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ABSTRACT

Linear dynamical systems are widely used tools to model
stochastic time processes, but they have severe limitations;
they assume linear dynamics with Gaussian driving noise.
Independent component analysis (ICA) aims to weaken these
limitations by allowing independent, non-Gaussian sources
in the model. Independent subspace analysis (ISA), an im-
portant generalization of ICA, has proven to be successful in
many source separation applications. Still, the general ISA
problem of separating sources with nonparametric dynam-
ics has been hardly touched in the literature yet. The goal
of this paper is to extend ISA to the case of (i) nonparamet-
ric, asymptotically stationary source dynamics and (ii) un-
known source component dimensions. We make use of func-
tional autoregressive (fAR) processes to model the temporal
evolution of the hidden sources. An extension of the well-
known ISA separation principle is derived for the solution of
the introduced fAR independent process analysis (fAR-IPA)
task. By applying fAR identification we reduce the problem
to ISA. The Nadaraya-Watson kernel regression technique is
adapted to obtain strongly consistent fAR estimation. We il-
lustrate the efficiency of the fAR-IPA approach by numerical
examples and demonstrate that in this framework our method
is superior to standard linear dynamical system based estima-
tors.

1. INTRODUCTION

Linear dynamical systems (LDS) play a central role in the
field of stochastic processes. There exist efficient algorithms
for the identification (parameter estimation) and filtering
(state estimation) of these systems in the literature. One of
the most popular identification algorithms is the expectation
maximization (EM) based method [12, 23]. This is a maxi-
mum likelihood estimation method that also incorporates the
Kalman filter/smoother (KF/KS) problems to estimate the
values of the hidden states [18]. These linear dynamical sys-
tems, however, have several limitations. They assume that (i)
the driving noise in their hidden layer is Gaussian, and (ii)
the evolution of the hidden states can be described by simple
linear dynamics. These limitations inspired considerable re-
search efforts to derive efficient techniques for the estimation
of the hidden state in nonlinear systems, i.e., to solve nonlin-
ear filtering problems. They include the extended KF [16],
and the sigma-point KF family [33] with important special
cases such as the unscented KF and the central difference
KF. These methods can also be applied to the dual estima-
tion problem, where our goal is to estimate both the system
parameters and the hidden states. Although these methods
are nonlinear by nature, they still assume special paramet-

ric dynamical models. Estimation in the nonparametric case,
especially when the driving noise is non-Gaussian, is even
more challenging, and only very little work has been pub-
lished on this problem so far. In our paper we investigate
this problem. Particularly, we consider the dual estimation of
state space models with unknown, nonparametric dynamics
in the hidden layer. We derive a simple and efficient estima-
tion method for the special case where the driving noise of
the hidden layer consists of independent, multidimensional,
non-Gaussian components.

Independent component analysis (ICA), the problem of
separating mixed non-Gaussian independent sources, has re-
ceived considerable attention in signal processing [17, 9].
The original form of ICA considers one-dimensional inde-
pendent sources only. One may think of this task as a cocktail
party problem: we have D independent speakers (sources)
and D microphones (sensors) which measure the mixed sig-
nals emitted by the sources. The task is to recover the orig-
inal sources from the mixed observations only. For a recent
review about ICA, see [8]. The model is more realistic if
one assumes that not all, but only some groups of the hidden
sources are independent (‘speakers are talking in groups’).
This is the independent subspace analysis (ISA) generaliza-
tion of the ICA problem [6, 10]. The ISA model has already
had some exciting applications including (i) the processing
of EEG-fMRI data [1, 20, 22] and natural images [14, 27],
(ii) gene expression analysis [19], (iii) learning of face view-
subspaces [21], (iv) ECG analysis [10, 6, 28, 31, 26], (v)
motion segmentation [11], (vi) single-channel source separa-
tion [7], (vii) texture classification [25]. For a recent review
of ISA techniques, see [29].

One can relax the traditional independent identically dis-
tributed (i.i.d.) assumption of ISA and model the temporal
evolution of the sources, for example, by autoregressive (AR)
processes [24]. However, the general case of sources with
unknown, nonparametric dynamics is more challenging, and
very little is known about it [31, 3]. [3] focused on the sepa-
ration of stationary and ergodic source components of known
and equal dimensions in case of constrained mixing matrices.
[31] was dealing with wide sense stationary sources that (i)
are supposed to be block-decorrelated for all time-shifts and
(ii) have equal and known dimensional source components.

The contributions of our paper are as follows:

• we address the problem of ISA with nonparametric,
asymptotically stationary dynamics,

• beyond this extension we also treat the case of unknown
and possibly different source component dimensions,

• we allow the temporal evolution of the sources to be cou-
pled; it is sufficient that their driving noises are indepen-
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dent.
• we propose a simple estimation scheme by reducing the
problem to kernel regression and ISA.
The paper is structured as follows. Section 2 formulates

the problem set-up. In Section 3 we describe our identifica-
tion method. Section 4 contains our numerical experiments
to illustrate the efficiency of our algorithm. Here we also
show that in this problem setting our method performs better
than standard EM-LDS based estimators. Conclusions are
drawn in Section 5.

2. THE FUNCTIONAL AUTOREGRESSIVE
INDEPENDENT PROCESS ANALYSIS MODEL

In this section we formally define the problem set-up. In
our framework we use functional autoregressive (fAR) pro-
cesses to model nonparametric stochastic time series. The
goal of this paper is to develop dual estimation methods
for the functional autoregressive independent process anal-
ysis (fAR-IPA) model, which is defined as follows. Assume
that the observation (x) is a linear mixture (A) of the hid-
den source (s), which evolves according to an unknown fAR
dynamics (f ) with independent driving noises (e). Formally,

st = f(st−1, . . . ,st−p)+et , (1)
xt = Ast , (2)

where the unknown mixing matrix A∈R
Dx×Ds is of full col-

umn rank, p is the order of the process and the em ∈ R
dm

components of e =
[

e1; . . . ;eM
]

∈ R
Ds (Ds = ∑M

m=1 dm) are
(i) non-Gaussian, (ii) i.i.d. in time t and (iii) independent,
I(e1, . . . ,eM) = 0, where I denotes mutual information. The
goal of the fAR-IPA problem is to estimate (i) the mixing
matrix A (or its left inverse W = A−1) and (ii) the original
source st by using observations xt only.

We list a few interesting special cases:
• If we knew the parametric form of f , and if it were linear,
then the problem would be the AR-IPA (autoregressive
IPA) task [24].

• If we assume that the dynamics of the hidden layer is
zero-order AR, then the problem reduces to the original
ISA problem [6].

• If we deal with the ISA problem, and the independent
subspaces are one-dimensional, (dm = 1,∀m), then our
problem is the traditional ICA problem.

3. METHOD

We consider the dual estimation of the system described in
(1)–(2). In the important special case when f has known, lin-
ear form with order p = 0, then one can use the ISA separa-
tion principle of Jean-François Cardoso [6], who conjectured
that the solution of the ISA problem can be separated into
two steps: (i) applying traditional ICA and then (ii) clustering
the ICA elements into statistically independent groups. This
principle forms the basis of the state-of-the-art ISA solvers.
While the extent of this conjecture is still on open issue, suf-
ficient conditions have recently been given for the principle
[30]. In what follows, we will propose a similar reduction
scheme with which we can reduce the fAR-IPA estimation
problem ((1)–(2)) to a functional AR process identification
and an ISA problem. To obtain strongly consistent fAR esti-
mation, the Nadaraya-Watson kernel regression technique is
invoked.

More formally, the estimation of the fAR-IPA problem
(1)-(2) can be accomplished as follows. The observation pro-
cess x is left invertible linear transformation of the hidden
fAR source process st and thus it is also fAR process with
innovation Aet

xt = Ast = Af(st−1, . . . ,st−p)+Aet (3)

= Af(A−1xt−1, . . . ,A
−1xt−p)+Aet (4)

= g(xt−1, . . . ,xt−p)+nt , (5)

where function

g(u1, . . . ,up) = Af(A−1u1, . . . ,A
−1up) (6)

describes the temporal evolution of xt , and

nt = Aet (7)

stands for the driving noise of the observation. Making use of
this form, the fAR-IPA estimation can be carried out by fAR
fit to observation xt followed by ISA on n̂t , the estimated
innovation of xt .

Note that Eq. (5) can be considered as a nonparametric
regression problem; we have ut = [xt−1, . . . ,xt−p], vt = xt

(t = 1, . . . ,T ) samples from the unknown relation

vt = g(ut)+nt , (8)

where u, v, and n are the explanatory-, response variables
and noise, respectively, and g is the unknown conditional
mean or regression function. Nonparametric techniques can
be applied to estimate the unknown mean function

g(U) = E(V|U), (9)

e.g., by carrying out kernel density estimation for random
variables (u,v) and u, where E stands for expectation. The
resulting Nadaraya-Watson estimator (i) takes the simple
form

ĝ0(u) =
∑T
t=1vtK

(

u−ut
h

)

∑T
t=1K

(

u−ut
h

) , (10)

where K and h> 0 denotes the applied kernel (a non-negative
real-valued function that integrates to one) and bandwith, re-
spectively. It can be used to provide a strongly consistent
estimation of the regression function g for stationary xt pro-
cesses [5]. It has been shown recently [13] that for first or-
der and only asymptotically stationary fAR processes, under
mild regularity conditions, one can get strongly constistent
estimation for the innovation nt by applying the recursive
version of the Nadaraya-Watson estimator

ĝ(u) =
∑T
t=1 t

βDxvtK(tβ (u−ut))

∑T
t=1 t

βDxK(tβ (u−ut))
, (11)

where the bandwith is parameterized by β ∈ (0,1/Dx).

4. ILLUSTRATIONS

Now we illustrate the efficiency of the algorithm presented
in Section 3. Test databases are described in Section 4.1.
To evaluate the solutions, we use the performance measure
given in Section 4.2. The numerical results are summarized
in Section 4.3.
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(a) (b) (c)

Figure 1: Illustration of the (a) smiley, (b) d-geom and (c)
ikeda datasets.

4.1 Databases

We define three databases to study the performance of our
identification scheme. The smiley dataset has 2-dimensional
source components (dm = 2) generated from images of the 6
basic facial expressions1, see Fig. 1(a). Sources em were gen-
erated by sampling 2-dimensional coordinates proportional
to the corresponding pixel intensities. In other words, the
2-dimensional images were considered as density functions.
In the d-geom dataset ems were random variables uniformly
distributed on dm-dimensional geometric forms. Geometri-
cal forms were chosen as follows. We used: (i) the surface of
the unit ball, (ii) the straight lines that connect the opposing
corners of the unit cube, (iii) the broken line between dm +1
points 0 → e1 → e1 + e2 → . . . → e1 + . . .+ edm (where ei
is the i canonical basis vector in R

dm , i.e., all of its coordi-
nates are zero except the ith, which is 1), and (iv) the skeleton
of the unit square. Thus, the number of components M was
equal to 4, and the dimension of the components (dm) can be
different. For illustration, see Fig. 1(b). In the ikeda test, the
hidden smt = [smt,1,s

m
t,2] ∈ R

2 sources realized the ikeda map

smt+1,1 = 1+λm[smt,1 cos(w
m
t )− smt,2 sin(w

m
t )], (12)

smt+1,2 = λm[smt,1 sin(w
m
t )+ smt,2 cos(w

m
t )], (13)

where λm is a parameter of the dynamical system and

wm
t = 0.4−

6
1+(smt,1)

2 +(smt,2)
2 . (14)

M = 2 was chosen with initial points s11 = [20;20], s21 =
[−100;30] and parameters λ1 = 0.9994, λ2 = 0.998, see
Fig. 1(c) for illustration.

4.2 Performance Measure, the Amari-index

The identification of the fAR-IPA model is ambiguous; the
hidden sm sources can be estimated up to the ISA ambigu-
ities. Nonetheless, these ambiguities are simple [32]: the
components of equal dimension can be recovered up to per-
mutation and invertible transformation within the subspaces.
Thus, in the ideal case, the product of the ISA demixing ma-
trix WISA and the ISA mixing matrix A,

G = WISAA, (15)

is a block-permutation matrix. This property can be mea-
sured by a simple extension of the Amari-index [2] as fol-
lows. (i) Assume without loss of generality that the compo-
nent dimensions and their estimations are ordered in increas-
ing order (d1 ≤ . . . ≤ dM , d̂1 ≤ . . . ≤ d̂M), (ii) decompose G

1See http://www.smileyworld.com.

into di× d j blocks (G =
[

Gi j
]

i, j=1,...,M), and (iii) define gi j

as the sum of the absolute values of the elements of the ma-
trix Gi j ∈ R

di×d j . Then the Amari-index adapted to the ISA
task of different component dimensions is defined as

r(G) := κ

[

M

∑
i=1

(

∑M
j=1 g

i j

max j gi j
−1

)

+
M

∑
j=1

(

∑M
i=1 g

i j

maxi gi j
−1

)

]

,

(16)

where κ = 1/(2M(M−1)). One can see that 0 ≤ r(G) ≤ 1
for any matrix G, and r(G) = 0 if and only if G is block-
permutation matrix with di × d j sized blocks. r(G) = 1 is
in the worst case, i.e, when all the gi j elements are equal in
absolute value.

4.3 Simulations

We provide empirical results on the smiley, d-geom, and
ikeda datasets. For illustration purposes, we chose fAR or-
der p = 1 and used the recursive Nadaraya-Watson (11) for
functional AR estimation with the Gaussian kernel. The ISA
subproblem was solved with the application of the “ISA sep-
aration theorem” [6, 30]: FastICA [15] was used as a pre-
processing step for the ICA estimation, and then the esti-
mated ICA elements were clustered. The kernel canonical
correlation technique [4] was applied to estimate the depen-
dence of the ICA elements. The clustering was carried out by
greedy optimization for tasks when the component dimen-
sions were known (smiley, ikeda datasets). We also studied
the case when these component dimensions were unknown
(d-geom dataset); in this case we used the NCut [34] spec-
tral technique to cluster the estimated ICA components into
ISA subspaces. Mixing matrix A was random orthogonal
(D = Dx = Ds). For dataset smiley and d-geom, f was the
composition of a random F matrix with entries distributed
uniformly on interval [0,1] and the noninvertible sine func-
tion, f(u) = sin(Fu). The Amari-index (Section 4.2) was
used to evaluate the performance of the proposed fAR-IPA
method. For each individual parameter, 10 random runs
were averaged. Our parameters included T , the sample num-
ber of observations xt , and bandwith β ∈ (0,1/D) to study
the robustness of the kernel regression approach. β was
reparameterized as β = βc

D
and βc was chosen from the set

{ 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64}. The performance of the method is sum-

marized by notched boxed plots, which show the quartiles
(Q1,Q2,Q3), depict the outliers, i.e., those that fall outside of
interval [Q1− 1.5(Q3−Q1),Q3 + 1.5(Q3−Q1)] by circles,
and whiskers represent the largest and smallest non-outlier
data points.

For the smiley dataset, Fig. 2 demonstrates that the algo-
rithm was able to estimate the hidden components with high
precision. Fig. 2(a) shows the Amari-index as a function of
the sample number, for M = 2 (D = 4). The estimation er-
ror is plotted on log scale for different bandwith parameters.
Fig. 2(c-d) indicate that the problem withM = 6 components
(D = 12) is still amenable to our method when the sample
size is large enough (T = 100,000). Fig. 2(c) shows the esti-
mated subspaces, and Fig. 2(d) presents the Hinton-diagram.
It is approximately a block-permutation matrix with 2× 2
blocks indicating that the algorithm could successfully esti-
mate the hidden subspaces.

Our experiences concerning the d-geom dataset are sum-
marized in Fig. 3. In contrast to the previous experiment,
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Figure 2: Illustration of the estimations on the smiley dataset.
(a): Amari-index as a function of the sample number, for
M = 2. (b): observed signal xt , the first two 2-dimensional
projections when M = 6. (c): estimated components (êm)
with average (closest to the median) Amari-index forM = 6,
βc = 1

32 , T = 100,000. (d): Hinton-diagram of matrix G.

here the dimensions of the hidden components were differ-
ent and unknown to the algorithm: d1 = 2, d2 = d3 = 3,
d4 = 4 (D= 12). As it can be seen from Fig. 3(a), our method
provides precise estimations on this dataset for sample size
T = 100,000− 150,000. The Hinton-diagram of matrix G
with average (closest to the median) Amari-index is depicted
in Fig. 3(b). Again, this is a block-permutation matrix in-
dicating that the proposed method was able to estimate the
hidden subspaces.
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Figure 3: Illustration of the estimations on the d-geom
dataset. (a) Amari-index on log scale as a function of the
sample number for different bandwith parameters on the d-
geom dataset (with component dimensions: d1 = 2, d2 =
d3 = 3, d4 = 4). (b): Hinton-diagram of G with average
(closest to the median) Amari-index for dataset d-geom, βc =
1
32 , T = 150,000–it is approximately a block-permutation
matrix with one 2×2, two 3×3 and one 4×4 sized block.

.

We ran experiments on the ikeda dataset too. Fig. 4(a)
illustrates that is we simply use a standard autoregressive ap-
proximation method (AR-IPA) [24], then we can not find
the proper subspaces. Nevertheless, the Amari-index val-
ues of Fig. 4(a) show that the functional AR-IPA approach
was able to estimate the hidden subspaces for sample number

T ≥ 10,000. The figure also shows that the estimation is pre-
cise for a wide range of bandwith parameters. The Hinton-
diagram of matrix G with average (closest to the median)
Amari-index is depicted in Fig. 4(c). This is a block diago-
nal matrix, which demonstrates that our method was able to
separate the mixed subspaces. The estimated hidden sources
(with average Amari-index) are illustrated in Fig. 4(d).
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Figure 4: Illustration of the estimations on ikeda dataset. (a):
Amari-index as a function of the sample number for differ-
ent bandwith parameters, for AR-IPA and the proposed fAR-
IPA approach. (b): Observation, xt . (c): Hinton-diagram of
G with average (closest to the median) Amari-index. (d):
Estimated subspaces using the fAR-IPA method (βc = 1

2 ,
T = 20,000).

Our model (Eq. (1)-(2)) belongs to the family of state
space models. Though the dynamics of the hidden variables
st is nonlinear, one might wonder whether with a standard
linear dynamical system (LDS) based identification method
we could identify the parameter A and the driving noise et .
The following experiment demonstrates that this is not the
case; while our method is efficiently able to cope with this
problem, the LDS based identification leads to very poor
results. For this purpose we treated the observations xt as
if they had been generated by an LDS with unknown pa-
rameters. We estimated its parameters with the EM method
[23, 12], and then using these estimated parameters we ap-
plied a Kalman smoother to estimate the hidden dynami-
cal layer st and the driving noise et . After this estimation
we post-processed the estimated noise êt with ISA. We per-
formed these estimations on the smiley and d-geom datasets.
Using 10 independent experiments, the EM-LDS based esti-
mators led to r = 0.56 and r = 0.48 Amari-indices (minima
of theQ2 medians), respectively. These results are very poor;
the EM-LDS based method was not able to identify the noise
components. On the contrary, the proposed fAR-IPA method
successfully estimated the noise components and provided
r = 0.0041 and r = 0.0055 Amari-indices (Fig. 2, Fig. 3).

5. CONCLUSIONS

In this paper we (i) extended independent subspace analy-
sis (ISA) to asymptotically stationary sources, (ii) relaxed
the constraint of decoupled (block-decorrelated) dynamics,
and (iii) simultaneously addressed the case of unknown
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source component dimensions. The temporal evolution of
the sources was captured by nonparametric, functional au-
toregressive (fAR) processes. We generalized the ISA sep-
aration technique to the derived fAR setting, and reduced
the solution of the problem to fAR identification and ISA.
The fAR estimation was carried out by the Nadaraya-Watson
kernel regression method with strong consistency guarantee.
We extended the Amari-index to different dimensional com-
ponents and illustrated our technique by numerical experi-
ments. According to our experiences, the fAR-IPA identi-
fication can be accomplished robustly and can be advanta-
geous compared to parametric approaches.
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