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ABSTRACT

This paper addresses the detection problem in moderately
non-Gaussian environments. We first propose an analysis of
the classical Gaussian and SIRV detectors from a new point
of view. We define a robustness criteria with respect to signal
mismatch and we demonstrate that the non-Gaussian detec-
tor is robust only for small mismatches. We then propose a
new family of detectors based on a geometric heuristic that
exploits advantages of both Gaussian and non-Gaussian de-
tectors. This new family is robust to signal mismatch and
presents very interesting detection performance.

1. INTRODUCTION

With the unceasing improvement in the measurement tech-
nologies, more and more radar applications must cope with
non-Gaussian clutter [3]. For instance, non-Gaussian noise
usually arises in SAR imaging as higher resolutions are
reached. Difficult measurement conditions such as severe
weather in the case of sea measurements, or low grazing an-
gle can also lead to impulsive distributions. Gaussian mod-
els are then not adapted. When the clutter statistic is well
documented, specific statistical models may be employed in-
stead; for instance ground or sea clutter may be modelled
with a K-distribution or a Weibull distribution [1, 2]. How-
ever, when the clutter distribution is unknown, or difficult to
model, more general clutter models must be considered. Un-
fortunately these more general models are less performant in
moderately impulsive noise. This problem arises in nowa-
days radar applications. Indeed, as the resolution improves,
the clutter statistic continuously evolves from Gaussian to
more impulsive distributions. Desired detectors should be
able to handle a large variety of clutter distribution from
Gaussian to moderately non-Gaussian clutter.

Among the clutter models, Spherically Invariant Ran-
dom Vectors (SIRV) [10] are very promising, since they can
model a wide range of random processes. When injected in
the classical hypothesis testing problem, this model leads to
a new detector, the GLRT-LQ (GLRT-Linear Quadratic) de-
tector [3], derived in the Generalized Likelihood Ratio Test
(GLRT) framework to deal with an unknown amplitude. In-
terestingly this detector has also been obtained under differ-
ent hypotheses: it corresponds to the Normalized Matched
Filter (NMF) derived in [9] for a Gaussian noise with un-
known level, or to the asymptotic Bayesian Optimum Radar
Detector (BORD) obtained from a Bayesian perspective in
[6]. For unicity, we will refer to it in this article as the GLRT-
SIRV detector, while we will denote by GLRT-GAUSS the
classical Gaussian detector with unknown amplitude. Both
GLRT-GAUSS and GLRT-SIRV detectors are obtained in
the GLRT framework that is only a heuristic procedure to

design detectors for composite hypothesis testing problems,
and they are therefore optimal only in their respective classes
of invariance.

Both detectors have quite different behaviors, that can be
characterized by the geometry of their respective acceptance
regions. This was first done in [9]. In this article, we propose
to move one step further and exploit the specificities of these
geometries, first to highlight some interesting characteristics
of the two detectors, and second to design a new family of
detectors that gathers advantages of both detectors.

The GLRT-SIRV detector is very efficient in heteroge-
neous or non stationary environment. But it presents also
some drawbacks seldom discussed in the literature. Contrary
to the GLRT-GAUSS detector, the GLRT-SIRV detector is
intrinsically multidimensional: the signal consideredmust be
a vector of dimension at least 2. It is then dependent to the
dimension; we will see in this article that the performance of
the GLRT-SIRV is highly dependent to this parameter. An-
other feature of importance is the reliability of the detector
when the steering vector is not perfectly known; this may
arise in any scenarii when the backscattering signal is diffi-
cult to model, for example when it is sensitive to target orien-
tation, propagation errors, angular or frequency dependence.
Solutions for signal mismatch have been proposed in [5, 4]
assuming that the useful signal lies within a conic region.

Here we use a different approach based on the detector
geometry: we first demonstrate the impact of dimension and
mismatch on the GLRT-GAUSS and GLRT-SIRV detection
performance; in particular we provide new results concern-
ing their robustness to signal mismatch. It is then of interest
to design new detectors sharing good characteristics of both
GLRT-GAUSS and GLRT-SIRV. While this was the objec-
tive of the ASB (Adaptive Sidelobe Blanker) [8], this detec-
tor was not defined from a geometry perspective and is not
robust for all mismatches. The second contribution of this
paper is then the design of a new family of detectors based
on a geometric heuristic that takes advantage of both GLRT-
GAUSS and GLRT-SIRV interesting properties; in particular,
we demonstrate the robustness of the proposed detectors.

This paper is organized as follows: in section 2, we
present the GLRT-GAUSS and GLRT-SIRV, and study their
behavior with respect to dimension and signal mismatch.
Then in section 3, we describe the new family of detectors.

2. GLRT-GAUSS AND GLRT-SIRV STUDY
2.1 GLRT-GAUSS and GLRT-SIRV detectors

In this section we present the GLRT-GAUSS and GLRT-
SIRV detectors. The detection problem in SIRV clutter can
be written as the following hypothesis testing problem:

{

H0 : y = n (noise only),
H1 : y = As+n (signal + noise),

(1)
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Figure 1: Geometrical representation of the acceptance and
rejection regions of the GLRT-GAUSS and GLRT-SIRV.

with y the received signal, s the transmitted signal or the
steering vector of dimensionm, A the unknown complex am-
plitude and n a SIRV noise. n can be written as n =

√
κx,

where κ is the texture, i.e. a positive random variable of un-
known probability density function (pdf), and x is a complex
zero-mean Gaussian vector with covariance matrix Γ [10].

The GLRT-GAUSS detector is the GLRT solution to
problem (1) when the noise is Gaussian and the amplitude
unknown. It corresponds to the test statistic:

TG =
|sHΓ−1y|2
‖s‖2

Γ−1

H1

≷
H0

τG, (2)

where xH denotes the hermitian transpose of vector x and
‖x‖2

Γ−1 = xHΓ−1x is the norm associated to the inner prod-

uct induced by Γ−1. Geometrically, this detector resorts to
projecting the received signal y onto the signal subspace ΩS

of the vector space Cm and accepting all resulting vectors
with sufficiently large norm. The detector threshold can then
be represented by two hyperplanes in Cm. Acceptance and

rejection region ΦG and ΦG are depicted in Fig.1.
The GLRT-SIRV detector can be viewed as a GLRT so-

lution to the hypothesis testing problem (1) for a SIRV noise
when both the amplitude and the SIRV texture are unknown,
deterministic, and replaced by their respective Maximum
Likelihood estimates. It corresponds to the test statistic:

TS =
|sHΓ−1y|2

‖s‖2
Γ−1‖y‖2Γ−1

H1

≷
H0

τS. (3)

Thanks to Cauchy-Schwarz inequality, we can write TS =
cos2 θS; the angle θS can be defined even in the complex case.
Then the GLRT-SIRV consists in projecting the received sig-
nal onto the unit sphere and accepting signals contained in
a spherical cap centered on ΩS and defined by angle θS. In
other words, the GLRT-SIRV resorts to accepting any signal
y falling into a double cone of axis ΩS and angle θS. Accep-
tance and rejection region ΦS and ΦS are plotted in Fig.1.

Finally, note that throughout this paper, we consider the
SNR at the output of the matched filter, defined by ρ =
|A|2‖s‖2

Γ−1/‖n‖2Γ−1. This definition takes into account the

energy of the transmitted signal or compression gain.

2.2 Effect of signal dimension

The effect of the dimension can be studied on the expressions
of the detection threshold and the false alarm probability PFA.
For the GLRT-GAUSS detector, the relationship, provided in
the complex case by PFA = exp(−√

τG) (see [7]), is indepen-
dent from the dimension parameterm: for a given false alarm
probability, the detection treshold is the same whatever the
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Figure 2: Detection performance for different dimensions for
the GLRT-GAUSS and GLRT-SIRV in a K-distributed noise
with shape parameter ν = 1; PFA = 10−3.

dimension, and, since we consider the output SNR, detection
performance of the GLRT-GAUSS are invariant with the di-
mension. On the contrary, since the false alarm probability

for the GLRT-SIRV is given by PFA = (1− τS)
m−1

(see [3]),
the detection threshold (or detection angle) must be changed
according to the dimension to ensure the same PFA.

This phenomenon can be geometrically explained: as the
SIRV noise is spherically invariant, the false alarm probabil-
ity is simply provided by the ratio between the surface of a
spherical cap defined by angle θ and the surface of the unit
sphere. For a given angle, this ratio decreases when increas-
ing the dimension since the surface outside the spherical cap
is more inflated than the surface inside (this is true for any
angle lower than π/2). So the detection angle increases with
the dimension to ensure a fixed PFA, thus widening the cone
aperture, and increasing the distance between the noiseless
signal As and the detection cone. Since the detection prob-
ability PD greatly depends on this distance, the increase in
the detection angle leads to better detection performance for
larger dimensions. This is verified on simulation in Fig.2.

Finally, we notice in Fig.2 that the GLRT-SIRV presents
worse detection performance at high SNR than the GLRT-
GAUSS, even in SIRV noise. Although this may seem sur-
prising at first sight, it does not contradict the theory, since
the GLRT-SIRV is only a GLRT with no guarantee of opti-
mality. This phenomenon will be mathematically proved by
the authors in a subsequent paper.

2.3 Robustness to signal mismatch

We question now the robustness of the GLRT-GAUSS and
GLRT-SIRV detectors in the presence of signal mismatch.
The received signal under hypothesis H1 is then y = Asb+
n, where sb denotes the backscattered signal, while the test
statistic will use signal s. We assume that sb and s differ by
an angle α ∈ [0,π/2[, i.e. the projection of sb onto the noise

subspace ΩS is non zero, and:
|sHΓΓΓ−1sb|2

‖s‖2
Γ−1

‖sb‖2
Γ−1

= cos2 α.

A detector robust to signal mismatch should provide
good performance detection at sufficiently large SNR even
for distorted signals. We will therefore consider asymptotic
performance of the GLRT-GAUSS and GLRT-SIRV detec-
tors. Let us denote by PG

D (ρ ,α) and PS
D(ρ ,α) the detection

2060



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR output

D
e
t
e
c
t
i
o
n
 
p
r
o
b
a
b
i
l
i
t
y

m=3

 

 

GLRT−GAUSS

GLRT−SIRV

α=0
α=1.2 θ

S

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR output

D
e
t
e
c
t
i
o
n
 
p
r
o
b
a
b
i
l
i
t
y

m=5

 

 

GLRT−GAUSS

GLRT−SIRV

α=0 α=1.2 θ
S

Figure 3: GLRT-GAUSS and GLRT-SIRV detection perfor-
mance with signal mismatch of angles α = [0,θS/2,θS,θS+
θS/5] and a K-distributed noise with shape parameter ν = 1;

PFA = 10−3, m= 3 (left) and m= 5 (right).

probabilities of the GLRT-GAUSS and GLRT-SIRV respec-
tively for a given SNR ρ and a distorsion angle α .

Theorem 1. (Robustness of the GLRT-GAUSS detector) For

any distorsion angle 0≤ α < π/2, lim
ρ→+∞

PG
D (ρ ,α) = 1.

Theorem 2. (Robustness of the GLRT-SIRV detector)

• For any 0≤ α < θS, limρ→+∞PS
D(ρ ,α) = 1.

• For α = θS, limρ→+∞PS
D(ρ ,α) = 1/2;

• For any θS < α < π/2, limρ→+∞PS
D(ρ ,α) = 0.

Proofs of these theorems are provided in appendix A. They
are illustrated by simulation results in Fig.3. They imply that
the GLRT-GAUSS is robust, while the GLRT-SIRV may be
dramatically affected by signal mismatch: the detector may
even become completely inefficient if the distorsion is large
enough to cause the noiseless backscattered signal leave the
decision cone. This effect is of course particularly harmful
in low dimension when the decision cone is narrow.

3. HYBRID DETECTORS

The GLRT-SIRV detector is sensitive to the dimension and
not robust to signal mismatch. However, as observed in
Fig.2, it provides very good performance at low SNR for
non-Gaussian noise. We propose here new detectors that pro-
vide similar performance at low SNR, and performance close
to the GLRT-GAUSS at high SNR, with improved robustness
and less sensitivity to the dimension.

3.1 Design of the decision region

The detectors we propose are built on a geometric heuristic.
This may seem suboptimal but recall that the GLRT strategy
is already an heuristic one. This geometric heuristic comes
from the following comments: the GLRT-SIRV detector is
performant at low SNR because its cone-shaped decision re-
gion permits to accept signals with low amplitudes if they are
located near the signal subspace ΩS. The GLRT-GAUSS is
performant at high SNR and also robust because it accepts
any signal gathering enough energy in the signal subspace.

The new hybrid detectors we propose are characterized
by the shape of their acceptance region ΦH , defined as

ΦH = {y :
|sHΓ−1y|2
‖s‖2

Γ−1

> τH OR
|sHΓ−1y|2

‖s‖2
Γ−1‖y‖2Γ−1

> cos2 θH}.

The geometry of this decision region is represented in Fig.4.
ΦH depends on two parameters τH and θH that must be de-
termined so as to ensure a given false alarm probability PFA.
θH can take any value in the interval [0,θS] where θS is the
angle of the GLRT-SIRV decision cone for the PFA consid-
ered; then, for a chosen value of θH , there is only one sin-
gle value of τH that can ensure the desired PFA. It verifies

Figure 4: Geometry of the decision region of the hybrid de-
tectors. Measurement falling outside the hyperplanes or in
the cone (blue region) are accepted.

τH ≥ τG. Any value of τH or θH outside their definition in-
tervals would lead to false alarm probability larger than the
desired PFA. Limiting cases are τH = τG for θH = 0, and
τH = +∞ for θH = θG. These two cases correspond to the
GLRT-GAUSS and GLRT-SIRV detectors respectively. Note
that the new detectors are not costly: they perform two tests
similar to the GLRT-GAUSS and GLRT-SIRV tests, with a
logical OR operation to merge the two results.

3.2 Performance of the hybrid detectors

3.2.1 Theoretical false alarm and detection probabilities

In this section, we provide theoretical expressions for the
false alarm and detection probabilities of the proposed hy-
brid detector in Gaussian and SIRV noise. Since the hybrid
detector is obtained by a logical OR operation between the
GLRT-GAUSS and the GLRT-SIRV detector, it is clear that
the false alarm and detection probabilities, denoted here by
PH

H0
(τH ,θH) and P

H
H1

(τH ,θH) respectively, are given by:

PH
Hi
(τH ,θH) = PG

Hi,κ
(τH)+PS

Hi,κ
(θH)−PAND

Hi,κ
(τH ,θH),

where PG
Hi,κ

(τH), P
S
Hi,κ

(θH) and PAND
Hi,κ

(τH ,θH) are respec-

tively the probabilities under hypothesis Hi and random tex-
ture κ of the GLRT-GAUSS, the GLRT-SIRV and a detector
obtained by a logical AND operation. Probabilities for the
two first detectors are well known. We detail the computa-
tion for the probability of the last term in Appendix B, which
can be expressed in SIRV noise as:

PAND
Hi

(τH ,θH) =

∫ +∞

0
PG
Hi

( τH
κ

)

∫

ηH
κ

0
pχ2

2(m−1)
(x2)pκ (κ)dx2 dκ

+

∫ +∞

0

∫ +∞

ηH
κ

PG
Hi

(

x2

tan2 θH
|x2

)

pχ2
2(m−1)

(x2)pκ (κ)dx2 dκ, (4)

where ηH = τH tan2 θH , pχ2
2(m−1)

(x) is the density probabil-

ity of a central χ2 random variable with 2(m− 1) degrees of
freedom, PG

Hi
is the false alarm or detection probability of

the GLRT-GAUSS in Gaussian noise, and pκ(κ) is the den-
sity probability of the texture κ . Expressions for Gaussian
noise can be simply obtained by setting pκ(κ) = δ (κ − 1),
in which case the integrals over the texture disappear.

3.2.2 Discussion

The particular design of the hybrid detectors, that uses in-
formation from both the signal energy and the signal an-
gle, leads to very interesting performance: simulation results
for several hybrid detectors corresponding to different deci-
sion angles θH are presented in Fig.5 for Gaussian and non-
Gaussian noises. In Gaussian noise, hybrid detectors pro-
vide performance similar to the GLRT-GAUSS, thus greatly
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Figure 5: Hybrid detectors performance for different angles θH for: (left) Gaussian noise; (center) K-distributed noise with
shape parameter ν = 1; (right) K-distributed noise with shape parameter ν = 0.5; m= 5, PFA = 10−3.

outperforming the GLRT-SIRV. In non-Gaussian noise, their
performances are close to the GLRT-GAUSS at high SNR
when this detector is the most performant. On the contrary,
they provide performance better than the GLRT-GAUSS and
very close to the GLRT-SIRV at low SNR when the latter is
very performant. Note also that the detection performance of
this detector is quite robust with respect to the choice of the
decision angle θH .

3.2.3 Robustness to signal mismatch

We establish now the following robustness theorem, where
PH
D (ρ ,α) represents the detection probability of the hybrid
detector for a given SNR ρ and a distorsion angle α:
Theorem 3. (Robustness of the hybrid detectors) For any
distorsion angle 0 ≤ α < π/2 and any 0 ≤ θH < θS,

lim
A→+∞

PH
D (ρ ,α) = 1.

This theorem states that, excepting for the particular case
θH = θS, i.e. the GLRT-SIRV, the hybrid detectors are robust
to signal mismatch. The proof is straightforward since these
detectors behave asymptotically like the GLRT-GAUSS de-
tector. The detection performance presented in Fig.6 vali-
dates this theorem. Interestingly, we see that when the mis-
match is large, the hybrid detector tends to provide the same
performance as the GLRT-GAUSS. Finally we highlight that
the ASB detector from [8] can be proved to be robust only in
a subset [0,θASB[ of [0,π/2].

4. CONCLUSION

In this paper we have studied the GLRT-GAUSS and GLRT-
SIRV detectors. We have presented their geometric prop-
erties, and analyzed their behavior with respect to dimen-
sion and signal mismatch. We have in particular stated that
the GLRT-GAUSS detector is asymptotically robust to signal
mismatch, whereas the GLRT-SIRV is asymptotically robust
only in a reduced range of mismatch angles that depends on
the detection threshold. We have then proposed a new family
of detectors based on a geometric heuristic; it exploits good
properties of both the GLRT-GAUSS and GLRT-SIRV. This
family provides very good detection performance for Gaus-
sian or non-Gaussian noise while being relatively insensitive
to dimension. It can also be shown to be asymptotically ro-
bust to signal mismatch. The new geometric heuristic pro-
posed here can be extended to continuous combinations that
will design even more general families of detectors featuring
any desired decision region.

A. PROOFS OF THEOREMS 1 AND 2

In all the proofs, we denote by B(c,r) the ball of center c

and radius r, i.e. B(c,r) = {x ∈Ck : ‖c−x‖2 ≤ r}. We will
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Figure 6: Hybrid detector performance for θH = 21.9◦ in the
presence of signal distorsion of angle α = [0,θS,θS+θS/5];
m= 5, PFA = 10−3.

use the fact that for any probability density pn(n), we have:

∀0< p< 1,∃M > 0 : ∀r ≥M, p≤
∫

B(0,r)
pn(n)dn ≤ 1. (5)

Proof of Theorem 1. The idea of the proof is the following:
we show that for any detection probability PD and any distor-
sion angle α , there exists an SNR value ρ for which we can
design a region included in ΦG of probability equal to PD.

The received signal is given by y = Asb+n. We can as-
sume for simplicity that ‖sb‖Γ−1 = 1 and σ2 =nHΓ−1n. We

then define the complex amplitude A such that |A|2 = ρσ2,
so that the SNR is equal to ρ . Let us denote finally es =
s/‖s‖Γ−1, that is the unit vector defining the signal space
ΩS. Using this notation, the GLRT-GAUSS decision region
is ΦG = {y : |y1| ≥

√
τG} where y1 = eHs Γ

−1y is the projec-

tion of y onto ΩS. Let us also denote by a1 = AeHs Γ
−1sb the

projection of Asb onto ΩS. Then |a1|= |A|cosα .
Now let ε > 0, and p = 1− ε . Using (5), we can find M

and a certain r ≥M such that:
∫

B(Asb,r)
py(y)dy =

∫

B(0,r)
pn(n)dn≥ p= 1− ε. (6)

We then choose an SNR value ρ such that |A| ≥ r+
√

τG
cosα ;

such a value exists for any α < π/2. Then |a1| ≥ r+
√

τG,
and therefore, for all x ∈ B(Asb,r), |x1| ≥

√
τG. Thus

B(Asb,r)⊂ ΦG, and we have:

p≤
∫

B(Asb,r)
py(y)dy ≤

∫

ΦG

py(y)dy = PG
D (ρ ,α)≤ 1.

Finally ∀ε,∃M > 0 : ∀r ≥ M,0 ≤ 1− PG
D (ρ ,α) ≤ ε , and

lim
ρ→+∞

PG
D (ρ ,α) = 1 for any α < π/2.

2062



ΩS

ΩS

θS

ΦS

ΦG

B(Asb,r)

Figure 7: Geometrical principle of the proofs.

Proof of Theorem 2. Let us first consider the case 0 ≤ α <
θS. Since the GLRT-SIRV decision region is a cone of angle
θS, the distorded signal sb is contained in this cone. Again we
can find M and a certain r ≥M verifying (5). Moreover, the
distance d between the vector Asb and the surface of the cone
is simply d = |A|sin(θS−α). Let us choose an SNR ρ such
that |A| ≥ r/sin(θS −α) (this is possible since we assume
0≤α < θS). Then d≥ r, and therefore, for all x∈B(Asb,r),
x ∈ ΦS. Thus B(Asb,r)⊂ ΦS, and we have:

p≤
∫

B(Asb,r)
py(y)dy ≤

∫

ΦS

py(y)dy = PS
D(ρ ,α)≤ 1.

Therefore ∀ε,∃M > 0 : ∀r ≥ M,0 ≤ 1−PS
D(ρ ,α) ≤ ε , and

lim
ρ→+∞

PS
D(ρ ,α) = 1 for any 0≤ α < θS.

Let us now consider the case θS < α < π/2. We use
the same reasonning, but this time we build a ball included

in ΦS. The distorded signal sb is now located outside the
GLRT-SIRV cone. The distance d between vector Asb and
the surface of the cone is then d= |A|sin(α −θS). We choose
|A| ≥ r/sin(α − θS) (this is possible since we assume θS <
α < π/2). Then similarly B(Asb,r)⊂ ΦS, and we have:

p≤
∫

B(Asb,r)
py(y)dy ≤

∫

ΦS

py(y)dy = 1−PS
D(ρ ,α).

Therefore ∀ε,∃M > 0 : ∀r ≥ M,0 ≤ PS
D(ρ ,α) ≤ ε , and

lim
ρ→+∞

PS
D(ρ ,α) = 0 for any θS < α < π/2.

Let us consider finally the particular case α = θS. For this
case, a rigorous proof requires some technical developments
that we will not display here. We will only explain briefly the
idea: in this special case whereAsb exactly lies on the surface
of the decision cone, we can prove that asymptotically (in
terms of SNR), any ball B(Asb,r) will be exactly splitted
into two equal halves by the decision cone, thus leading to a
detection probability of 1/2.

B. PFA AND PD COMPUTATION

Let us denote by y1 and y2 the squared norms of the projec-

tion of y onto ΩS and ΩS respectively. The GLRT-GAUSS
and GLRT-SIRV test statistics can be expressed as

TG = y1 and TS =
y1

y1+ y2
, and thus:

PAND
Hi

(τH ,θH) = Pr(y1 > τH AND y1 >
y2

tan2 θH
|Hi)

= Pr(y1 >max

(

τH ,
y2

tan2 θH

)

|Hi).

From the SIRV model, we can write y1 = κx1 and y2 = κx2
where κ is the texture. Then, x1 is a central (under H0) or
non central (under H1) χ2 random variable with 2 degrees

of freedom, while x2 is a central χ2 random variable with
2(m− 1) degrees of freedom under both hypotheses H0 and
H1. Conditionning the previous expression on κ , we get:

PAND
Hi

=

∫ +∞

0
Pr(x1 >max

(

τH
κ
,

x2

tan2 θH

)

|Hi,κ)p(κ)dκ

Since max

(

τH

κ
,

x2

tan2 θH

)

=

{

τH
κ if x2 ≤ τH tan2 θH

κ ,
x2

tan2 θH
otherwise,

the precedent expression can be conditionned on x2 and split-
ted into two parts as:

PAND
Hi

=
∫ +∞

0

∫

ηH
κ

0
Pr(x1 >

τH
κ
|Hi)p(x2)p(κ)dx2 dκ

+

∫ +∞

0

∫ +∞

ηH
κ

Pr(x1 >
x2

tan2 θH
|Hi)p(x2)p(κ)dx2dκ ,

where Pr(x1 > s|Hi) is the false alarm or detection proba-
bility of the GLRT-GAUSS in Gaussian noise, which is pro-
vided by a central (under H0) or non central (under H1) χ2

density with 2 degrees of freedom. The final expression (4)
follows.
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