FORMALIZATION

Consider a distributed system made of n remote units
that sense the environment to solve a binary hypothesis
test, i.e., to decide which of two possible states of the na-
ture H0 or H1, is in force. Each node, say node i, collects
a scalar random variable Xi taking values in the reals
with associated probability density function (pdf) fX(x)
with unbounded support, i.e., supx{fX(x) > 0} = ∞
and infx{fX(x) > 0} = −∞. More specifically, Xi is
drawn from fX(x;H0) if the nature manifests H0, while
it is drawn from fX(x;H1) under H1. The statistical
test can be cast in the usual form: for i = 1, 2, . . . , n,

H0 : Xi ∼ fX(x;H0),

H1 : Xi ∼ fX(x;H1).

To this detection problem two errors are associated

αn = P (decide H1, when H0 is actually true) ,

βn = P (decide H0, when H1 is actually true) ,

that are usually referred to as the false alarm and the
miss detection probabilities, and it is well known that
the log-likelihood test, i.e., one that compares

n∑
i=1

L(xi) =

n∑
i=1

log
fX(xi;H1)

fX(xi;H0)
.

with some threshold, optimally solves the problem un-
der a variety of optimality criteria based on αn and βn.
On the other hand, when computing the log-likelihood
is difficult or impossible (as in nonparametric tests) or
in some specific context such as locally optimum detec-
tion, one approach is to seek for a suitable data trans-
formation, say T (x), as a surrogate of the optimal data-
transforming nonlinearity L(x). One obvious choice for
T (x) is the identity and in fact in the examples devel-
oped in Sect. 5 we consider the two possibilities

T (x) = x identity,
T (x) = L(x) log-likelihood.

(1)

Note, however, that the general results of this work hold
for an arbitrary nonlinearity T (x).

Recall that in the designed system the fusion center
does not receive the entire vector (X1, X2, . . . , Xn) be-
cause of the time-based censoring strategy, so that nei-
ther the optimal

∑
i L(xi) nor the surrogate

∑
i T (xi) is

available. Rather, sensor i after computing T (Xi) makes
a local decision according to u (T (Xi) > γn), where u(·)
is the unit step function and γn is a properly set thresh-
old.

Furthermore, sensor i attempts to contact the fusion
center at a time instant proportional to 1/|T (Xi)|, mea-
sured with respect to a common time origin. We ignore

the constant of proportionality since it is immaterial in
our mathematical analysis, even though in practice it
must be carefully chosen as function of the network size,
to comply with real-time and time-resolution constraints
of the system.

When, at time 1/|T (x)|, sensor i contacts the fusion
center, it delivers not the observed sample but the lo-
cal decision, i.e., the binary digit u (T (Xi) > γn) based
on the single sample Xi. But this one-bit delivering ac-
tually takes place only if a halting broadcast message
from the fusion center is not heard. Since this halting
message is broadcast as soon as the fusion center re-
ceives the first message from the sensors, there is only
one node that actually delivers its decision, and that
local decision is taken as the global decision of the sys-
tem. The point here is that the informativeness of the
sample is just measured in terms of |T (Xi)|, so that the
first firing sensor is expected to convey the maximum of
information.

Since the delivering time is related to the modulus of
the transformation, we refer to our transmission policy
as the MO (modulus ordered) strategy; when in addition
T (x) = L(x) the network system is referred to as the �-
MO (log-likelihood modulus ordered) system.

We now introduce some definitions. First, let
Zi:=T (Xi) be the transformed variable and let
FZ (x;Hj) and fZ (x;Hj) be its cumulative distribution
function (cdf) and pdf , respectively, when hypothesis
Hj = 0, 1, is in force. The modulus ordering can be for-
malized in terms of the index permutation π(·) defined
by the property that∣∣Zπ(1)

∣∣ ≤ ∣∣Zπ(2)

∣∣ ≤ · · · ≤
∣∣Zπ(n)

∣∣ . (2)

We define Mn := Zπ(n) the sample with maximum mod-
ulus, which plays a special role in the analysis. Indeed,
since the decision statistic of the whole system is that of
the first (and unique) firing sensor, the global decision
amounts to

Mn

H1

≷
H0

γn, (3)

where γn is a suitable decision threshold. Letting

M+
n := max

k≤n
Zk, M−

n := − min
k≤n

Zk = max
k≤n

(−Zk),

the decision statistic in (3) can be written as

Mn =

{
M+

n if M+
n ≥ M−

n

−M−
n if M+

n < M−
n

. (4)

Note that choosing the delivering time on the basis of
the modulus of T (x) has the precise rationale that the
firing sensor corresponds either to the largest sample
Mn or to the smallest −M−

n , a fact that is key for the
subsequent analysis.

Below we make use of the following results [8]:

f
M

+
n

(x;Hj) = nFn−1
Z (x;Hj) fZ (x;Hj) , (5)

f
M

−

n
(x;Hj) = n [1 − FZ (−x;Hj)]

n−1
fZ (−x;Hj) ,

(6)
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where capital letters denote the cdf and the correspond-
ing lowercase the pdf of the random variable specified
as subscript. Also we shall use [9]

fMn
(x;Hj) = nhn−1

j (x) fZ(x;Hj), (7)

where

hj(x) = FZ(|x|;Hj) − FZ(−|x|;Hj). (8)

3. RELEVANT EVT BACKGROUND

Some relevant facts from the classical literature of Ex-
treme Value Theory (EVT) are now recalled. Let
Y1, Y2, . . . , Yn be a collection of iid random variables
with unbounded support, and let Mn = maxi≤n Yi.
Then, under mild regularity conditions, there exist se-
quences of normalizing constants an, bn such that [10]

lim
n→∞

FMn
(an x + bn) = G(x), (9)

where G(x) is either the Gumbel or the Fréchet distri-
bution1:

Gumbel

⎧⎨
⎩

G(x) = e−e−x

, −∞ < x < ∞,
bn = F−1

Y

(
1 − 1

n

)
, an = 1

n fY (bn) ,

limn→∞(bn/an) = ∞,

Fréchet

⎧⎪⎪⎨
⎪⎪⎩

G(x) =

{
0 x ≤ 0
exp(−x−ξ) x > 0,

ξ > 0,

bn = 0, an = F−1
Y

(
1 − 1

n

)
,

limn→∞ an = ∞.

When eq. (9) holds, we say that Mn (or equivalently
its distribution) is attracted to the limiting distribution
G(x) with normalizing constants an and bn. Finally,
given a random variable Y , we have the following defi-
nitions. If

lim
x→∞

1 − FY (x)

FY (−x)
=

{
∞ Y is right-tail dominant,

then
0 Y is left-tail dominant.

4. ASYMPTOTIC ANALYSIS

The main result is now stated. Consider a network
of size n with independent and identically distributed
Zi = T (Xi), i = 1, 2, . . . , n, that have unbounded sup-
port. Suppose that M+

n is attracted under H1 and let
a+

n , b+
n , and G+(x) be the normalizing constants and

the limiting distribution, respectively. Similarly, sup-
pose that M−

n is attracted under H0 and let a−
n , b−n , and

G−(x) be the normalizing constants and the limiting
distribution, respectively. Note that attraction is guar-
anteed under very broad technical conditions so that
these assumptions are by no means restrictive for prac-
tical applications [10].

Theorem 1 If the independent and identically dis-
tributed random variables Zi’s are right-tail dominant

1There exists a third limit distribution, namely the Weibull,
which we do not consider here because its class of attraction is
ruled out by the assumption that the support of the random vari-
ables is unbounded.

under H1 and left-tail dominant under H0, then the fol-
lowing convergences in probability hold

Mn

M+
n

→ 1, Mn −M+
n → 0, under H1, (10)

Mn

M−
n

→ −1, Mn + M−
n → 0, under H0, (11)

and the following attractions hold

lim
n→∞

FMn

(
a+

n x + b+
n ;H1

)
= G+(x), (12)

lim
n→∞

FMn

(
a−

n x − b−n ;H0

)
= 1 − G−(−x). (13)

�

Proof idea. The proof is given in [7] and cannot be of-
fered here for space reasons. The main idea behind the
proof, however, is simple. The local decision of the firing
sensor (3) is based either on the largest M+

n or on the
smallest −M−

n of the n (transformed) samples collected
by the system. However, for n sufficiently large, if the
right tail of the distribution fZ(x;H1) dominates over
the left tail, then, with high probability, the decision
statistic is M+

n . With left-tail dominance, conversely,
the decision statistics is highly likely to be −M−

n . Un-
der the assumptions of the theorem, we conclude that,
roughly speaking, the hypothesis test compares a very
large positive sample against a very small negative value,
yielding good test performance.

This reasoning is based on the assumption of “large”
n and, therefore, one expects that the detection error
can be controlled as desired by choosing a sufficiently
large n. To turn these informal arguments into a rig-
orous proof, in [7] we elaborate on sequences of events
like {M+

n ≥ M−
n } and investigate their probability as

n grows. By judicious use of the convergences in prob-
ability and in distribution, we are finally able to give a
formal proof of the theorem. •

From the above arguments we argue that a reason-
able threshold setting would be γn = 0, for any n, be-
cause for sufficiently large n the two decision statistics
tend to be of different sign, under the two hypotheses.
This is very convenient for approaching certain nonpara-
metric problem where the distributions of the data are
unknown or only partially known. (In these problems,
we recall, T (X) cannot be chosen as the log-likelihood.)
In the following we refer to γn = 0 as the nonparametric
threshold setting.

When knowledge of the statistical model is avail-
able, the most natural approach to set a threshold is
perhaps to enforce a desired level of false alarm (in the
spirit of the Neyman-Pearson criterion), i.e., αn = α
for any finite n. Unfortunately, in many cases, this
is not possible because the exact knowledge of the cdf
of the detection statistic for any finite n would be re-
quired, that is usually unavailable. On the other hand,
it is possible to use the asymptotic “similarity” (un-
der H0) between Mn and −M−

n to set the threshold as
(1 − FZ (γn;H0))

n = α. Alternatively, exploiting Theo-
rem 1 we can enforce an asymptotic false-alarm level α
of the detection system using only the asymptotic dis-
tribution under H0. This yields the threshold of the test
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Figure 1: MO transmission policy. Error αn + βn for
the Gaussian nonparametric example, with σ = 1 and
different combinations of θ0 and θ1.

in the form γn = a−
n γ − b−n , with

α = G−(−γ) γ =

{
log log(1/α) Gumbel,

− (log(1/α))
− 1

ξ Fréchet.
(14)

We are now ready to present the result that shows the
asymptotic consistency of the one-bit detection scheme.
The proof, founded on the results of Theorem 1, is omit-
ted here and the reader is remanded to [7].

Theorem 2 Under the assumptions of Theorem 1 we
have the following.
i) Setting γn = 0 (nonparametric threshold), we get

αn + βn → 0. (15)

ii) Let the detection threshold be either

γn = a−
n γ − b−n (16)

where γ is as in (14), or

γn = F−1
Z

(
1 − α

1
n ;H0

)
. (17)

Then
αn → α, and βn → 0. (18)

�
The above theorems are valid for a general MO

transmission policy, but for specific detection problems
and/or local transformations, further results can be de-
rived. For instance, consider the case of an �-MO strat-
egy (namely, when Zi is the log-likelihood of the ob-
servations) applied to the shift-in-mean problems of the
kind

fX(x;H0) = φ(x + θ0), fX(x;H1) = φ(x − θ1) (19)

where φ(x) is an even function, φ(x) > 0 ∀x, θ0 ≥ 0 and
θ1 > 0. For this case, along with the previous results,
we can more or less easily bound βn as follows:

βn ≤ eγn . (20)
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Figure 2: �-MO transmission policy. Panels (a) − (b)
and (c) − (d) refer respectively to the threshold setting
given in (16) and (17). In the lower plots are shown, as
dashed lines, the miss detection bounds (20).

5. EXAMPLES

We now illustrate by computer experiments the theoret-
ical results obtained in the previous section. Let N (a, b)
be a shortcut to denote the Gaussian distribution with
mean a and standard deviation b, and consider the ob-
servation model

H0 : Xi ∼ N (−θ0, σ),
H1 : Xi ∼ N (θ1, σ),

(21)

where θ0, θ1 and σ are positive parameters. Let us focus
on the MO policy with T (x) = x first. The main claim
of Theorem 2 is that the one-bit distributed detector is
consistent, in the sense that both the error probabilities
go to zero when the network size n grows, and in fact
this is true even in the case where all the model param-
eters θ0, θ1, σ and n, are unknown. Setting γn = 0 as
prescribed in part i) of Theorem 2 and exploiting ex-
pression (7) for numerical integration we get the results
summarized in Fig. 1.

When the statistical model (21) of the observations
is perfectly known, the �-MO transmission policy can
be implemented, with the results shown in Fig. 2. By
defining the signal to noise ratio SNR=(θ1 + θ0)/σ we
see that the larger is SNR, the faster the error probabil-
ities go to zero as indicative of the fact, not unexpected,
that tail dominance is emphasized at large SNRs. Panels
(a) and (b) refer to the threshold setting given in (16),
while (c) and (d) refer to the threshold in (17). We
see that αn converges to the desired asymptotic value;
however, in (c) the convergence is somehow faster than
that in (a), suggesting that the threshold setting (17)
provides, in this example, some advantage. Note that
the curves in (b) and (d) are very similar, which reveals
that the threshold selection is not critical with respect to
the miss error probability. Since the observation model
belongs to the shift in mean setting of (19), we can in-
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voke bound (20), which in this case can be approximated
(for any of the two threshold selections) by the simple
expression

βn ≤ exp(−SNR
√

2 log n)

and that is also shown in the figure.

6. SUMMARY

In this paper we illustrate a distributed detection sys-
tem where n remote nodes collect observations to be
delivered to a fusion center for the final decision. In a
recent paper by Blum and Sadler [1] it has been shown
that optimal detection performance can be guaranteed
even though not all the n observations are sent to the
fusion center, provided that the more informative are.
Here we relax the constraint of maintaining the optimal
performance for fixed network size n, and stress the en-
ergy saving implied by the reduction of the number of
sensors’ transmissions. Taking the approach to one ex-
treme, we propose that just one single sensor delivers its
observation (or, equivalently, local decision) to the fu-
sion center. In this way, what is actually a local decision
becomes the global decision of the system and (n − 1)
out of n sensors remain silent. The key idea is that of or-
dered transmissions with more informative sensors that
attempt to deliver their message first, combined with a
halting protocol that sleeps down the whole system as
soon as the quickest sensor send its decision.

The main question of this paper concerns the per-
formance of such a one-bit distributed detector: can we
achieve any desired level of performance provided that
the network size n is large enough? In technical jar-
gon, we are asking if such an extreme system design still
ensures asymptotic consistency, and that the answer is
affirmative should be considered our main result.
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