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ABSTRACT

We consider the use of cubic Bézier curves for planning
UAV routes. The proposed approach allows the user to
trade off the length of the solution route with the level of
risk/hazard exposure encountered. Exhaustive search is
used to place control points on a 2D grid superimposed
on the environment. High quality routes are generated
using relatively course grids. Comparison is made with
the graph theoretic A* technique.

1. INTRODUCTION

There is an increasing deployment of uninhabited air
vehicles (UAVs) in many different fields of operation.
In general, most operational vehicles demonstrate semi-
autonomous behaviour, in so far as, a human operator is
required to control or monitor vehicle actions. Consider-
able research is being targeted at dramatically increasing
the level of autonomy of such vehicles therefore reduc-
ing the level of ”human-in-loop” activity required.

A challenging issue in this field includes route planning.
This is the ability of an uninhabited vehicle to plan a
path of motion while avoiding both static and dynamic
hazards within it’s environment.

Our work addresses the routing of Uninhabited Air Ve-
hicles (UAV) operating in a three dimensional environ-
ment. However in order to simplify experimentation the
problem is reduced to that of a two dimensional (2D)
horizontal environment while at the same time all pro-
posed techniques can be easily extended and applied
to 3D. Furthermore, current flight management systems
separate vertical and horizontal navigation planning so
this is seen as a reasonable simplification.

Several approaches to UAV routing can be found in the
literature. Examples include Graph Theoretic ([6]), Op-
timal Control ([3]), Potential Gradient Descent ([5]),
Evolutionary Algorithms ([7]) etc. A comprehensive re-
view of approaches is found in [1].

Key in the measure of success of all these routing ap-
proaches must be the trade off between the quality of
the derived route and the algorithmic complexity of the
router.

Graph Theoretic (GT) routing based approaches are

quite popular (E.g. A* ([2]) operate on discrete environ-
ment spaces and have the potential to produce optimum
routes, with respect to a given cost function. However
fine grid/state spacing is required to achieve ”smooth”
routes trajectories and this increases execution time. In
contrast, non-smooth routes may not be flyable due to
vehicle dynamic constraints.

In GT techniques a state transition is represented as
Xa → Xb. A basic search would calculate a cost from
the origin to the new state Gnew = f (Xb) and, in the case
of A*, an estimate of the cost (heuristic) from the new
state to goal Hnew = h(Xb,Xgoal). In addition to assess-
ing the cost of new state Xb, the router must consider
the transition path between states. This in effect avoids
a solution route cutting across a defined hazard region,
a situation that can occur when states Xa,Xb are deemed
not to be in a hazard region but the transition path be-
tween the states does intercept the hazard. In general
the complexity of determining state transition path inter-
cepts is considerably greater than just determining if the
new state is within a hazard region.

Furthermore, if hazard regions are considered as to-
tally prohibited, optimal routes are found which tend
to ”creep” round the hazard perimeter. However, if the
route optimality requirement is relaxed and a finite cost
is given to a state transition across a hazard rather than a
binary yes/no situation, more practical solutions can be
obtained. For example, slightly penetrating a radar cov-
erage zone may be preferable to the extra fuel cost of
completely avoiding the zone.

In this paper we examine the use of an alternative, poly-
nomial based approach that employs Bézier curves as
a method for path planning. This allows for smooth
routes to be generated on the basis of user defined risk
tolerances while using relatively coarse control point lo-
cations, to limit an otherwise prohibitively large search
complexity.

Notice that the control points of any Bézier curve form
a control polygon or convex hull. Use of this property is
explored by ([4]) for de-confliction of multiple vehicles.

2. SYSTEM DESCRIPTION - BÉZIER CURVES

In this paper we consider the use of Bézier curves for
route planning in general and employ third degree Bézier
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curves in particular. A degree n Bézier curve is defined
with n+1 control points. The formal Bézier curve defini-
tion is:

P(t) =
n

∑
i=0

(
n
i

)
(1− t)n−it iPi =

n

∑
i=0

B(t)Pi (1)

where B(t) is known as the Bernstein polynomial (blend-
ing function) and Pi is a control point i = 0,1, . . . ,n. The
resultant curve may be seen as a weighted blend of the
control points. The curve is guaranteed to pass through
the first and last control points.

Thus a third degree Bézier curve is defined with 4 control
points P0,P1,P2,P3. We consider the first control point
P0 to be the start and P3 the end or goal of a route. The
location of these points is therefore fixed. The remain-
ing control points i.e. positions P1,P2 are manipulated
to generate a candidate Bézier curve. A computation-
ally efficient scheme is used to evaluate P(t) rather than
direct use of equation 1.

Using MATLAB as the simulation platform, a 2D unit
grid is used to define a the operational space (0≤ x,y≤
1). Obstacles are represented by H non-overlapping
circles having random centres and constrained radii
lengths.

A Bézier curve may be scaled and/or rotated by appli-
cation of a transformation matrix to the control points.
This useful property of Bézier curves would enable the
unit grid results to be scaled to any desired dimensions
(kilometres,nautical miles etc.). The ratio of total obsta-
cle area and unit grid area is a measure of hazard density.
We believe our experiments use a representative hazard
density to that of real world airspace.

2.1 Cost Function

The cost function C of a given Bézier curve based route
is defined here in terms of two types of ”risk” compo-
nents PL and RE, although this can be easily extended to
include additional risks. Thus:

C =
1

2PLmax
(PL+RE) (2)

PL is the total route length risk, RE is the hazard expo-
sure risk which is the total length of the route which is
within hazard regions. RE is formed as a sum of each
hazard incursion length REi over all H hazards in the
scenario.

RE =
H

∑
i=1

REi

PLmax is an upper bound on route length. This is used
to normalise both PL and RE to unit values. The factor
of 2 in Equation 2 yields an overall cost in the range
0 < C≤ 1.

The route path length is evaluated numerically as the line
integral of P(t) over the parameter interval (0 ≤ t ≤ 1).

The risk exposure REi is calculated by finding the roots
of an expression developed by inserting P(t) into the
equation defining the ith circular hazard. The solutions
(if any) to this equation are in terms of values of parame-
ter t. Taking into account the possibility of either or both
the start and goal control points being themselves within
a hazard the path length of any intersection can be evalu-
ated by line integration using the solution roots as limits
on parameter t. PLmax = 2 is used in these experiments.
This is consistent with the longest Bézier curve possible
on the unit grid.

2.2 Exhaustive Search

The initially continuous unit space environment, within
which the optimal location of control points is to be esti-
mated, is discretized into a N×N grid. Thus each point
in the grid represents a possible control point location.
Holding the start and goal control points P0,P3 fixed, the
number of locations for P1 and P2 is:

2N2!
2!(N2−2)!

=
N2!

(N2−2)!

The factor of two in the left hand numerator accounts
for the fact that two Bézier routes defined as P0,P1,P2,P3
and P0,P2,P1,P3 will, in general, not be the same. Thus
the proposed system employs an exhaustive search ap-
proach to define the minimum cost function route, with
the possibility of also using a maximum exposure to risk
threshold.

3. EXPERIMENTATION AND RESULTS

3.1 Grid Resolution

Figure 1 shows route generation results for an example
scenario consisting of four hazard regions in a discrete
N×N grid space, where 3≤ N ≤ 5. Figure 2 illustrates
route results for the same scenario with 6≤ N ≤ 8. The
figures additionally indicate an A* generated route using
a radial (= 0.1 units) node expansion scheme with angle
deviations of−10◦,−5◦,0◦,+5◦,+10◦ about the current
heading. The A* implementation uses a total cost func-
tion f (x) at node/state x given by f (x) = g(x)+γ.h(x),
where g(x) is the distance from the origin travelled to
node/state x and h(x) is the heuristic cost i.e. the Eu-
clidean distance from x to the goal. γ has been de-
fined experimentally to the value γ = 1.25. This value
provides a bias towards depth-first type of search and
yielded significant improvements in execution time for
our experimental scenarios. Note that the A* routes are
not as smooth as the Bézier derived solutions.

From the figures and many others produced using dif-
ferent environment configurations, it can be seen that all
Bézier routes are represented by smooth trajectories. It
has been also observed that, in several cases, solution
routes are almost coincident with others obtained from
different value of N. Table 1 summarises run times and
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Figure 1: Grid 3≤ N ≤ 5

route cost C values for the different values of N used in
the scenario shown in Figures 1 and 2. Note that ex-
periments were performed over 100 randomly selected
environment scenarios, for each 3, 4 and 5 hazards, and
results represent averages accordingly. Run times are in
seconds with runtime relative to A* shown in parenthe-
sis. Furthermore, run times are averaged over 10 exe-
cutions of each test case in order to account for fluctua-
tions in processor availability. The runtime value for A*
is also shown in Table 1 for comparison. Furthermore,
it is seen that the best, i.e. minimum cost route does
not necessarily result from the finest grid spacing. In

N Runtime Cost C
3 0.277 ( 0.4) 0.378
4 0.618 ( 0.9) 0.381
5 1.529 ( 2.2) 0.378
6 3.185 ( 4.7) 0.379
7 5.969 ( 8.8) 0.376
8 10.154 (15.0) 0.378

A* 0.709 ( 1.0) 0.386

Table 1:

general good route solutions are obtained for relatively
small values of N, i.e; N < 5 , which means that the
proposed route generation approach is computationally
efficient and fast.

3.2 Risk Trade-Offs

Results previously presented show the minimum cost C
route for a given grid resolution. Alternatively the ex-
haustive search approach allows the two components of
risk to be traded off. For example, we may accept a
small amount of hazard intrusion in return for an over-
all shorter route. Numerous such trade-offs are possible
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Figure 2: Grid 6≤ N ≤ 8

with this technique. The Bézier router therefore can re-
turn a family of routes that satisfy user input constraints.

To demonstrate this approach, while using a grid resolu-
tion of 4×4, we identify the route with the largest hazard
intrusion value RE i.e. REmax. A subset of routes with
exposure values within a defined range in relation to this
value can then found. The lowest cost C of this subset
is then selected. Figure 3 shows examples for the range
5-10%,20-30% and 40-50% of REmax. The overall min-
imum cost route is also shown.
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Figure 3: Routes within a range of risks
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3.3 Scenario Complexity

Figure 4 presents a scatter plot of the logarithm of ex-
ecution times for all test scenario cases, as applied to
the Bézier method (with grid sizes N = 3,4,5) and the
A* approach. Test cases #1-#100 represent three hazard
scenarios (H = 3), #101-#200 four hazards (H = 4) and
#201-#300 five hazards (H = 5). Annotation within the
plot makes this clearer.

Figure 4 shows that while A* is, in general, faster than
the Bézier method, the latter is more scenario indepen-
dent. For the Bézier router with N = 3,4 the distribution
of execution times is almost flat for all the test cases.
There is greater deviation in the N = 5 test cases. A
detailed examination of Figure 4 also shows a number
of A* cases with run times very much greater than the
mean and, in certain cases, greater than any value ob-
tained from the Bézier router. This run time dependency
of A* on the configuration of the environment is char-
acteristic for all N values i.e. 3,4,5. The worst case
execution time for any of the test cases and methods is
claimed by A* at 12.75 seconds with the Bézier method
(N = 3) taking only 0.21 seconds for the same test case.
Table 2 presents average run times t̄, standard deviations
σ(t) and the ratio of these statistics.

Method t̄ σ(t) t̄/σ(t)
3×3 0.171 0.022 0.129
4×4 0.557 0.073 0.132
5×5 1.381 0.185 0.134

A* 0.400 1.096 2.738

Table 2:
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Figure 4: Scatter Plot of log10(Runtime) for all Test
Cases

4. CONCLUSION

The use of cubic Bézier curves in the generation of
routes for a UAV has been considered in this paper and a
relatively low complexity router is proposed. Computer

simulation based experimentation has clearly shown
that, while the search space for the location of control
point is kept coarse and therefore search complexity is
low, the generated routes are of ”high quality” in terms
of both smoothness and cost. Furthermore when com-
pared to A*, Bézier based run times are confined within
narrow distributions about the mean and they are also
independent of operating environment scenario charac-
teristics/complexity.

The proposed router has the distinct advantage of defin-
ing routes in terms of two control point locations and
therefore can also be viewed as offering ”compression”
of the route specification. In addition, the user can also
obtain solutions representing trade-offs between differ-
ent types of risks and the level of risk that is to be toler-
ated. Further analytic constraints could be applied, such
as limiting trajectory curvature values, thus making this
technique particularly attractive in relation to the large
variability of possible types of UAV platforms.

Note that the proposed approach is easily amenable
for extension to three dimensions and the inclusion of
3D hazard primitives such as ellipsoids, polyhedra and
cylinders.
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