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ABSTRACT

In this paper, a realistic array model for dual-polarized
elements that includes the cross polarization ratio is in-
troduced. This parameter reveals element imperfections
due to polarization impurity. For the introduced array
model, the Cramér-Rao bound on the direction of ar-
rival (DOA) and polarization accuracy is derived. This
asymptotic estimation accuracy can be descriptively in-
terpreted. In simulations, we investigated how the es-
timation accuracy is affected by the array and source
parameters. It turns out that especially the polariza-
tion accuracy depends significantly on the polarization
purity.

1. INTRODUCTION

Passive direction finding (DF) of multiple narrowband
signals is of high interest in many applications like radar,
sonar, radio astronomy, and wireless communication.
For estimating the directions of arrival (DOAs), antenna
arrays are employed, which are usually set up by iden-
tical uniformly polarized array elements arranged in a
geometric systematic order. This antenna arrangement
facilitates beam steering and calibration.

DF systems that employ these uniformly polarized
antenna arrays may cause non-negligible bearing errors
due to a mismatch between the signal polarization and
the polarization of the array elements. To overcome this
problem, diversely polarized antenna arrays or multi-
port antennas (e.g. crossed dipole pairs) can be used,
that measure each polarization component separately.
Such arrays are able to jointly estimate source DOAs
and polarizations (Fig. 1), and are advantageous to re-
solve diversely polarized incoming signals.

Numerous DF algorithms have been extended to un-
known source polarization, e.g. the maximum likelihood
estimator (MLE) [1,2], the conventional multiple signal
classification (MUSIC) method [3], the root-MUSIC al-
gorithm [4], and the subspace fitting (SSF') approach [5].
An MLE for a source transmitting signals with time-
varying polarization has been introduced in [6]. Further-
more, the DOA can be determined without explicitly
computing the polarization parameters, which is com-
putationally more efficient than a brute force search for
all source parameters.

In [7, Sec. IIT], Weiss and Friedlander derived the
Cramér-Rao bound (CRB) on the DOA and polarization
accuracy of diversely polarized arrays. They presented
numerical examples to interpret the CRB. Also in [5,
Sec. IV.B], the asymptotic accuracy on the considered
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Figure 1: Bearing vector e and polarization vector p of
an incident plane wave

estimation problem has been derived. In all these cases,
ideal array elements are assumed that purely measure
the polarization components separately. Recently, the
CRB for polarimetric arrays has been calculated in [8,
Sec. IT1.C] taking the measured element patterns into
account, but therein it is difficult to see how the bound
is affected due to array imperfections.

In practice, especially for small array sensors with
only few elements, array imperfections such as element
coupling and high cross-polarization ratio (CPR) have a
non-negligible effect. The CPR, i.e. the ratio of cross- to
co-polarization amplitudes, is often used to the describe
the polarization quality of an antenna. In this paper
a realistic array model for linearly or circularly dual-
polarized array elements is presented. Therefore, the
CRB on the DOA and polarization accuracy is analyt-
ically derived including polarization impurity, to study
the influence of the CPR on the estimation accuracy.

This paper is structured as follows: In Section 2, the
data model for a single incoming arbitrarily polarized
plane wave is described. Section 3 presents the deriva-
tion of the CRB of the underlying realistic array model
and discusses the influence of the parameters on the es-
timation accuracy. The results of various Monte-Carlo
simulations for the DOA and polarization estimation are
presented in Section 4. Finally, Section 5 concludes this
paper.

The following notations are used throughout this
paper: ()7 and (-)¥ denote transpose and Hermitian
transpose, respectively; I, and 0,, denote the n x n-
dimensional identity and zero matrix, respectively; and
E {-} denotes the expectation operation.
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2. DOA AND POLARIZATION
ESTIMATION PROBLEM

Let us consider a transverse electromagnetic wave im-
pinging on an antenna array from direction («, €), where
a € (—m, 7] denotes the azimuth angle and e € [0, 7]
is the elevation angle (Fig. 1). The signal polarization
is defined by the phase difference § € (—m, 7] between
the electric field components and the auxiliary polariza-
tion angle v € [0, 7]. Fig. 2 displays the shape of the
polarization ellipse depending on polarization parame-
t.ers. If v = Q, v=3,0 :TrO, or = ﬁ,wthe sigqal is
linearly polarized. If v = 7 and 8 = £7, the signal
has a left or right hand circular polarization (LHCP or
RHCP), respectively. In the remaining cases the signal
is elliptically polarized. The signal DOA and polariza-
tion is completely defined by the following unit vectors,

respectively:
cosasine
e(a,e) = | sinasine | | (1)

cosée

p(f)’ﬁ)—( o > ~ (2)

sinye’?

Sometimes the polarization vector p is referred to as the
Jones vector.

2.1 Data Model

To formulate the estimation problem, it is important
to establish a simple mathematical relationship between
the received array data and the source parameters ¥ =
(a,e,B,7)". The common array data model assumes
that a set of narrowband signals with wavelength A im-
pinges as plane waves on an array sensor with M dual-
polarized elements. For the case of a single source and
using complex envelope notation, the k-th sample of the
random (measurement) vector z; € C*Y can be ex-
pressed by the signal and the additional random noise
vector ny, € C2M ag

z = a(9¥) s + ny, (3)
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Figure 2: Polarization figures in dependence of 8 and ~

where s, k = 1,..., K, are the unknown source signal
snapshots, and a(?) is referred to as the array transfer
vector. The array transfer vector expresses the complex
array response to a unit wavefront arriving from the
DOA with the polarization vector p(8,+). For the con-
sidered far-field source, the array response of the m-th
antenna element is given by

2 (9) = G (a,¢) p(B,7) 7 X @ (4

As can be seen from (4), the array response depends
on the desired source parameters ¥, the array element
locations r,, € R3, m = 1,..., M, relative to a refer-
ence point commonly in the center of the array, and the
element pattern of the m-th array element

_ ghl,m(a,f‘:) gvl,m(aai‘:)
Gm(a,ff)— gh2,m(a75) gv2,m(a>5) ’ (5)

Herein, gnp,m and gyvp.m are the linearly polarized char-
acteristic components of the p-th port, p € {1,2}, of
the m-th element, m = 1,...,M. Commonly, the ele-
ment patterns are described by their linearly polarized
components, because the element characteristics can be
measured adequately with a linearly polarized antenna
(e.g. horn antenna). Any other orthonormal polariza-
tion basis can be calculated by using a suitable trans-
formation matrix T.

2.2 Realistic Array Model

In this section, an array data model is introduced where
the element characteristics and the polarization vector
are described by their co- and cross-polarized compo-
nents:

Gn(a,e) = G (a,e) T, (6)
p(3:7) =T 'p(B,7). (7)

The terms mentioned in (6) and (7) are replaced by the
corresponding terms in the array transfer vector (4). For
example, the transformation matrix for linearly dual-
polarized elements is the identity matrix, and for cir-
cularly dual-polarized elements, the transformation is

given by |
sl 4 ®

Especially a mismatch between the real and assumed
(measured) phase characteristics of the antenna leads
to biased bearing results. However, for the accuracy
analysis carried out, the phase patterns are neglected,
i.e. only the amplitude characteristics are considered.
Typically, array elements may be not omni-directional
due to element coupling effects, reflections of the sen-
sor platform, etc. Nevertheless, the array elements can
be assumed as constant in the vicinity of the DOA or
can be approximated by an average amplitude value re-
sulting from the amplitude characteristic in the vicinity
of the DOA. Furthermore, we assume that both ports
of the dual-polarized elements have the same charac-
teristic, and that all elements are identical. These as-
sumptions lead to a simple but realistic array model for

T =
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dual-polarized array elements stated as follows:

G b 1. o)
m =1,..., M, where k € R denotes the CPR of the ar-
ray elements. This parameter can be interpreted as the
polarization purity of the array elements. For example,
for the ideal case that x = 0, both ports of the dual-
polarized element show purely co-polarized components,
and for the unfavorable case that x = 1, both co- and
cross-polarization components have the same strength.

2.3 Problem Statement

The estimation problem is stated as follows: Estimate
all source parameters 9 from the received data set zy,
k =1,..., K, while the unknown source signals s, k =

., K, are nuisance parameters, i.e. these parameters
are also unknown but not of interest.

Let us make a few comments on the signal model and
the noise model. The deterministic signal model - some-
times also named as conditional model - is used, where
each sample si, k =1, ..., K, is regarded to be fixed and
unknown, i.e. each sample is an unknown deterministic
parameter that needs to be estimated. This model does
not exclude the possibility that the signals are sampled
from a random process. Furthermore, the random noise
vectors ng, k = 1,..., K, are assumed to be zero-mean
complex Gaussian, and are temporally and spatially un-
correlated, i.e. the noise vectors are given by

E {1’11C ng} == O'i (Sk,]y 12M 5
E{nynf} =02,

where o2 denotes the receiver noise variance and &y g/
the Kronecker delta. For simplicity, it is assumed that
the emitted source signal has a constant amplitude,
i.e. |si| = s. With this the signal-to-noise ratio w.r.t. a
single element can be defined as SNR = s%/02.

2.4 DOA and Polarization Estimation

As already mentioned in Section 1, several DF meth-
ods have been proposed based on standard DF algo-
rithms [1-5]. A basic algorithm to estimate the unknown
four-dimensional parameter vector ¥ is the considered
conventional beamformer:

afl(9)Ra(¥)

af(9)a(d) (10)

¥ = arg max
9

where R = % 3", ),z denotes the estimated data co-
variance matrix.

It is mentioned that for DOA and polarization pa-
rameter estimation, a solution can be found that is com-
putationally more efficient than a brute force search
for all parameters simultaneously. By transforming the
classical beamformer into the Rayleigh quotient, accord-
ing to [6], the four-dimensional estimation problem can
be reduced to a two-dimensional DF problem. Then, the
DOA estimates can be used to compute the polarization
coefficients.

3. PERFORMANCE ANALYSIS

For judging an estimation problem, it is important to
know the maximum estimation accuracy that can be at-
tained with the given measurements. The CRB provides
a lower bound on the estimation accuracy for any un-
biased estimator. Note that nonlinear estimation prob-
lems result in biased estimators, which are only asymp-
totically unbiased. Therefore, e.g., for weak sources the
CRB is not valid. Moreover, a misspecified array model
leads to biased bearing estimates. These errors are not
covered by the CRB, but its parameter dependencies
reveal characteristic features of the estimation problem.

3.1 Preliminaries to the CRB

Let x(z) denote some unbiased estimate of the un-
known target parameters x based on the measurements
z. The covariance matrix C of the estimation error
Ax = x — x(z) satisfies the multi-dimensional Cramér-
Rao inequality

C=E{axAx"} >J'(x), (11)
where the inequality is interpreted as stating that the
matrix difference is positive semidefinite. If equality
holds, the estimator is called efficient. The CRB is given
by the inverse Fisher information matrix (FIM):

3 = E{(alngixmf (f“ngfj”))} )

where L(x;z) denotes the likelihood function that de-
scribes how likely the source parameters given the mea-
surements are. The drivation of the CRB for the multi-
source case can be found e.g. in [5,7]. For the considered
single source case, the log-likelihood function reads

InL(9,81,...,8K;%1,- -, 2K)

K
1
= —2K M In(ro? - > lzk —a@®) skl*. (13)
nop_q

3.2 Derivation of the CRB

Using the assumptions mentioned in Section 2.3, the
CRB for the estimation problem can be calculated by
inserting (13) in (12) and taking the expectation [9].
Then, the CRB on the DOA and polarization estimation
accuracy is given as follows

1

J7H9) = S7csNR J1(9) - @) (14)
with
Ji(9) =Re {D(9)D(V)} ,
J2(9) = Re {D"(9) a(¥)a™(9) D(W)} ,

o 0 0 0

- |- - - _— 2M x4
D) = | 5o g 5 51| A0) € T4

where (-)* denotes the Moore-Penrose pseudoinverse.
The term Jo(9) can be interpreted as a measure how
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much the estimation accuracy degrades by the circum-
stance that the signal nuisance parameters are unknown.
If the signal samples are known, then Jo(9) = 04. As
expected, (14) reveals that the estimation accuracy in-
creases with a growing number of samples K or SNR,
but it is difficult to see how the bound is affected by
the remaining array and source parameters. To get a
deeper insightful interpretation of the CRB, the real-
istic array model in (9) is used and a planar array is
assumed: T, = (T, Ym,0)7, m = 1,..., M. Then, it
follows

J1 a, 02
Jl(lﬂ) - |: (02 E) Jl(ﬁa’)/)] ’ (15)

Since the reference point is placed in the center of the
array, i.e. > Xy = > Ym = 0, the DOA estimation
accuracy is not influenced by the unknown signal sam-
ples, while the polarization accuracy degrades. Due to
the block-diagonal form of (15) and (16), the DOA and
polarization parameters are uncorrelated. Interpreting
the polarization parameters as nuisance parameters and
using the computational efficient approach mentioned
in Section 2.4, the matrices reveal that this leads to no
performance benefit.

The derivation of CRB for linearly and circularly
dual-polarized elements leads to slightly different results
that can be generalized by introducing the term
4k cosysinycos S + k2 +1 , if linear
4k cos? v+ (k —1)?

et 5,7) = {

, if circular

In the ideal case kK = 0, we have ¢ = 1. The deriva-
tion of the CRB for another polarization base can be
determined straightforward analogous to the presented
calculations.

For a symmetric antenna array with > @mym =0,
the azimuth and elevation angles are uncorrelated. From
this it follows that

dm*c [sin?e Y, 2 0
— m m
Ji(a,e) N2 0 cos2e S y2,

. (17)

For the ideal case k = 0, (17) corresponds to a conven-
tional single-port array with a matching signal polariza-
tion, i.e. in this case the dual-polarized array elements
offer no DF performance benefit. We briefly mention
that the DF accuracy depends on the element number
M, the array geometry, and the elevation ¢ itself. More-
over w.r.t. the uniqueness condition, a decreasing signal
wavelength A leads to a decreasing antenna beamwidth
and therewith an increasing DOA accuracy.
Analogous to (17) follows

Jl(ﬁer) _J2(677) =

M(1—k*)? [sin®~ cos?y 0
c 0 1|

(18)

The polarization estimation accuracy depends on the
number of antenna elements M, but is independent from

DOA, signal wavelength and array geometry. Further-
more, the signal polarization can be determined with
a single dual-polarized array element. The first entry
of (18) reveals, that the phase difference  cannot be
identified, if the signal is linearly polarized, i.e. v = 0 or
v = 5. Fig. 2 illustrates that for a linearly polarized sig-
nal, the polarization ellipse is uniquely described by the
auxiliary polarization angle . Furthermore as expected,
the polarization accuracy depends significantly on the
CPR. If k = 1, then the polarization is not observable.
Indeed in this case, (17) reveals that the DOA is observ-
able and even the DOA accuracy slightly increases, be-
cause the cross-polarization components cause a higher
SNR. Note, especially for small array antennas a polar-
ization mismatch leads to unpredictable DF results.

4. SIMULATION RESULTS

In this section, Monte Carlo simulations with 1000 tri-
als have been carried out. The conventional beam-
former described in Section 2.4 has been used to
solve the estimation problem. A triangular array with
M = 3 circularly dual-polarized elements is consid-
ered, where the first port is RHCP and the second port
is LHCP. The array elements were located at r,, =
%(sin(%?m),cos(%Tm),O)T, m =1, ...,3. The sensor col-
lects K = 100 samples per DOA estimate. A linearly
polarized signal is considered with 8 =0 and v = 7.

For an SNR = 0 dB and x = 0.4, Fig. 3 depicts
the simulated DF covariance and CRB ellipses for a
set of DOAs placed in the quarter of the sensor field
of view. The comparison of the covariance and bound
ellipses reveals that the covariance ellipses lie close to
the bound ellipses, i.e. the conventional beamformer is
approximately efficient. Due to the nature of the an-
tenna coordinates, the covariance ellipses become circles
for the regarded array geometry. Thus, at the horizon
these ellipses offer a high azimuth variance and a low ele-
vation variance, whereas the covariance ellipse at ¢ = 0°
behaves in the opposite sense.

In Fig. 4 — Fig. 6 the signal impinges from the DOA
a = 60° and ¢ = 30°. We have calculated the root
mean square error (RMSE) and the square root of the
corresponding CRB elements for both the DOA estima-
tion accuracy (Fig. 4) and the polarization estimation

sin o sin € —

cos oL sin g —

Figure 3: Simulated (black lines) and theoretical (red
lines) uncertainty ellipses with true DOA (blue dots)
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Figure 4: DOA estimation accuracy versus SNR
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Figure 5: Polarization estimation accuracy versus SNR

accuracy (Fig. 5). For an SNR > 0 dB the conventional
beamformer attains the CRB with the expected asymp-
totic performance, and for lower SNR, the RMSE devi-
ates increasingly from the CRB and finally approaches
a limit of 72/6 or m%/24 for the azimuth and elevation
variance, respectively. This occurs when the DOA es-
timates are uniformly distributed in the visible angular
region. Similar limits can be found for the polarization
variances.

For an SNR = 0 dB, Fig. 6 shows the simulation
result for a varying CPR. The polarization estimation
variances lie close to the CRB across the entire range of
k. As expected from (18), the CRB increases with grow-
ing CPR, but a value of x < 0.3 is still acceptable. Typ-
ically, linearly polarized antennas have a smaller CPR
than circularly polarized antennas. For example, a dual-
polarized array antenna with x > 0.3 leads to significant
DOA and polarization errors.

5. CONCLUSION

In this paper, a realistic array model for dual-polarized
array elements has been introduced considering the CPR
of the elements. The CRB has been derived analytically
for the single source case, and has been interpreted. The
presented simulation results exhibit that especially the
polarization accuracy depends on the CPR. In further
studies, we will investigate the DOA and polarization
estimation bias that results from differences between the

0.25 T
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= 0.15
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Figure 6: Polarization estimation accuracy versus CPR

real array model (6) and the assumed array model (9).
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