
PHASE LOCKED MATRIX FACTORIZATION

Miguel Almeida1,2, Ricardo Vigário2, José Bioucas Dias1

1Institute of Telecommunications, Superior Technical Institute, Technical University of Lisbon, Portugal
2Department of Information and Computer Science, School of Science, Aalto University, Helsinki, Finland

email: malmeida@lx.it.pt, ricardo.vigario@aalto.fi, bioucas@lx.it.pt

web: 1www.lx.it.pt, 2ics.tkk.fi/en/

ABSTRACT

We present a novel approach to separate linearly mixed de-
pendent sources that are phase-locked. The separation is
done through a minimization problem involving three vari-
ables (the mixing matrix, the source time-dependent ampli-
tudes, and their relative phases). Results obtained in toy data
sets show that this algorithm is very fast, that it estimates the
mixing matrix with remarkable precision even with consider-
able amounts of noise, and that the sources are also correctly
estimated. We interpret these results as a “proof-of-concept”
that this approach is valid and discuss the necessary improve-
ments to deal with more general situations.

1. INTRODUCTION

Synchrony is an increasingly studied topic in modern sci-
ence. It is a relevant topic for several reasons, including
the availability of an elegant yet deep mathematical frame-
work that is applicable to many domains where synchrony is
present, including laser interferometry, the gravitational pull
of stellar objects, and the human brain [14].

It is believed that synchrony plays an important role in the
way different sections of human brain interact. For example,
when humans perform a motor task, several brain regions
oscillate coherently [13, 15]. Also, several pathologies such
as autism, Alzheimer and Parkinson are associated with a
disruption in the synchronization profile of the brain [18].

To formally model synchrony phenomena one usually
uses a special type of dynamical system called a self-
sustained oscillator. Oscillating dynamical systems have
been used extensively to model the behavior of neurons [9].
A self-sustained oscillator is a dynamical system with an in-
ternal energy source, which exhibits periodic motion when
isolated from the rest of the universe [14]. In terms of the sys-
tem’s phase space [17], self-sustained oscillators have a peri-

odic limit cycle1 which is stable in at least a small neighbor-
hood of that cycle. The position of the system along this limit
cycle is called the oscillator’s phase. Perturbations along the
limit cycle do not decay and permanently affect the phase,
while perturbations in orthogonal directions decay exponen-
tially. In other words, this limit cycle has a zero Lyapunov
exponent in the direction tangent to the cycle, and negative
exponents in all directions orthogonal to it [17].

The stability of the oscillator’s limit cycle has deep im-
plications when such oscillators are coupled with one another
through a weak interaction. A weak interaction will not push

1A limit cycle is a closed 1-dimensional curve in the phase space of
the system. It can be easily shown that such a curve must be simple, i.e.,
that it cannot intersect itself. This immediately implies that self-sustained
oscillators must be dynamical systems of at least dimension 2 [17].

the system out of its limit cycle, but it can push the system
forward or pull it backward along the cycle, permanently af-
fecting its phase. If the interactions between N self-sustained
oscillators are weak and attractive, the time dynamics of their
phases can be described by the Kuramoto model [10]:

φ̇i(t) = ωi +
1

N

N

∑
j=1

κi j sin
[
φ j(t)−φi(t)

]
, (1)

where t ∈ R, ωi is the intrinsic frequency of oscillator i, and
κi j is the coupling coefficient between oscillators i and j,
which must be positive for attractive interactions. If φ j is
slightly larger than φi, then oscillator i will move slightly
faster because of the interaction with oscillator j. Con-
versely, if φ j is slightly smaller than φi, then oscillator i will
be slowed down by oscillator j. In both cases, this interac-
tion tends to push the phases of the oscillators toward one
another. Synchronization will occur if the coupling is strong
enough [14, 16].

To infer knowledge on the synchrony of the networks
present in the brain or in other real-world systems, one must
have access to the dynamics of the individual oscillators
(which we will call “sources”). Usually, in brain electro-
physiological signals (EEG and MEG) and other real-world
situations, individual oscillator signals are not directly mea-
surable except in very rare situations, and one has only access

to a superposition of the sources.2 In fact, EEG and MEG
signals measured in one sensor contain components coming
from several brain regions [12]. In this case, spurious syn-
chrony occurs, as we have shown in previous work [3, 2].

Undoing this superposition is usually called a blind
source separation (BSS) problem. Typically, one assumes
that the mixing is linear and instantaneous, which is a valid
approximation in brain signals [19]. In this case, if the vector
of sources is denoted by s(t) and the vector of measurements
by x(t), they are related through x(t) =Ms(t) where M is a
real matrix called the mixing matrix. Even with this assump-
tion, the problem is ill-posed, thus one must also make some
assumptions on the sources, such as statistical independence
in Independent Component Analysis (ICA) [8]. However, in
our case, independence of the sources is not a valid assump-
tion, because phase-locked sources are highly dependent. In
this paper we address the problem of how to separate these
dependent sources.

We have already addressed a more general problem
where the sources are organized in subspaces, with sources

2In EEG and MEG, the sources are not individual neurons, whose oscil-
lations are too weak to be detected from outside the scalp. In this case, the
sources are populations of closely located neurons oscillating together.

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 1728

in the same subspace having strong synchrony and sources
in different subspaces having weak synchrony. This general
problem was tackled with a two-stage algorithm called Inde-
pendent Phase Analysis (IPA) which performed well in the
noiseless case [1], with moderate levels of added Gaussian
white noise [3], and with moderate amounts of phase noise
[2]. In summary, IPA uses TDSEP [20] to separate the sub-
spaces from one another and then uses an optimization pro-
cedure to complete the intra-subspace separation. Although
IPA performs well for the noiseless case for various types of
sources and subspace structures, and can tolerate moderate
amounts of noise, its performance for higher noise levels is
unsatisfactory. Also, in its current form, IPA is limited to
square mixing matrices, i.e., to a number of measurements
equal to the number of sources, and it has a regularization
term that depends on the estimated mixing matrix and not on
the data itself. On the other hand, IPA deals well with sub-
spaces of phase-locked sources and with sources that are not
perfectly phase-locked [3].

Our goal in this paper is to develop an alternative tech-
nique, named Phase Locked Matrix Factorization (PLMF)
for the intra-subspace separation problem that can deal with
higher amounts of noise and with non-square mixing matri-
ces (more measurements than sources), and that only uses
variables directly related with the data model. Our approach
is inspired on the well-known Non-negative Matrix Factor-
ization approach [11], which is not applicable directly to our
problem, because some factors in our factorization are not
positive, as will be clear below.

For simplicity, we will restrict ourselves to the case
where the sources are perfectly synchronized. One should
not consider PLMF as a replacement for IPA, but rather as
a different approach to a similar problem. As we will show,
PLMF has advantages and disadvantages relative to IPA. It
should be reinforced that the algorithm presented here as-
sumes nothing specific of brain signals, and should work in
any situation where phase-locked sources are mixed linearly.

This paper is organized as follows. In Sec. 2 we introduce
the Phase Locking Factor (PLF) quantity which measures the
degree of synchronization of two signals, and show that full
synchronization between two signals has a very simple math-
ematical characterization. Sec. 3 describes the new algorithm
in detail. In Sec. 4 we explain how the simulated data was
generated and show the results obtained by PLMF. The cur-
rent limitations of PLMF and directions for future work are
discussed in Sec. 5. We draw conclusions in Sec. 6.

2. PHASE SYNCHRONY

2.1 Phase of a real-valued signal

In this paper we tackle a problem of Source Separation (SS)
of dependent components. The sources are assumed to be
phase-locked, which in particular means that one must have
a way to define the phase of a signal. In most real-world
applications, such as brain EEG or MEG, the set of measure-
ments available is real-valued. In those cases, to analyse the
phase of a signal, it is usually convenient to construct a set of
complex-valued data from the original real-valued signals.
Two approaches have been used in the literature: complex
wavelet transforms and the Hilbert transform.

In this paper we deal only with simulated data, so we gen-
erate the complex signals directly and circumvent this issue.

2.2 Phase-Locking Factor

Given two oscillators with phases φ j(t) and φk(t) for t =

1, . . . ,T , the real-valued3 Phase Locking Factor (PLF) be-
tween those two oscillators is defined as

ρ jk ≡

∣
∣
∣
∣
∣

1

T

T

∑
t=1

ei[φ j(t)−φk(t)]

∣
∣
∣
∣
∣
=
∣
∣
∣

〈

ei(φ j−φk)
〉∣
∣
∣ , (2)

where 〈·〉 is the time average operator. The PLF obeys 0 ≤
ρ jk ≤ 1. The value ρ jk = 1 corresponds to two oscillators
that are fully synchronized (their phase lag is constant). The
value ρ jk = 0 is attained if the two oscillators’ phases are not
correlated, as long as the observation period T is sufficiently
long. Values between 0 and 1 represent partial synchrony.
Typically, the PLF values are stored in a PLF matrix Q such
that Q(j,k) = ρ jk.

In Sec. 1 we mentioned that we assumed that the sources
are perfectly synchronized. In mathematical terms, we now
rephrase it as ρ jk = 1 for all j and k. This immediately im-
plies that φ j(t)−φk(t) is constant in time.

3. ALGORITHM

This section details the Phase Locked Matrix Factorization
algorithm. We start by presenting the notation and defini-
tions used throughout this section. We then formulate the
optimization problem used for PLMF and present a summary
table of PLMF at the end.

3.1 Assumptions and general formulation

We assume that we have a set of N complex-valued sources
s j(t) for j = 1, . . . ,N and t = 1, . . . ,T that are perfectly phase-
locked. We also assume that N is known. Let S be a N
by T complex-valued matrix whose (j, t)-th entry is s j(t).
One can easily separate the amplitude and phase compo-
nents through S = A⊙Z, where ⊙ is the elementwise (or
Hadamard) product, A is a real-valued N by T matrix with
a j(t) ≡ |s j(t)|, and Z is a N by T complex-valued matrix

with z j(t)≡ ei(angle(s j(t))) ≡ eiφ j(t).
Since the sources are phase-locked, ∆φ jk(t) = φ j(t)−

φk(t) is constant for all t, for any j and k. Thus, one can
extract the time-dependent phase oscillation φ(t) that is com-
mon to all the sources, and represent the sources as

S≡A⊙ (Φ⊙Z0) = Φ⊙A⊙Z0, (3)

where Φ is a N by T matrix whose (j, t)-th entry is given

by Φ j(t) = eiφ(t) (it does not depend on the source j, thus
all its rows are equal to each other) containing the common
time-dependence of the oscillations, and Z0 is constructed as

Z0 ≡ [z0 z0 . . . z0
︸ ︷︷ ︸

T copies of z0

], (4)

where z0 = [eiφ1 , . . . ,eiφN]T is a complex vector containing
the relative phases of each source.

As is usual in source separation problems, we also as-
sume that we only have access to P measurements (P ≥ N)
that result from a linear mixing of the sources, as in

X≡MS+N=M(A⊙Z)+N= Φ⊙M(A⊙Z0)+N

3The term “real-valued” is used here to distinguish from other phase-
based algorithms where we drop the absolute value operator, hence making
the PLF a complex quantity [3].

1729

where M is a P by N real-valued mixing matrix and N is
a P by T complex-valued matrix of noise. Our assumption
of a real mixing matrix is appropriate in the case of linear
and instantaneous mixing, as motivated earlier. We will deal
only with the noiseless case N= 0. In this case, one can also
remove from X the common phase oscillation: X ≡ Φ⊙
X0. However, X0 does not have all columns equal to each
other, because one of the factors in X0 is the time-dependent
amplitudes A.

Our goal is to minimize the cost function

1

2
‖X−M(A⊙Z)‖2

F ,

which is the optimal Maximum Likelihood Estimator (MLE)
of the matrices M, A, and Z for i.i.d. Gaussian additive
noise. By factoring out the matrix Φ which has all elements
with unit absolute value, the minimization problem can be
written as

min
M,A,Z0

1

2
‖X0−M(A⊙Z0)‖

2
F , (5)

s.t.: 1) Each row of M must have unit L1 norm.

2) All elements of A must be non-negative.

3) All elements of Z0 must have unit absolute value.

4) All columns of Z0 must be equal (as in Eq. (4)).

Constraints 2 and 3 ensure that matrices A and Z0 represent
amplitudes and phases, and constraint 4 ensures that all the
sources are phase-locked. Constraint 1 prevents the mixing
matrix M from diverging while A goes to zero and vice-

versa.4 Note that this is still an MLE for M, A, and Z0:
the complex Gaussian noise N has rotational symmetry at
every time point, and factoring out the matrix Φ is simply
performing a rotation at each time point.

3.2 Optimization

The minimization problem presented in Eq. (5) depends on
the three variables M, A, Z0. Although the minimization
problem is not globally convex, it is convex in A while keep-
ing the other variables fixed. For this reason, we chose to op-
timize it in each variable at a time, by first optimizing on M
while keeping A and Z0 constant, then doing the same for
A, then for Z0, and repeating the cycle until convergence.
From our experience with the method, the particular order in
which the variables are optimized is not important. Although
this algorithm is not guaranteed to converge to a global min-
imum, we have experienced very good results in practice.

In the following we show that the minimization problem
above can be translated into well-known forms (least squares
problems and linear systems) for each variable.

3.2.1 Optimization on M

If we define m≡ vec(M) and x0 ≡ vec(X0)
5, then the min-

imization on M with no constraints is equivalent to the fol-
lowing least-squares problem:

min
m

1

2

∥
∥
∥
∥

[

R(x0)
I (x0)

]

−

[

R(R)
I (R)

]

m

∥
∥
∥
∥

2

2

(6)

4A unit L2 norm constraint could have been used instead. Both versions
yield non-convex problems, so there is little reason to choose one over the
other.

5The vec(.) operator stacks the columns of a matrix into a column vector.

where R(.) and I (.) are the real and imaginary parts, IP

is the P by P identity matrix, and R ≡ [(AT ⊙ZT

0)⊗ IP],
with⊗ denoting the Kronecker product. For convenience, we
used the least-squares solver implemented in the MATLAB
Optimization Toolbox to solve this unconstrained problem,
although many other solvers exist.

The unit L1 norm constraint is not a convex constraint.
We instead solve the unconstrained problem above and, after
a solution is found, convert m back to M and divide the i-th
row of M by its L1 norm.

3.2.2 Optimization on A

The optimization in A can also be reformulated as a least-
squares problem. If a ≡ vec(A), the minimization on A is
equivalent to

min
a

1

2

∥
∥
∥
∥

[

R(x0)
I (x0)

]

−

[

R(N)
I (N)

]

a

∥
∥
∥
∥

2

2

s.t. a≥ 0 (7)

where N≡ [(IP⊗M)Diag(z0)], and Diag(.) is a square diag-
onal matrix of appropriate dimension having the input vector
on the main diagonal. We use SUNSAL [6] to perform this
optimization; in our experiments, SUNSAL was consider-
ably faster than the MATLAB built-in functions.

3.2.3 Optimization on z0

The minimization problem in Z0 can be shown to be equiva-
lent to solving the linear system

Oz0 = x0 with O=

M Diag(a(1))
M Diag(a(2))

...
M Diag(a(T))

, (8)

with the same constraints, where a(t) is the t-th column of
A. Usually, the solution of this system will not obey the
unit absolute value constraint. To circumvent this, we solve
the unconstrained linear system instead, and afterwards we
normalize z0 for all sources i and time instants t,

ai(t)← |z0,i|ai(t) and z0,i← z0,i/|z0,i|.

3.2.4 Phase Locked Matrix Factorization

While solving unconstrained variants of a problem and then
enforcing a normalization is a suboptimal procedure, it is
guaranteed to lower the cost function, and we have found
that it works well in practice. The consecutive cycling of op-
timizations on M, A and z0 constitutes the Phase Locked
Matrix Factorization (PLMF). A summary of this algorithm
is presented below.

PHASE LOCKED MATRIX FACTORIZATION

1: Input data with common oscillation removed X0

2: Input random initializations M̂, Â, ẑ0

3: for iter ∈ {1,2,. . .,MaxIter}, do
4: Solve the unconstrained least squares problem in Eq. (6)
5: Normalize the rows of M to have unit L1 norm
5: Solve the constrained least squares problem in Eq. (7)
6: Solve the unconstrained linear system in Eq. (8)
7: ai(t)← |z0,i|ai(t) and z0,i← z0,i/|z0,i| for i = 1, . . . ,N
8: end for

1730

4. SIMULATION AND RESULTS

In this section we will show results on small simulated
datasets demonstrating that PLMF can correctly factor the
data X0 into a mixing matrix M, amplitudes A, and phases
z0. Despite deriving PLMF for the noiseless case, we will
also test its robustness to a small noisy perturbation. We will
measure the quality of the result by directly comparing the

estimated variables M̂, Â, ẑ0 with their true counterparts.

4.1 Data generation

We generate the data directly from the model. M is taken
as a random matrix with entries between 0 and 1. We then
normalize it so that each row of M has unit norm. Each
row of A (i.e. each source’s amplitude) is generated as a
sum of 4 sinusoids, each with random frequencies between
zero and 4/T and random initial phase. z0 is generated by

uniformly spacing the N sources in the interval
[
0, π

2

]
. X0 is

then generated according to the data model: X0 = M(A⊙
Z0) where Z0 is given by Eq. (4). Note that we generate X0

directly, so we skip the factorization of Φ entirely.
The initial values for the three variables are all random:

elements of M̂ and Â are drawn from the Uniform([0,1]) dis-

tribution (M̂ is then normalized the same way as M), while

the elements of ẑ0 are of the form eiα with α taken from the
Uniform

([
0, π

2

])
distribution.

4.2 Quality measures

M̂ can be compared with M through the gain matrix G ≡
M̂+M, where M̂+ is the Moore-Penrose pseudo-inverse of

M̂ [5]. This is the same as M̂−1M if the number of sensors
is equal to the number of sources. If the estimation is well
done, the gain matrix should be close to a permutation of the
identity matrix. We use the Amari Performance Index (API)
[4] to compute how close G is to such a permutation. It is
a non-negative number that is zero only if the gain matrix is

exactly a permutation of the identity matrix. Â will be com-
pared to A through visual inspection. It is similar to compare
Z0 or z0 to their estimated counterparts, because they contain
exactly the same information. We chose the latter since it is
much easier to represent. We compare them by computing
for each source i the angular deviation from the true value:
angle(z0,i)− angle(ẑ0,i).

We generate two datasets with the following features:

• Dataset 1: 5 sources, 10 sensors, 100 time points, no
noise.

• Dataset 2: exactly the same data as dataset 1, plus com-
plex Gaussian noise with standard deviation 0.1 added
after the mixture (additive noise).

4.3 Results

The algorithm shown above is extremely fast – for example,
for the two toy datasets above it takes less than a second to
estimate all the three variables. Furthermore, we did not im-
plement a convergence criterion and simply do 100 cycles
of the optimization on M, A and z0. Implementation of a
proper convergence criterion will likely make the algorithm
significantly faster, as the first 20 to 30 iterations are usually
enough to obtain convergence, as shown in Figure 1.

Figure 2 shows the results of the estimation of the source

amplitudes, showing that Â is virtually equal to the real A

0 20 40 60 80 100
10

0

10
1

10
2

10
3

Figure 1: Evolution of the cost function as a function of the
iteration for dataset 2.

0 20 40 60 80 100 0 20 40 60 80 100

Figure 2: Visual comparison of the estimated amplitudes Â
(red dots on the left side, red lines on the right side) with the
true amplitudes A (black lines). (Left) Results for dataset
1: the three estimated and true amplitudes coincide perfectly.
(Right) Results for dataset 2: due to the presence of noise,
it is impossible for the five estimated amplitudes to coincide
perfectly with the true ones, but nevertheless the estimated
amplitudes follow the real ones very well.

for dataset 1 and that it is approximately equal to A for
dataset 2. Note that if noise is present, it is impossible to
recreate the original amplitudes as they are only present in
the data corrupted by the noise. One can only estimate the
corrupted amplitudes. If desired, a simple low-pass filtering
procedure can closely recreate the original amplitudes.

Table 1 shows the API of the gain matrix G and the
worst-case angular distance in z0. These values show that
the result obtained on dataset 1 is near-perfect, and that it is
still very good for dataset 2. An important remark is that our
previous algorithm, Independent Phase Analysis [3], yields
a performance for similar datasets that is worse, especially
under noise. IPA also takes considerably longer to run.

5. DISCUSSION

The above results show that this approach has a high poten-
tial, although some limitations must be addressed to turn this

Data API(G) Angular distance (rad)

Dataset 1 0.0019 0.0020
Dataset 2 0.0520 0.0271

Table 1: Comparison of the estimated mixing matrix M̂ with
the true mixing matrix M through the Amari Performance

Index of the gain matrix G≡ M̂+M, and comparison of the
estimated and true phases ẑ0 and z0 through the worst-case
angular deviation. For zero noise (dataset 1), the estimation
is near-perfect. The presence of noise understandably deteri-
orates the results, which are nevertheless still very good.

1731

algorithm practical for real-world applications.
Throughout this paper we assumed that the matrix Φ,

containing the oscillations common to all the sources, is
known. In real applications this is often not the case. How-
ever, if the data is noiseless and well-sampled enough that
the phase of two consecutive points never jumps by a value
greater than π , it is a very simple procedure to obtain Φ from
the data X: since Φ is also a factor in X, one can simply
unwrap the phase [7] of one of the measured signals and use
its phase time-series as the common oscillation.

If the sources are not perfectly phase-locked, their pair-
wise phase differences ∆φi j are not constant in time and
therefore one cannot represent the source phases by a single
vector z0. We are investigating a way to estimate the “most
common” phase oscillation Φ from the data X, after which
PLMF can be used to initialize a more general algorithm that
estimates the full Z ≡ Φ⊙Z0. We are currently testing this
more general algorithm, which optimizes Z with a gradient
descent algorithm. Yet, it is somewhat prone to local minima.
A good initialization is likely to circumvent this problem.

Another limitation of PLMF is the indetermination that
arises if two sources have ∆φi j = 0 or π . In that case, the
problem becomes ill-posed, as was already the case in IPA
[3]. In fact, using sources with ∆φi j <

π
10

starts to deteriorate
the results of PLMF, even with zero noise.

We did not tackle in this paper the case of sources orga-
nized in subspaces, i.e., where several clusters of sources are
present in the data such that the intra-cluster phase synchrony
is high but the inter-cluster phase-synchrony is low. We have
previously shown that TDSEP can properly separate the sub-
spaces from each other but fails to separate the sources within
each subspace [1, 3, 2]. After running TDSEP, an algorithm
such as PLMF can properly yield a full separation.

6. CONCLUSION

We presented Phase Locked Matrix Factorization (PLMF),
an algorithm that directly tries to reconstruct a set of mea-
sured signals as a linear mixing of phase-locked sources, by
factorizing the data into a product of three variables: the mix-
ing matrix, the source amplitudes, and their phases.

The results show that the proposed algorithm is fast, ac-
curate, and can deal with low noise under the assumption
that the sources are fully phase-locked. This approach opens
a new research front in blind source-separation of phase-
locked signals using concepts from matrix factorization.

Acknowledgements: This work was partially funded by
the DECA-Bio project of the Institute of Telecommunications,
and by the Academy of Finland through its Centres of Excel-
lence Program 2006-2011.

REFERENCES

[1] M. Almeida, J. Bioucas-Dias, and R. Vigário. Inde-
pendent phase analysis: Separating phase-locked sub-
spaces. In Proceedings of the Latent Variable Analysis
Conference, 2010.

[2] M. Almeida, J. Bioucas-Dias, and R. Vigário. Detection
and separation of phase-locked subspaces with phase
noise. Signal Processing, (submitted), 2011.

[3] M. Almeida, J.-H. Schleimer, J. Bioucas-Dias, and
R. Vigário. Source separation and clustering of phase-

locked subspaces. IEEE Transactions on Neural Net-
works, (accepted), 2011.

[4] S. Amari, A. Cichocki, and H. H. Yang. A new learning
algorithm for blind signal separation. Advances in Neu-
ral Information Processing Systems, 8:757–763, 1996.

[5] A. Ben-Israel and T. Greville. Generalized inverses:
theory and applications. Springer-Verlag, 2003.

[6] J. Bioucas-Dias and M. Figueiredo. Alternating direc-
tion algorithms for constrained sparse regression: Ap-
plication to hyperspectral unmixing. In 2nd workshop
on Hyperspectral Image and Signal Processing: Evolu-
tion in Remote Sensing (WHISPERS), 2010.

[7] J. Bioucas-Dias and G. Valadão. Phase unwrapping via
graph cuts. IEEE Transactions on Image Processing,
16:698–709, 2007.

[8] A. Hyvärinen, J. Karhunen, and E. Oja. Independent
Component Analysis. John Wiley & Sons, 2001.

[9] E. Izhikevich. Dynamic Systems in Neuroscience. MIT
Press, 2007.

[10] Y. Kuramoto. Chemical Oscillations, Waves and Tur-
bulences. Springer Berlin, 1984.

[11] D. Lee and H. Seung. Algorithms for non-negative ma-
trix factorization. In Advances in Neural Information
Processing Systems, volume 13, pages 556–562, 2001.

[12] P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S.
Wijesinghe, D. M. Tucker, R. B. Silberstein, and
P. J. Cadusch. EEG coherency I: statistics, refer-
ence electrode, volume conduction, laplacians, cor-
tical imaging, and interpretation at multiple scales.
Electroencephalography and clinical Neurophysiology,
103:499–515, 1997.

[13] J. M. Palva, S. Palva, and K. Kaila. Phase synchrony
among neuronal oscillations in the human cortex. Jour-
nal of Neuroscience, 25(15):3962–3972, April 2005.

[14] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchro-
nization: A universal concept in nonlinear sciences.
Cambridge Nonlinear Science Series. Cambridge Uni-
versity Press, 2001.

[15] J.-M. Schoffelen, R. Oostenveld, and P. Fries. Imaging
the human motor system’s beta-band synchronization
during isometric contraction. NeuroImage, 41:437–
447, 2008.

[16] S. Strogatz. From kuramoto to crawford: exploring the
onset of synchronization in populations of coupled os-
cillators. Physica D, 143:1–20, 2000.

[17] S. Strogatz. Nonlinear Dynamics and Chaos. Westview
Press, 2000.

[18] P. J. Uhlhaas and W. Singer. Neural synchrony in brain
disorders: Relevance for cognitive dysfunctions and
pathophysiology. Neuron, 52:155–168, Oct 2006.

[19] R. Vigário, J. Särelä, V. Jousmäki, M. Hämäläinen, and
E. Oja. Independent component approach to the anal-
ysis of EEG and MEG recordings. IEEE Trans. On
Biomedical Engineering, 47(5):589–593, May 2000.

[20] A. Ziehe and K.-R. Müller. TDSEP - an efficient al-
gorithm for blind separation using time structure. In
International Conference on Artificial Neural Networks
(1998), pages 675–680, 1998.

1732

