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ABSTRACT
This paper studies spectrum sensing in the context of cog-
nitive radio. The proposed detector is robust with respect
to disturbing impulses, that are in practice present in many
cases in addition to the Gaussian noise. The presence of im-
pulsive noise deteriorates the performance of the detectors
derived using Gaussian assumption. In the paper we model
the noise explicitly consisting of two components and derive
the proper detector. Asymptotic analysis of the detector is
then presented and formulae for probabilities of correct de-
tection and fault alarm are derived. The theoretical findings
are verified in our simulation study.

1. INTRODUCTION

Traditionally the spectral bands required for work by any ra-
dio equipment are licensed to the users and cannot be uti-
lized by anybody else even if the licensed users do not use
the spectrum at the given location and time by themselves.
This leaves a large amount of radio spectrum unused in prac-
tice. Recently the cognitive radio paradigm has emerged that
can overcome this problem by allowing unlicensed users op-
portunistically access the spectrum, given that they do not
interfere with the primary users. In order to do so the sec-
ondary users need first to detect if the primary users are using
the spectrum or not. Because of radio effects like shadowing
and fading the signal of the primary user may be rather weak
at the position of the secondary user. This leaves the sec-
ondary user with the requirement of detecting a potentially
weak primary user signal in unknown noise. For instance
IEEE 802.22 suggests that the cognitive radio needs to de-
tect the primary signals that have power level as low as -22
dB below the noise level [1].

In the literature there are several detectors proposed for
this purpose [2, 3], most popular of them probably being the
energy detector. The popularity is partly because of simplic-
ity of the energy detector but also because it does not need
any assumptions on the waveforms emitted by primary users.

The noise is usually assumed to be white and Gaussian
but in real life situations this does not need to be the case.
In particular one has to consider the presence of impulsive
noise, both man-made and natural. Non-Gaussian ambient
noise is a major impairment to signal processing techniques
that are based on a Gaussian assumption [4]. The examples
of the impulsive noise include man–made noise like car ig-
nition, emissions from the microwave ovens or natural im-
pulsive noise due to e.g. lightning. For measurement results
concentrating on impulsive noise see e.g. [5, 6] and refer-
ences therein.

In this paper we will develop an energy–like detector that
is not sensitive to impulsive noise. The derivation is based on
modelling the impulsive component of the noise explicitly

by a uniform distribution. We allow the impulses to occur
only with certain probability and preserve the usual Gaussian
noise component for most of the time. This results in an
intuitively rather satisfying noise model.

In the analysis part of the paper we derive the formulae
for probabilities of detection, PD, and fault alarm, PF , of the
proposed detector but also for the time required to reach a
given PD and PF level with certain signal and noise powers.
Finally we present some simulation results. The simulation
results are consistent with our theoretical findings.

2. ROBUST DETECTOR

We consider the problem of detecting the presence of primary
users in a given frequency band without any prior knowledge
of primary transmissions. The detection problem we need to
solve is [3, 7]

H0 : x(t) = v(t)
H1 : x(t) = α(t)s(t)+ v(t), (1)

i.e. the received waveform x(t) may be noise v(t) only or it
may consist of a sum of signal of interest s(t) and noise v(t)
and the variable t denotes discrete time. The signal of inter-
est, s(t), is assumed to be passed through a slow Rayleigh
fading channel with attenuation α(t). The detector has to
decide which of the hypotheses is more likely given the re-
ceived waveform x(t). We assume that the noise v(t) com-
prises a sum of zero mean additive white Gaussian noise
vg(t) process and an additional impulsive noise component
vi(t). The impulsive noise component is assumed not to be
present most of the time but appear with certain probability
c so that the impulsive component obeys the probability den-
sity function (PDF)

fi(x) =
c

b−a
+(1− c)δ (x), (2)

with 0 < c < 1 and a and b being the lower and upper limits
on the values that the noise can take. In practice a and b may
for instance represent the smallest and largest numbers that
can be represented at the output of analogue to digital (A/D)
converter that is included at the input of the processing sys-
tem. Note that we have limited also the Gaussian noise com-
ponent to lay between a and b resulting in a minor deviation
from Gaussianity. The deviation is, however, small because
we assume that b− a is much larger than the standard de-
viation of the Gaussian noise. The uniform distribution is
selected because of its maximum entropy property i.e. there
is nothing assumed to be known about the origin of the im-
pulses. This noise model takes into account that most of the
time the noise is Gaussian and that the impulses that disturb
the detection based on Gaussian assumption occur only with
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certain probability c. As such, the noise model is more in-
tuitively satisfying than other popular models for impulsive
noise like Laplacian.

The noise v(t) is modelled as consisting of two compo-
nents with the largest component determining the outcome
entirely at each time instant [10]

v(t) = vg(t)+ vi(t)≈max[vg(t),vi(t)]. (3)

Let us denote the variances of primary user signal and
noise as σ2

s and σ2
n . Let us also denote a common variance

as

σ
2
l =

{
σ2

n l = 0
σ2

n +σ2
s l = 1

.

With this notation we can express the conditional PDF-s cor-
responding to our two hypotheses for l = 0,1 as

p(x|Hl) =

 βl max

(
1−c√
2πσl

e
− |x|

2

2σ2
l , c

b−a

)
a < x < b

0, otherwise
(4)

The normalization factors βl can be found by solving∫ b
a p(x|Hl)dx = 1 for βl . This results in

βl =

[
(1− c)erf

(√
ηl

2σ2
l

)
+ c
(

1−
2
√

ηl

b−a

)]−1

(5)

where erf(x) = 2√
π

∫ x
0 exp(−t2)dt and

ηl =−2σ
2
l ln

 c
1− c

√
2πσ2

l

b−a

 (6)

is the intersection point of the Gaussian and uniform distri-
butions.

We can give to PDF-s of x in the interval a≤ x≤ b a more
convenient form for future derivation

p(x|Hl) = βl max

 1− c√
2πσ2

l

e
− |x|

2

2σ2
l ,

c
b−a


=

βl(1− c)√
2πσ2

l

e
− 1

2σ2
l

min(|x|2,ηl)
.

PDFs of y = x2 are then p(y) = p(x)
dy
dx

and hence

p(y|Hl) =
βl(1− c)√

2πyσ2
l

e
− 1

2σ2
l

min(y,ηl)
. (7)

Suppose that we have made N observations of the vari-
able y and we have collected these observations into a vec-
tor y. Also assume that the observations at different time in-
stances are statistically independent of each other. Then the
joint probability density function is a product of the individ-
ual probability densities

p(y | Hl) = ∏
N
n=1 p(yn | Hl), l = 0,1. (8)

The likelihood ratio for the above hypothesis reads

L(y) =
N

∏
n=1

β1

β0

√
σ2

0

σ2
1

e
− 1

2σ2
1

min(yn,η1)

e
− 1

2σ2
0

min(yn,η0)
(9)

Taking the logarithm of both sides of (9) and simplifying we
readily obtain the log-likelihood ratio

lnL =
N
2

ln
(

β 2
1 σ2

0

β 2
0 σ2

1

)
(10)

− 1
2σ2

1

N

∑
n=1

min(yn,η1)+
1

2σ2
0

N

∑
n=1

min(yn,η0)

Our detector thus needs to decide in favour of H1 if the log–
likelihood ratio is larger than a threshold. Otherwise the hy-
pothesis H0 is selected.

If there is no impulsive noise i.e. c→ 0 we have

lim
c→0

ηl = −2σ
2
l ln(0) = ∞

lim
c→0

βl = 1

lim
c→0

N
2

ln
(

β 2
1 σ2

0

β 2
0 σ2

1

)
=

N
2

ln
(

σ2
0

σ2
1

)
and the test reduces to an ordinary energy detector

1
N

N

∑
n=1

yn >
σ2

0 σ2
1

σ2
1 −σ2

0
ln
(

σ2
0

σ2
1

)
. (11)

3. ESTIMATION OF UNKNOWN PARAMETERS

Parameters η0 and η1 are dependent on the Gaussian noise
variance σn, signal variance σs and the impulse probability c.
Those parameters may not be known in advance and if they
are not, they must be estimated from the input signal. In some
applications it is known for certain that during some times
the primary user is silent and during some other times it is
working. The question is about all the other times. For those
applications we derive the maximum likelihood estimators
for σn, σs and c below. For other applications we can use
the techniques outlined in e.g. [8]. In [9] it is shown that
if we can observe a length N noise only realization then the
maximum likelihood estimator of noise variance is

σ̂n =
1

N1
∑

i∈M1

x2(i). (12)

Here M1 is a set that contains all signal samples that satisfy
x2 < −2σ2

n

(
lnσn + ln c

√
2π

(1−c)(b−a)

)
and N1 is the number of

elements in set M1. Let M2 and N2 denote the complementary
set. If signal of interest s(t) is also present then the log–
likelihood function can be written as

lnL =
N−1

∑
n=0

[
ln

β1(1− c)√
2π

(13)

− ln
√

σ2
n +σ2

s −
1

(σ2
n +σ2

s )
min(x2,η1)

]

1225



Derivative of the log-likelihood function respect to σs equals

∂

∂σs
lnL =− Nσs

σ2
n +σ2

s
−

− σs

(σ2
n +σ2

s )
2 ∑

M1

x2 +∑
M2

σs

σ2
n +σ2

s
. (14)

Equating (14) to zero results in

σ
2
s =

1
N1

∑
i∈M1

x2(i)− σ̂
2
n . (15)

In order to obtain estimate for c let us compute the derivative
of log-likelihood with respect to c

∂

∂c
lnL =

cN−N2

c(c−1)
. (16)

Setting above to zero we get an estimate

ĉ =
N2

N
. (17)

4. PERFORMANCE ANALYSIS

In this Section we perform the asymptotic analysis of the de-
tector in case of large N. We first note that the detector com-
putes if

1
2σ2

0

1
N

N

∑
n=1

min(yn,η0)−
1

2σ2
1

1
N

N

∑
n=1

min(yn,η1)> γ (18)

where

γ =
lnL
N
− 1

2
ln
(

β 2
1 σ2

0

β 2
0 σ2

1

)
We thus need to find a difference between weighted arith-
metical means of saturated variables and compare the result
to a threshold in order to perform the detection.

Let us concentrate on the variables under the summations
in (18) and define a new variable zk as

zk = h(y) = min(y,ηk), k = 0,1. (19)

The function h(y) is a saturation nonlinearity. The probabil-
ity density function of the output of zk = h(y) is given by
[10].

pz(zk) =
py(y)

dzk
dy

∣∣∣∣∣
y=h−1

i (zk)

. (20)

For sake of simplicity let us assume that b =−a. We need to
investigate PDF-s in four different cases, two sums in (18),
k = 0,1 and two hypothesis l = 0,1. Substituting (7) into
above in those four cases we get the following four PDF-s:

p(z0|H0) =
β0(1− c)√

2πz0σ2
0

e
− z0

2σ2
0 Π(0,η0) (21)

+cβ0

(
1−
√

η0

b

)
δ (z0−η0)

if l = 0 and k = 0,

p(z1|H0) =
β0(1− c)√

2πz1σ2
0

e
− z1

2σ2
0 Π(0,η0) (22)

+
cβ0

2b
√

z1
Π(η0,η1)+ cβ0(1−

√
η1

b
)δ (z1−η1)

if l = 0 and k = 1,

p(z0|H1) =
β1(1− c)√

2πz0σ2
1

e
− z0

2σ2
1 Π(0,η0) (23)

+

[
β1(1− c)

(
erf

√
η1

2σ2
1
− erf

√
η0

2σ2
1

)

+β1c
(

1−
√

η1

b

)]
δ (z0−η0)

if l = 1 and k = 0 and

p(z1|H1) =
β1(1− c)√

2πz1σ2
1

e
− z1

2σ2
1 Π(0,η1) (24)

+
β1c(b−√η1)

b
δ (z1−η1)

if l = 1 and k = 1. The function Π(c,d) equals one between
c and d and is zero otherwise. The cases are illustrated in
Figure 1.

Figure 1: Probability density functions of the four cases.

Combining the results we can reach a common expres-
sion covering all the cases as

p(zk|Hl) =
βl(1− c)√

2πσ2
l zk

e
− zk

2σ2
l Π(0,ηm1) (25)

+m2
β0c

2b
√

zk
Π(η0,η1)+δ (zk−ηk)θk,l ,

where θk,l = βl(1 − c)m3

[
erf
(√

η1
2σ2

1

)
− erf

(√
η0

2σ2
1

)]
+βlc

(
1−
√

ηm4
b

)
, m1 = 1, if l = 1 and k = 1 and is zero
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otherwise, m2 = 1, if l = 0 and k = 1 and is zero otherwise
and m3 = 1, if l = 1 and k = 0 and is zero otherwise, m4 = 0,
if l = 0 and k = 0 and is one otherwise.

This distribution has mean

E[zk|Hl ] = βl(1− c)

[
σ

2
l erf

(√
ηm1

2σ2
l

)
(26)

−

√
2σ2

l ηm1

π
e
−

ηm1
2σ2

l


+

β0c
3b

(η
3
2

1 −η
3
2

0 )m2 +ηkθk,l

and second moment

E[z2
k |Hl ] = βl(1− c)

[
3σ

4
l erf

(√
ηm1

2σ2
l

)
(27)

−

√
2σ2

l ηm1

π
e
−

ηm1
2σ2

l (ηm1 +3σ
2
l )


+

β0c
5b

(η
5
2

1 −η
5
2

0 )m2 +η
2
k θk,l .

The crosscorrelation between z0 and z1 is perfect if z1 < η0
and in this case E[z0z1|Hl ] = E[z2

0|Hl ]. This happens with
probability

P(z1 < η0) =
∫

η0

0
pz(z1|Hl)dz1 = βl(1− c)erf

(√
η0

2σ2
l

)
.

(28)
If z1 > η0, z0 = η0 and hence E[z0z1] = η0Ez1>η0 [z1], where
Ez1>η0 [z1] is the mean of z1 above η0. This happens with
probability 1−P(z1 < η0) and the cross-correlation is there-
fore

E[z0z1|Hl ] = P(z1 < η0)E[z2
0|Hl ] (29)

+[1−P(z1 < η0)]η0Ez1>η0 [z1|Hl ].

Examining (18) we see that to proceed we need the mo-
ments of the variable

w =
1

2σ2
0

z0−
1

2σ2
1

z1. (30)

The mean of w is

E[w|Hl ] =
E[z0|Hl ]

2σ2
0
− E[z1|Hl ]

2σ2
1

(31)

and its second moment equals

E[w2|Hl ] =
E[z2

0|Hl ]

4σ4
0
− 2E[z0z1|Hl ]

4σ2
0 σ2

1
+

E[z2
1|Hl ]

4σ4
1

. (32)

The variance is equal to

σ
2
Hl

= E[w2|Hl ]−E2[w|Hl ]. (33)

Let us now note that according to (18), the detector com-
putes a sample average of N i.i.d. random variables w. Ac-
cording to the central limit theorem [10] the distribution of

Figure 2: Probability of missed detection as function of SNR.

such a sum approaches Gaussian with mean E[w|Hl ] and

variance
σ2

Hl
N , l = 0,1 when N increases, independent of the

shape of the original distribution of the variables w. We can
therefore for large N evaluate the probability of correct de-
tection as

PD =
∫

∞

γ

pw(w | H1)dw (34)

=
1
2

erfc

(
(γ−E[w | H1])

√
N√

2σH1

)
,

The probability of fault alarm is correspondingly

PF =
∫

∞

γ

pw(w | H0)dw (35)

=
1
2

erfc

(
(γ−E[w | H0])

√
N√

2σH0

)
.

The threshold γ and the number of samples N that are
required to reach given PF and PD can be found by solving
system of equations formed by (34) and (35){ √

2σH0 erfc−1(2PF) = [γ−E(w|H0)]
√

N√
2σH1 erfc−1(2PD) = [γ−E(w|H1)]

√
N

. (36)

Solving the system for N and γ we obtain that in order to
reach the operating point (PF ,PD) we need

N = 2
[

σH1 erfc−1
(2PD)−σH0 erfc−1

(2PF )

E(w|H0)−E(w|H1)

]2

γ =
σH1 erfc−1

(2PD)E(w|H0)−σH0 erfc−1
(2PF )E(w|H1)

σH1 erfc−1
(2PD)−σH0 erfc−1

(2PF )

. (37)

5. SIMULATION RESULTS

In Figure 2 we present the probability of missed detection
Pm = 1−PD as the function of SNR. The blue and black lines
are the theoretical results with c= 10−3 and c= 10−6 respec-
tively and the circles and diamonds represent the correspond-
ing simulation results. One can observe a fast decrease of the
curves as SNR increases. One can also observe that the inten-
sity of impulsive noise c does not influence the result much.
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Figure 3: Probability of fault alarm as function of N.

Figure 3 depicts the dependence of the probability of
fault alarm from the number of samples N for ordinary en-
ergy detector if there is no impulsive noise (black dashed
line). It also shows the curves corresponding to the ordinary
energy detector (blue line) and the proposed robust detector
(magenta line) in the presence of impulsive noise with inten-
sity c = 0.001. For comparison we show the results of the
robust Lp norm detector with p = 1 (red line) and p = 1.5
(green line) of [11] in the same noise. The proposed detector
operates in these conditions almost as well as the ordinary
energy detector in Gaussian noise and outperforms all the
others.

Finally we investigate how many samples should the de-
tector involve for our analysis to apply. In the simulation ex-
ample we have used the following parameters to compute the
probability of miss Pm(γ) = 1−PD(γ) : σn = 1,σs = 2,c =
0.01 and b = −a = 100. In Figure 4 one can see that with
N = 5, the simulation and theory vaguely remember each
other. The situation improves if we increase the number of
samples to 15 and already with N = 30 the theoretical curve
and simulation dots are rather close to each other. We note
that N = 30 is much smaller than N found from (37) for cog-
nitive radio applications. A similar result can be obtained for
the probability of fault alarm PF .

Figure 4: Probability of miss.

6. CONCLUSIONS

In this paper we proposed a robust energy detector for spec-
trum sensing in cognitive radio applications. The derivation
of our detector is based on a noise model that explicitly in-
cludes two components – clipped Gaussian distribution and
impulses with uniform distribution. Error analysis of the al-
gorithm was carried out. It was shown that the proposed al-
gorithm outperforms the existing similar algorithms in the
presence of impulsive noise.
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