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ABSTRACT

We present PEFAC, a fundamental frequency estimation
algorithm that is able to identify the pitch of voiced frames
reliably even at negative signal to noise ratios. The algorithm
combines non-linear amplitude compression, to attenuate
narrow-band noise components, with a comb-filter applied
in the log-frequency power spectral domain, whose impulse
response is chosen to attenuate smoothly varying noise
components. We compare the performance of our algorithm
with that of other widely used algorithms on a subset
of the TIMIT database and demonstrate that it performs
exceptionally well in both high and low levels of additive
noise.

1. INTRODUCTION

The estimation of fundamental frequency, or pitch, is an
essential component of many speech processing applications
and numerous approaches have been described in the
literature. Pitch estimators may be broadly divided into
three groups according to whether they operate in the time,
frequency or time-frequency domain. Typically, the first
category finds peaks in the autocorrelation function, the
second looks for harmonic peaks in the power spectrum
while the third performs time-domain analysis on the outputs
of a bank of bandpass filters. In many cases, an algorithm
identifies multiple pitch candidates in each time frame and
then uses temporal continuity constraints to select between
them.

In situations where there is a high level of acoustic
noise or where the distance between microphone and talker
is large, the signal to noise ratio (SNR) of an acquired
speech signal can be very poor. In such circumstances,
the performance of pitch estimation algorithms degrades [1],
and many methods become unusable below 0 dB SNR. In
recent years a number of noise-robust algorithms have been
designed but reliable fundamental frequency estimation at
negative SNRs remains a challenging problem.

In this paper, we propose a new frequency-domain
algorithm for pitch estimation that is robust to high levels
of noise. Many frequency-domain algorithms begin by
selecting isolated peaks in the short-time power spectrum,
which are difficult to identify at poor SNRs, as potential pitch
harmonics [2, 3]. However, in [4], instead of identifying
isolated peaks, a comb-filter is used in the linear frequency
domain to calculate a weighted sum of the harmonic
amplitudes. For this method the fundamental frequency
of the comb-filter, initially unknown, has to match the
pitch. A sub-harmonic-summation (SHS) method in the log-
frequency domain is proposed in [5], where the spectrum is
shifted along the log-frequency axis, weighted and summed.

Based on the same idea, [6] convolves the spectrum in
the log-frequency domain with a train of delta functions
harmonically spaced and selects the highest peak. Our
algorithm, similarly, estimates the fundamental frequency of
each frame by convolving its power spectral density in the
log-frequency domain with a filter that sums the energy of
the pitch harmonics while rejecting additive noise that has a
smoothly varying power spectrum. Amplitude compression
is applied before filtering to attenuate narrowband noise
components.

2. PROPOSED METHOD

For a perfectly periodic source at frequency f0, our signal
model at time t in the power spectral density domain is

Yt( f ) =
K

∑
k=1

ak,tδ ( f − k f0)+Nt( f ) (1)

where Nt( f ) represents the power spectral density of the

unwanted noise and ak,t the power of the kth harmonic. In the
log-frequency domain, the signal model can be expressed as

Yt(q) =
K

∑
k=1

ak,tδ (q− logk− log f0)+Nt(q) (2)

where q= log f . In this domain, the spacing of the harmonics
is independent of f0 and their energy can therefore be
combined by convolving Yt(q) with a filter with impulse
response

h(q) =
K

∑
k=1

δ (q− logk) (3)

The convolution Yt(q) ∗ h(q) will include a peak at
q0 = log f0 and additional peaks corresponding to simple
rational multiples of f0.

2.1 Filter definition

In practice, the width of each harmonic peak will be
broadened due to the analysis window and the rate of change
of f0. Accordingly we use a filter with broadened peaks
having the impulse response

h(q) = β − log(γ − cos(2πeq)) (4)

for log(0.5)< q < log(K+0.5) and h(q) = 0 otherwise. γ is
an algorithm parameter that controls the peak width while β
is chosen so that

∫
h(q)dq = 0. The number of peaks, K, is

restricted to 10 in order to reduce the response of Yt(q)∗h(q)
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at values of q corresponding to subharmonics of f0. Fig. 1
shows h(q) for γ = 1.5.
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Figure 1: Filter h(q) from (4) for γ = 1.5.

Because h(q) is chosen to have zero mean, a
white noise term, Nt(q), will be suppressed by the
filter. Moreover, because the peaks in h(q) are each
approximately symmetrical with zero mean, Nt(q) will be

suppressed if
dNt (q)

dz
is approximately constant over the range

log(k − 0.5) < q < log(k + 0.5) for each 0 < k ≤ K. In
practice, this means that any smoothly varying noise power
spectral density will be greatly attenuated by the filter.

2.2 Compression

Although, as we have seen, noise with a smoothly varying
spectrum will be suppressed by the filter h(q), some noise
sources contain high amplitude narrowband components
which may dominate the filter output. In order to avoid this,
we apply compression to the spectrum of each time frame
before convolving with h(q) by setting

Y ′
t (q) = Yt(q)

αt (q) (5)

where t is the time index. To determine the compression ex-
ponent, αt(q), we first calculate the smoothed spectrum Yt(q)
by lowpass filtering Yt(q) in both time and log-frequency.

In the absence of noise, we expect Yt(q) ≈ L(q), the long-
term average spectrum of speech [7, 8]. Accordingly we
normalize Yt(q) and Yt(q) to the power of L(q) and set the
compression exponent to be

αt(q) =
logL(q)

logYt(q)
(6)

A strong narrowband noise source at qn will result in
Yt(qn) ≫ L(qn) and the resultant αt(qn) ≪ 1 will compress

its amplitude. In addition, the power normalization of Yt(q)
means that noise free speech spectral components at other
values of q will be enhanced because at these frequencies
Yt(q)< L(q).

2.3 Fundamental frequency estimation

The complete PEFAC (Pitch Estimation Filter with Ampli-
tude Compression) therefore comprises the following steps
whose outputs are shown in Fig. 2 for a single voiced frame
corrupted by car noise:

(i) transform the input signal to the time-frequency domain
using the short-time Fourier transform (STFT), Yt( f ),

(ii) interpolate the power spectral density (PSD) of each
frame onto a log-spaced frequency grid, Yt(q),

(iii) find αt(q) so that the normalized smoothed spectrum

Yt(q) equals L(q) and calculate the compressed PSD,
Y ′

t (q),

(a) Yt( f ), output of step (i)
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(b) Yt(q), output of step (ii)
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(c) Y ′
t (q), output of step (iii)
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(d) Y ′
t (q)∗h(q), output of step (iv)
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Figure 2: Algorithm processing steps for a single voiced
frame of speech corrupted with car noise. (a) PSD in dB,
(b) PSD in dB in a log-frequency grid, (c) compressed PSD
in dB in a log-frequency grid, and (d) normalized output of
the filter and fundamental frequency, f0.

(iv) convolve the compressed PSD, Y ′
t (q), with the analysis

filter, h(q), and select the highest peak in the feasible
range as the estimated pitch.

In Fig. 2 we see that the low frequency noise that masks
the fundamental in (a) is greatly attenuated in (c) and that a
clear peak at 204Hz is visible in (d) despite being absent in
the original spectrum.

The algorithm does not impose any temporal continuity
constraints on the pitch estimates. Despite this, the algorithm
results in very few gross pitch errors even at poor SNRs as
demonstrated in Section 4.

3. EXPERIMENTS

The pitch estimator described above includes a number
of algorithm parameters whose values were determined
empirically using a development test set. The STFT used
a Hamming analysis window of 90ms duration; this is long
enough to resolve the pitch harmonics even for low values of
f0 but short enough to limit the pitch variation within a frame.
Each windowed input frame is zero-padded to 360ms to aid
the interpolation stage at low frequencies and the inter-frame
time increment is 10ms.

The spectrum of each frame is interpolated onto a
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(a) Yt(q), output of step (ii)
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(b) Y ′
t (q), output of step (iii)
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(c) Y ′
t (q)∗h(q), output of step (iv)
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Figure 3: Output of various steps of PEFAC for a speech
file corrupted with white noise at −5dB SNR. (a) Noisy
speech log-frequency spectrogram, (b) compressed noisy
speech spectrogram, and (c) output of the pitch analysis filter
normalized at each frame to its peak value.

logarithmic grid ranging from 40Hz to 4kHz with a
frequency resolution of 0.58%. Conceptually the sampled
spectrum is first converted to a continuous spectrum using
linear interpolation and this is then resampled using a
variable width triangular sampling kernel. In practice the
two stages are combined and the continuous spectrum is not
calculated explicitly [8].

The smoothed spectrum Yt(q) in the amplitude com-
pression step is calculated using a uniform moving average
filter with support Q = 1.15 in the log-frequency axis and
averaging over the entire file (typically of 3-5s duration) in
the time axis.

Following amplitude compression, the resampled spec-
trum of each frame is convolved with the filter h(q) from
(4). The optimum value of the parameter γ depends on the
nature of the noise and the value 1.5 was chosen as the best
compromise. For each frame, the position of the highest peak
in the filtered output is selected as the estimated pitch.

The upper graph of Fig. 3 shows the spectrogram of a
speech signal corrupted with white noise at −5dB SNR. The
middle graph shows the effect of amplitude compression in
which it can be seen that the noise has been significantly
attenuated at low frequencies where little speech energy is
present. The lower graph shows the output of the pitch
estimation filter in which, for clarity, each frame has been
normalized to its peak value. It can be seen that during voiced
frames the filter output shows a strong peak at the correct

(a) Male fundamental frequency histogram
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(b) Female fundamental frequency histogram
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Figure 4: Fundamental frequency distribution for males and
females in the core test set from the TIMIT database

pitch (about 200Hz) together with weaker peaks at rational
multiples of this pitch.

4. RESULTS

In this section, the performance of the proposed fundamental
frequency estimator is evaluated. We used the core test set
from the TIMIT database [9] which contains 16 male and 8
female speakers each reading 8 distinct sentences. Thus the
core test material consist of 192 sentences containing a total
of 28,473 voiced frames. The selection of this database was
based on the wide range of accents and speakers present in
it.

The ground truth for the fundamental frequency was
determined using Praat [10] on clean speech. Errors in the
estimation given by Praat were corrected manually. Fig. 4
shows the fundamental frequency distribution of males and
females in the database.

Additive noise from the RSG-10 database [11] was added
to the speech files to generate the noisy test signals. Three
types of noise were used at SNRs from −20 to +20dB:
white noise, car noise and babble. The measurement of SNR
used ITU-T P.56 [12, 8] for the speech level and unweighted
power for the noise.

For performance comparison, RAPT [13, 8], YIN [14]
and Jin & Wang (J&W) [15, 8] were used. The first
two of these are time-domain algorithms while the third
is a time-frequency algorithm. The J&W algorithm was
modified to give a single pitch estimate per frame by
excluding the unvoiced and dual-pitch states from the
dynamic programming stage.

Evaluation was restricted to voiced frames and a pitch
estimate was classified as correct if it was within ±5% of
the true value. Each of the graphs in Fig. 5 shows the
performance of the algorithms for one of the noise types. It
can be seen that at +20dB SNR, all of the algorithms reach
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(a) White noise
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(b) Car noise
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(c) Babble noise
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Figure 5: Variation of pitch estimation accuracy with SNR
for (a) white noise, (b) car noise, and (c) babble noise.
The solid lines show the percentage of correct frames (error
below 5%) for each of the algorithms: PEFAC, J&W [15],
YIN [14] and RAPT [13].

a performance plateau which varies between algorithms.
The two time-domain algorithms, YIN and RAPT, degrade
rapidly for all noise types at around 0 dB SNR although
YIN always outperforms RAPT, particularly for white noise.
The proposed algorithm (PEFAC) has excellent performance
at +20dB SNR and retains this high performance at
significantly worse SNR levels than the other algorithms.
The J&W algorithm degrades more gradually than the other
algorithms and below −5dB SNR it is the best algorithm for
babble noise although at this level, all algorithms perform
very poorly. Overall the performance of PEFAC consistently
exceeds that of the other algorithms.

The RAPT and J&W algorithms employ dynamic
programming to enforce soft temporal continuity constraints.

(a) White noise
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(b) Car noise
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(c) Babble noise
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Figure 6: Variation of pitch estimation accuracy (error below
5%) with SNR for (a) white noise, (b) car noise, and (c)
babble noise. The dashed line shows the frequency of the
correct pitch being one of the top three PEFAC candidates
(PEFAC-3). The solid line shows the percentage of correct
frames for PEFAC. The dotted line shows the performance of
the algorithm without amplitude compression (PEF).

Such constraints can be particularly effective at suppressing
the octave errors that pitch estimators sometimes make.
We have not used such constraints in this work but, as
an indication of how they might improve performance, we
have included as the dashed line in Fig. 6 (PEFAC-3) the
percentage of frames for which the correct pitch was one
of the three highest peaks in the filter output. From this
we see that combining PEFAC with a perfect candidate
selection algorithm could potentially give an additional
performance improvement corresponding to 5 dB SNR. In
Fig. 6 we can also observe the performance of the algorithm
without the amplitude compression stage, represented with
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the dotted line (PEF). For white noise, below 0 dB SNR we
get 10% improvement using amplitude compression. The
improvement is even more visible for narroband noise such
as car noise, going from 21.94% to 71.47% for −20dB
SNR. The compression has no effect on babble noise, as the
spectrum shape of the noise is similar to the speech spectrum.

5. CONCLUSIONS

In this paper we have presented the PEFAC pitch estimation
algorithm and shown that it is able to give reliable pitch
estimations even at poor SNRs. The algorithm comprises
an amplitude compression stage that attenuates narrowband
noise components with a pitch estimation filter that rejects
broadband noise having a smooth power spectrum. The
algorithm has been evaluated on the TIMIT core test set with
a variety of noise types and consistently outperformed other
widely used algorithms, even those that incorporate temporal
continuity constraints.
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