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ABSTRACT 
In this paper, we derive the discrete linear canonical trans-
form (DLCT) that has the additivity property. It is the dis-
crete counterpart of the continuous linear canonical trans-
form (LCT). The LCT is a generalization of the Fourier 
transform (FT) and the fractional Fourier transform (FRFT) 
and is suitable for signal analysis. The discrete counterparts 
of the FT and the FRFT have already been derived. However, 
since the DLCT has four parameters {a, b, c, d}, it is hard to 
derive the DLCT that has the additivity property. In this pa-
per, we use bilinear mapping together with the discrete time 
Fourier transform to derive the additive DLCT successfully. 
We can also use the similar method to derive the discrete 2-
D non-separable LCT, the discrete fractional delay, the dis-
crete fractional scaling, the discrete fractional differentia-
tion, and the discrete geometric twisting operations that 
have the additivity property successfully.   

 
 

1. INTRODUCTION 
 
The continuous linear canonical transform (LCT) is [1]:  
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The continuous LCT has four parameters {a, b, c, d} and the 
constraint that ad −bc = 1 should be satisfied. It has the addi-
tivity property as follows:  
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That is, the combination of two LCTs can be represented by 
the 2×2 matrix operation as in (3). The LCT is useful in time-
frequency analysis, filter design, communication, acoustics, 
optics, wave propagation analysis, signal sampling, phase 
retrieval, and image processing [1-6].               

The LCT is a generalization of many operations. When 
{a, b, c, d} = {0, 1, −1, 0}, it becomes the Fourier transform 
(FT). When {a, b, c, d} = {cosα, sinα, −sinα, cosα}, the 
LCT reduces to the fractional Fourier transform (FRFT) [3][6]  
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 (4)   
The FRFT has the additivity property as follows: 
                  [ ]{ } [ ]( ) ( )FRFT FRFT FRFTO O f t O f tβ α α β+= .    

When {a, b, c, d} = {1, λz, 0, 1}, the LCT becomes the 
Fresnel transform. Furthermore, when {a, b, c, d} = {σ, 0, 0, 
σ−1}, from (2), the LCT becomes the scaling operation:   
                    [ ] ( )1( ,0,0, ) 1( ) /LCTO f t f uσ σ σ σ

− −= .   (5)   
The discrete version of the FT is the well-known dis-

crete Fourier transform (DFT) [7]. Furthermore, based on 
eigenvector decomposition, the discrete version of the 
FRFT, i.e., the discrete fractional Fourier transform 
(DFRFT), was derived in [8][9]. The DFRFT proposed in 
[8][9] has the additivity property:   
                                      β α α β+=F F F         (6)  
and is useful for discrete signal analysis, digital filter design, 
and image processing.  

As the above description, the discrete counterparts of 
both the FT and the FRFT have been known. However, the 
discrete LCT that has the additivity property has not been 
derived yet.  

Note that, the continuous LCT has four parameters {a, b, 
c, d}. Therefore, it is rather hard to convert it into the dis-
crete form that also has the additivity property as in (3). 
Furthermore, since the eigenfunctions of the LCT varies 
with {a, b, c, d}, it is improper to use eigenvector decom-
position to derive the discrete LCT.             

In this paper, we use the method of bilinear mapping to 
derive the discrete LCT with the additivity property. See 
Sections 2 and 3. Furthermore, in Section 4, we use the 
similar way to derive the 2-D non-separable discrete LCT, 
the discrete fractional scaling, the discrete fractional delay, 
and the discrete fractional differentiation / integration op-
erations with additivity properties successfully.  

 
2. DERIVING THE ADDITIVE LINEAR 

CANONICAL TRANSFORM 
 
The continuous LCT in (1)(2) has the additivity property. 
We can convert it into the discrete linear canonical trans-
form that also has the additivity property, i.e., the additive 
discrete linear canonical transform (ADLCT). The proc-
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ess of the ADLCT is as follows. Suppose that x[n] is the 
input sequence. Then,  
(Step 1) First, we perform the discrete-time Fourier trans-
form (DTFT) for x[n]:  
           ( ) [ ] j n

n
X x n e ωω −= ∑ ,   where −π < ω < π.    (7)     

(Step 2) Then, we convert X(ω) into X1(ω):  
                       ( ) ( )1 ( ) ( )X Xω φ ω φ ω′= ,      (8) 
where φ(ω) should be a one-to-one mapping operation, −∞ 
< ω < ∞, and −π < φ(ω) < π. Specially, if we choose    

                              ( ) ( )2atan
2
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where atan means the arctangent, then (8) becomes the bi-
linear transform (BT) [10] as:    
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(Step 3) Then, we perform the LCT with parameters {d, −c, 
−b, a} for X1(ω):   
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Note that, in this step, we use the parameters {d, −c, −b, a} 
instead of {a, b, c, d}. It due to the fact that Steps 1 and 5 
are analogous to the FT and the IFT and  
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(Step 4) Then, we convert X2(ρ) into Y(ρ), where    
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−π < ρ < π and −∞ < φ−1(ρ) < ∞. Note that (13) is the in-
verse operation of (8). Specially, if we choose φ(ω) as in (9), 
then (13) becomes the inverse bilinear transform (IBT):  
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(Step 5) Then we perform the inverse discrete-time Fourier 
transform (IDTFT) for Y(ρ):      
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2

j ny n Y e d
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= ∫ . (15) 

The output y[n] is the ADLCT of x[n]. We denote it by: 
                              ( )( , , , )[ ] [ ]a b c d

ADLCTy n O x k= .  (16) 
 
 

To prove that the proposed ADLCT is additive, we can 
express the operation in Steps 1-5 as:  
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               (17) 
Since the IDTFT is the inverse operation of the DTFT and 
the IBT is the inverse operation of the BT:          
                       { }( )[ ] [ ]IDTFT DTFT z n z n= ,   

                        ( ){ }[ ] [ ]IBT BT z n z n= ,      
therefore,       
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Figure 1 – (a) The input x[n]. (b) y1[n] is the ADLCT with parame-

ters A1 (defined in (20)) for x[n]. (c) y2[n] is the ADLCT 
with parameters A2 (defined in (21)) for y1[n]. (d) y3[n] is 
the ADLCT with parameters A3 = A1A2 for x[n]. Note that 
y3[n] = y2[n], which show that the ADLCT indeed has the 
additivity property.   
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From the additivity property of the LCT in (3), the values 
of a3, b3, c3, and d3 in (17) are   
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Therefore, as the original continuous LCT, the proposed 
ADLCT also has the additivity property.   

 
3.       SIMULATIONS, PROPERTIES, AND 

APPLICATIONS   
 
In Fig. 1, we perform some simulations to show the additiv-
ity property o  f the proposed ADLCT. The input signal is  
    x[n] = n/2  for −9≤ n≤ 9,  x[n] = −(n−18)/2  for 10 ≤ n ≤17.   
    x[n] = −(n+18)/2  for −17≤ n≤ −10,  
    x[n] = 0  otherwise.      
We plot it in Fig. 1(a). Then, we perform the ADLCT with 
parameters {a1, b1, c1, d1} for x[n], where 

(a) (b) 

(c) (d) 

x[n] y1[n] 

y2[n] y3[n] 
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and obtain the output y1[n], see Fig. 1(b). Then we further 
perform the ADLCT with parameters {a2, b2, c2, d2} for y1[n], 
where      
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and obtain the output y2[n] (plotted in Fig. 1(c)). 
Then, in Fig. 1(d), we perform the ADLCT with parame-

ters {a3, b3, c3, d3} for the original signal x[n], where  
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Note that, from Figs. 1(c) and 1(d), y3[n] is fully equivalent 
to y2[n], which show that the proposed ADLCT indeed has 
the additivity property.   
 

We list some properties of the proposed ADLCT as 
follows. We use x[n] and y[n] to denote the input and out-
put of the ADLCT.     
(a) If x[n] is even, then y[n] is also even.  

Similarly, if x[n] is odd, them y[n] is also odd.  
(b) If ( )( , , , )[ ] [ ]a b c d

ADLCTy n O x n= , then ( )( , , , )[ ] [ ]a b c d
ADLCTy n O x n− = − .    

(c) If x[n] is real and ( )1(0, , ,0)[ ] [ ]ADLCTy n O x nσ σ −−=  (Note that, in 
this case, the DLCT is analogous to the scaled Fourier 
transform), then  
                                  y[n] = y*[−n].       
Similarly, if x[n] = x*[−n] and ( )1(0, , ,0)[ ] [ ]ADLCTy n O x nσ σ −−= , 
then y[n] is real.    

(d) Suppose that e(t) is an eigenvector of the continuous 
LCT:  
                            [ ] ( )( , , , ) ( )a b c d

LCTO e t e uλ= ,   
then   
                           [ ] [ ]{ }( )E n IDTFT IBT e t=     
is the eigenvector of the ADLCT and its eigenvalue is 
also λ:     
                              ( ) [ ]( , , , ) [ ]a b c d
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(e) Parseval’s theorem (i.e., the energy preservation theorem) 

can also be applied to the ADLCT. That is,  
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where y[n] is the ADLCT of x[n]. More generally,  
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where y1[n] is the ADLCT of x1[n].     
 
Then, we show an example of using the proposed 

ADLCT for the application of noise removing. In Fig. 2(a), 
we show the noise interfered signal x[n] = Gaussian function 
+ noise. Then, we perform the ADLCT with parameters {0.6, 
1, −0.4, 1} for x[n] and show the result in Fig. 2(b). We can 
see that, in Fig. 2(b), the signal part and the noise part are 
separated. Then, we set 
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Figure 2 – Application of the ADLCT for filtering the noise. (a) A 

noise-interfered signal x[n]. (b) The ADLCT of x[n]. (c) 
Truncating the noise part. (d) The reconstructed signal.   

 
         y1[n] = y[n]  for  n ≤ 19    y1[n] = 0 for n ≥ 20,  (25) 
as in Fig. 2(c). Then, we perform the inverse ADLCT for y1[n] 
and obtain the reconstructed signal x1[n]. Note that, in Fig. 
2(d), the noise in x[n] is almost removed. The normalized 
mean square error (NMSE) between x1[n] and the original 
signal is only 
                                NMSE = 0.38%,   
which shows that the proposed ADLCT is useful for filter 
design. Moreover, other applications of the continuous FRFT 
and the continuous LCT, such as communication, random 
process analysis, time-frequency analysis, image encryption, 
space-variant pattern recognition, beam shaping, and radar 
system analysis [1-6] are also the potential applications of the 
proposed ADLCT.   
 

4.    OTHER ADDITIVE DISCRETE OPERATIONS  
 
In fact, in addition to deriving the ADLCT, the concept in 
Section 2 can also be used for converting other continuous 
additive operations into the discrete additive operations.  
 
4-1  Two-Dimensional Additive Discrete Non-Separable 

Linear Canonical Transform  
  
The 2-D non-separable linear canonical transform (2-D 
NSLCT) is the 2-D counterpart of the 1-D LCT. Its defini-
tion is [10][11]:  

  ( ) 1( , ) exp
22 det( )NSLCT
jO g x y

π
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(A,B,C,D) -1 TwDB w
B

   

             ( ) ( )exp exp d
2
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⎝ ⎠∫ -1 T -1 TxB w xB Ax x x ,  (26)      

           where  x = [x, y],     w = [ω, h],             
                       A, B, C, D are all 2×2 matrices.       
The 2-D NSLCT is even more general than the 1-D LCT. It 
is useful in optical analysis, radar system analysis, and sig-
nal processing. It has the additivity property as:  
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Figure 3 – Simulations for the proposed additive discrete frac-

tional scaling operation (see subsection 4-2). (a) x[n], (b) 
y1[n] is the discrete scaling of x[n] (σ = 1.2), (c) y2[n] is 
the discrete scaling of y1[n] (σ = 1.5), (d) y3[n] is the dis-
crete scaling of x[n] (σ = 1.8). Note that y3[n] = y2[n], 
which show that the proposed additive discrete fractional 
scaling operation indeed has the additivity property.      
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The 2-D NSLCT has 16 parameters and is very complicated. 
However, we can use the following process to convert it 
into the discrete version and the additivity property is pre-
served. We call it the two-dimensional additive discrete 
non-separable linear canonical transform (2-D ANSDLCT): 
(Step 1) Perform the 2-D DTFT for the input x[m, n]  
               ( ) [ ], , j n jhn

m n
X h x m n e eωω − −= ∑∑ ,    

                  where −π < ω < π,   −π < h < π.         
(Step 2) Perform the 2-D bilinear transform for X(ω, h):      
            ( ) [ ]1 , ( , )X h BT X hω ω=   
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4 4
X h

h
ω

ω
=
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                   where −∞ < ω < ∞ and  −∞ < h < ∞. 
(Step 3) Perform the 2-D NSLCT for X1(ω, h), but the pa-
rameters are changed into {D, −C, −B, A}:      
                      ( ) ( )( )2 1, ,NSLCTX u v O X hω− −= (D, C, B,A) .   

The reason why the parameters are changed into {D, −C, 
−B, A} can be seen from (12).     
(Step 4)         ( ) ( )2, ( , )Y u v IBT X u v=  

          ( ) ( ) ( ) ( )( )2sec sec 2 tan / 2 ,2 tan / 2
2 2
u v X u v= ,  (29) 

 

 
Figure 4 – The method for converting any additive continuous 

operation into the discrete operation that has the additivity 
property. 

 
where −π < u < π,   −π < v < π.          

(Step 5)   [ ] ( )2
1, ,

4
jum jvny m n Y u v e e dudv

π π

π ππ − −
= ∫ ∫ .   

Then, y[m, n] is the 2-D ANSDLCT of x[m, n]. We denote 
it as 
                           [ ] ( )( ), [ , ]ANSDLCTy m n O x m n= A,B,C,D .     
 

From the process similar to that in (17)-(19), we can 
prove that the ANSDLCT defined above also has the addi-
tivity property as follows:    
    ( ){ } ( )( )( ) ( ) [ ] [ ]ANSDLCT ANSDLCT ANSDLCTO O x n O x n= 3 3 3 32 2 2 2 1 1 1 1 A ,B ,C ,DA ,B ,C ,D A ,B ,C ,D , 

 (30) 
where A3, B3, C3, and D3 are defined the same as those in 
(27).  
 
4-2  Additive Discrete Fractional Scaling 
 
Remember that the scaling operation is a special case of the 
continuous LCT with parameters {σ, 0, 0, σ−1} (see (5)). 
Therefore, we can define the additive discrete fractional 
scaling operation as the special case of the ADLCT with 
parameters {σ, 0, 0, σ−1}:    
                     ( ) ( )1( ,0,0, )[ ] [ ]SC ADLCTO x n O x nσ σ σ −

= .      (31) 
We can use (31) to scale a signal with arbitrary dilation 
ratio. Moreover, the proposed discrete scaling operation 
satisfies the following additivity property:  
                    ( ){ } ( )2 1 2 1[ ] [ ]SC SC SCO O x n O x nσ σ σ σ⋅= .   (32) 

For example, for the discrete signal x[n] in Fig. 3(a), we can 
use (31) to perform the discrete fractional scaling x[n] with 
dilation ratio σ = 1.2. The result y1[n] is shown in Fig. 3(b). 
Note that the width of y1[n] is near to 1.2 times of that of l 
x[n]. Then, we further scale y1[n] with dilation ratio σ = 1.5 
and show the result y2[n] in Fig. 3(c). In Fig. 3(d), we per-
form the discrete fractional scaling for x[n] with σ = 1.8 
and the result is denoted by y3[n]. From Figs. 3(c) and 3(d), 
we can see that y2[n] is equivalent to y3[n], i.e.,     
                    ( ){ } ( )1.5 1.2 1.8[ ] [ ]SC SC SCO O x n O x n= ,     (33) 
which shows the discrete fractional scaling operation in (31) 
indeed has the additivity property. The proposed discrete 
fractional scaling operation is useful for signal analysis and 
image processing.  

g[n] DTFT G[w]
bilinear 

transform  

F[w] = 
φ′(w)G[φ(w)] 

OE
P 

F1[w] 

inverse 
bilinear 

transform  Y[w]IDTFTy[n]

(a) 

(b) 

(c) 

(d) 

x[n] 

( )1.2
1[ ] [ ]SCy n O x n=

( )1.5
2 1[ ] [ ]SCy n O y n=  

( )1.8
3[ ] [ ]SCy n O x n=
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4-3  Additive Discrete Geometric Twisting Operations 
 
Similarly, the geometric twisting operation is a special case 
of the continuous 2-D NSLCT with parameters {A, 0, 0, 
(AT)−1} [10][11]. Thus, we can also define the additive 
discrete geometric twisting operations as the 2-D 
ANSDLCT with parameters {A, 0, 0, (AT)−1} 
                ( ) ( )( )[ , ] [ , ]twisting ANSDLCTO x m n O x m n=

T -1A A,0,0,(A ) .  (34)   
From the additivity properties of the 2-D ANSDLCT, it is 
no hard to prove that the operation in (34) has the additivity 
property.  
 
4-4  Additive Discrete Fractional Delay 
 
We can also use the process similar to that in (7)-(16) to 
define the discrete additive fractional delay, except for that 
Step 3 is changed into          
                         ( ) ( )0

2 1
jnX e Xρρ ρ= ,   (35) 

where n0 can be non-integer. Then the output y[n] is near to 
x[n−n0]. Moreover, using the similar way as that in (17)-
(19), we can prove that the discrete fractional delay opera-
tion defined by the above method is additive.        
 
4-5  Additive Discrete Fractional Differentiation and 

Integration    
 
The continuous differentiation and integration with the frac-
tional orders (i.e., fractional calculus) have been widely 
discussed in literature [12]. To define the discrete version 
of the fractional differentiation and the fractional integra-
tion operations, we can also follow the process in (7)-(16), 
but (11) is modified as 
                           ( ) ( )2 1( )X j Xαρ ρ ρ= .       (36) 
When α > 0, it becomes the discrete fractional differentia-
tion operation with order α (α can be non-integer). When α 
< 0, it becomes the discrete fractional integration operation 
with order −α.           
 
4-6  The General Method to Define the Discrete Opera-

tion with the Additivity Property   
 
Suppose that OC

P is a continuous operation that has the ad-
ditivity operation and P is its parameters: 
                  ( ){ } ( )2 1 2 1P P P P

C C CO O f O f•⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦x x , (37) 

where • is some operation. First, we define the operation 
OE

P as: 
                     ( ) [ ]{ }( )( )P P

E CO f FT O IFT f⎡ ⎤ =⎣ ⎦x x .         

Then, we can use the method as in Fig. 4 to convert it into a 
discrete operation (denoted by OD

P). The derived discrete 
operation OD

P will have the following additivity property:  
                    [ ]{ } [ ]2 1 2 1[ ] [ ]P P P P

D D DO O g O g•=n n .         (38) 

Using the above method, we are able to convert any con-
tinuous operation that has the additivity property into its 
discrete counterpart with the additivity property. Moreover, 

the derived discrete operation OD
P will have the properties 

similar to those of the original continuous operation OC
P.  

 
5. CONCLUSION 

 
In this paper, we introduce a novel method to derive the dis-
crete version of the LCT that has the additivity property, i.e., 
the ADLCT. The derived ADLCT works similar to its con-
tinuous counterpart and is useful for filtering the noise and 
fractional scaling.   

Moreover, the proposed method can also be used for de-
riving the discrete versions of the 2-D NSLCT, the discrete 
fractional delay operation, the discrete geometric twisting 
operation, and the discrete fractional differentiation / integra-
tion operations with additivity properties successfully.           
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