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ABSTRACT 

Equalization of non-stationary communication channels is 

preferably blind, to minimise overheads that reduce data 

throughput, and adaptive so as to track the channel character-

istic. In this paper we consider the use of a single-channel lin-

ear predictor as an equalizer for multi-carrier modulated 

(MCM) signals. The MCM method with its cyclic-prefix has a 

level of tolerance for inter-symbol interference. We show that 

despite an intrinsic minimum-phase characteristic, the predic-

tor can equalize mixed-phase ADSL test channels satisfactorily. 

We also show that by increasing the predictor delay, channel-

shortening may be explicitly introduced, and that use of this 

version of the predictor improves equalization performance at 

higher channel noise levels. Minimising computation loads of 

blind equalization algorithms is also desirable. The predictor 

has significantly lower computational load than other blind 

equalization schemes, though at a cost of lower convergence 

speed. There is potential for faster adaptation while retaining a 

lower computational load than other schemes.  

1. INTRODUCTION    

Blind channel equalization refers to equalization of a communi-

cations channel without knowledge of the transmitted data con-

tent. The ability to equalize without knowing the data removes 

the requirement for training sequences within the data. This in-

creases the efficiency of the data transfer, particularly of non-

stationary channels where the equalization must be periodically 

or adaptively updated.  

 Instead of knowledge of the data, blind equalization tech-

niques use knowledge of some general characteristic or property 

of the expected signal, such as the signal format or a statistical 

parameter, to equalize the channel. The term “property-restoral” 

is often used to describe this action. For example, the constant 

modulus algorithm (CMA) expects a constant modulus in a 

QPSK-modulated signal, and adjusts an equalizer to restore this 

property to a received signal. 

Multi-Carrier Modulation (MCM) is a scheme that simulta-

neously transmits multiple “sub-carriers” of orthogonal frequen-

cies within the transmitted signal.  It is in wide operational use, 

being the modulation scheme used by, for example, Digital Sub-

scriber Line (DSL), Digital Audio Broadcasting (DAB) and 

IEEE802.11 “Wi-Fi”. MCM is capable of tolerating a limited 

degree of inter-symbol interference (ISI) due to its inclusion of a 

Cyclic Prefix (CP) between symbols, though if the channel im-

pulse response length exceeds the CP length, ISI will begin to 

degrade the transmission. This has an important implication for 

MCM signal equalization.  The channel impulse response need 

only be reduced in length —i.e. “shortened”— to the length of 

the CP.  

Relevant examples of blind channel-shortening methods for 

MCM are Sum-squared Auto-correlation Minimization (SAM) 

[1], Partial Update SAM [2] and Lag-hopping SAM [3]. These 

explicitly restore the low-autocorrelation property of MCM sig-

nals.   The basic SAM algorithm [1] has high computational 

complexity requiring typically several thousand multiply-

accumulate operations per signal sample; the two latter methods 

aim to reduce its complexity. 

A Linear Predictor may be used for equalization, as it oper-

ates by minimising autocorrelation. For example, it is used as 

part of an acoustic equalization scheme in [4]. It has the impor-

tant drawback however that, when in forward predictor form, it 

always produces minimum-phase zeros [5]; this makes it inca-

pable of equalizing maximum-phase poles, and thus of fully 

equalizing mixed-phase channels.  

A more complex oversampling version of the linear predic-

tor for equalization, exploiting cyclostationarity, has been pro-

posed in [6]. The intention is to allow phase information to be 

retained by the equalizer and thus allow the predictor to equalize 

mixed-phase channels. (It is interesting though to note in [8] that 

an oversampling linear-predictor exhibits inferior performance 

for a non-minimum phase channel.) In [7] a hybrid form using 

both predictor and Subspace methods is proposed. However, the 

cyclostationarity methods are computationally complex, and are 

not included here.  

In this paper we propose a novel, simple, adjustment to the 

single channel linear predictor that makes it operate as a chan-

nel-shortener. We examine the performance of the predictor in 

equalizer and shortener forms for high and low signal-to-noise 

ratio scenarios. Mixed-phase ADSL test channels, chosen to 

allow comparison with earlier research such as in [1].  

  In sections 2 and 3 we describe the linear predictor as an 

equalizer and as a channel-shortener, then in section 4 the sys-

tem model and test model. In section 5 we show the modelled 

results and in section 6, conclusions.  

2. THE LINEAR PREDICTOR 

The Linear Predictor is an algorithm that predicts the value of a 

sample of a sequence from a linear combination of the other 

samples. Typically, a Forward Linear Predictor (FLP), as shown 

in Figure 1, will predict the most recent sample of the sequence 

from older samples. The coefficients of the combination are 

obtained by comparison of the actual value and the predicted 

value.    
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Figure 1    Forward Linear Predictor 

The predicted value of x(n), x̂ (n), is given by: 
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The prediction error is then given by: 
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(The above syntax is taken from [5].) 

A static solution to the coefficients may be obtained by 

minimising the mean-square of fp(n); a set of normal equations is 

obtained from sample data, and solved using a method such as 

the Levinson-Durbin algorithm.  

An adaptive solution, more appropriate to a non-stationary 

channel, may be obtained using the steepest-descent method or 

the least-mean-squares (LMS) method. Both methods minimise 

the mean-square of fp(n). The LMS method is used here.  

Minimising the mean-square of fp(n) implies minimising the 

correlation between samples of the fp(n) sequence. The predicted 

sequence x̂ (n) may be considered as that part of the signal x(n) 

that is correlated with the earlier samples, and hence is predict-

able.  Thus, fp(n) is x(n) with correlated terms removed.  

This then is applicable to channel equalization. If an inde-

pendent and identically distributed (i.i.d) data sequence d(n) is 

passed through a channel h, its output x(n) becomes autocorre-

lated according to the impulse response of h.  The linear predic-

tion function, where the output is fp(n), will remove the autocor-

relation of  x(n); with an important qualification, this may be 

seen as an equalizer of h.  In this mode, where the prediction 

error signal fp(n) is also the system output, the predictor is called 

a Prediction-Error Filter. 

The characteristics of the linear predictor are well-

understood, [5]. Two will be mentioned here. First, the adapta-

tion algorithm relies on minimising autocorrelation within x(n). 

It is thus prone to adapt the filter to false zeros in the z-plane, 

that minimise autocorrelation but do not equalize the channel. 

(This is the “zero-flipping” phenomenon described in [9].) Sec-

ond, the zeros of a forward linear predictor will be minimum-

phase; similarly the zeros of backward linear predictor (BLP) 

will be maximum-phase [5]. The consequence of these two 

characteristics is that a prediction-error filter will be unable to 

fully equalize a mixed-phase channel; an FLP will introduce 

minimum-phase zeros where there should be maximum-phase 

zeros, and a BLP will introduce maximum-phase zeros where 

there should be minimum-phase zeros.  

Nonetheless, it is worthwhile examining the equalization be-

haviour of a prediction-error filter, particularly since it has a low 

computational cost when the LMS adaptation is used. In the case 

of the ADSL test channels—mixed-phase but in the main mini-

mum-phase—it is plausible that most of the channel will be 

equalized, leaving an acceptable residual.   

3. CHANNEL-SHORTENING LINEAR PREDICTOR  

Modifying the linear predictor so that it predicts D samples 

(rather than 1 sample) into the future has the effect of changing 

the associated prediction-error filter from a channel equalizer to 

a channel-shortener. Consider the predicted value of x(n), x̂ (n), 

given by: 
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and the prediction error fp(n): 
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The prediction error only takes into account the autocorrelation 

of x(n) with samples at least D intervals older, and filter coeffi-

cients will be obtained accordingly. As a result, samples of the 

error sequence fp(n) less than D intervals apart will remain corre-

lated. Effectively, where x(n) is derived from an i.i.d signal d(n) 

and a channel h, the channel impulse response has been short-

ened to a length D.  

This may be illustrated by considering a channel h1with a 

single pole, equalized by a prediction-error filter with a delay D. 

The channel is: 

����� � 1
1 � ����� � 	 ����

�

��
 , |��| ! 1,   

The prediction-error filter, with one non-zero coefficient, is: 

"���� � 1 � ������. Then the effective channel:  
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So the effective channel c1 impulse response— h1 shortened by 

the prediction error filter w1— is equal to the first D terms of the 

impulse response of h1, and zero thereafter; that is, c1 is a short-

ened version of h1, of impulse response length D.  

An adaptive version of this Delayed Forward Linear Predic-

tor (DFLP), using LMS adaptation, was simulated to ascertain 

its behaviour with modelled mixed-phase ADSL channels.  

4. SYSTEM MODEL AND SIMULATION 

The system model is shown in Figure 2. The transmission chan-

nel h is represented as a linear finite impulse-response (FIR) 

filter of length Lh +1, and the channel-shortener w is an FIR 

filter of length Lw+1. The input signal d(n) represents the MCM-

modulated signal. The added noise v(n) is uncorrelated with the 

channel output, is zero-mean and independent and identically 

distributed (i.i.d). All signals are modelled here as real. 
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Figure 2    Transmission System Model 

The input data to the receiver, x(n), and y(n), the output of 

the channel-shortener w, are given by:  
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The effective channel c is obtained by the discrete convolu-

tion of h and w, i.e. c = h * w; of length Lc + 1, where       Lc = 

Lw + Lh.  

Since w is a prediction-error filter, then: 
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Note that w(0) =1, a fixed value. The remaining variable ele-

ments of w, the predictor coefficients, are here designated as the 

vector wp.  

Adapting and executing the filter using the steepest-descent 

method has a computational load of the order of 2.Lw
2
 multiply-

accumulate (MAC) operations per sample, whereas the LMS 

method requires about 3.Lw MAC operations per sample.  This 

vector is adaptively updated in the LMS manner to stochastically 

minimise the mean-square of y(n), as: 

-.,/0�= -.,/ �  2. 3. +���. 4�n � 1� 

where y(n) is both the predictor error and the filter output, µ 

is the adaptation coefficient, and x(n) is the input vector.  

 The delayed prediction error filter is updated in the same 

way, with the addition that the initial D-1 elements of wp are 

always 0.  

The linear predictor algorithms were simulated according to 

the above model to evaluate their performance; the model code 

available at [10] was used as a starting point. As with previous 

work, the modelled MCM signal symbol FFT size is 512 sam-

ples and the CP-length 32. The 8 ADSL model test channels 

CSA 1-8 were used, as available from [11] and described in 

[12]. These channels are mixed-phase but with mainly mini-

mum-phase components, and selected to allow comparison with 

earlier work such as [1]. Near-end Crosstalk (NEXT) noise was 

selected to be the additive noise source, and a range of Signal-to-

Noise (SNR) values used.  

The main measure of performance is Achievable Bit-Rate 

(ABR) rather than Bit-Error Rate, since MCM signals typically 

adapt the bit-rate to that which is achievable given the SNR of 

the current channel. ABR is evaluated as in [1].  

5. SIMULATION TESTS AND RESULTS 

The effectiveness of the Forward Linear Predictor (in Predic-

tion-Error Filter form) as an equalizer was tested on the 8 test 

channels. The filter length was 16 taps (including the initial 

fixed tap), and the adaptation coefficient µ was set to 0.01; these 

parameters being empirically chosen to provide effective per-

formance over the SNR range.  

The delayed prediction-error filter was also tested on all the 

test channels. The results shown here are for D = 17 taps, that is, 

16 taps are forced to 0. The number of active filter taps (includ-

ing the initial fixed tap) is 24. The adaptation coefficient µ was 

set to 0.003. It was observed that a delay (D) of 32—the length 

of the signal CP—produced very poor results, as the minimum-

phase channel components were shortened to 32 samples, and 

the additional maximum-phase components then lengthened the 

effective channel to greater than 32 samples, i.e. longer than the 

guard interval.  

 

 
Figure 3  Ch. 3 Equalization by FLP, 45dB and 20dB  

The tests were executed for SNR values of 20dB and 45dB, 

for scenario lengths of 120 symbols. Achievable Bit-Rate and 

convergence time are the main outcomes monitored.  

Results are compared against the SAM algorithm [1]. The 

SAM shortening filter was initialised to a spike in the middle 

filter tap. The autoregressive adaptation mode was implemented, 

with per-sample updates, and the adaptation constant was 20.  

The algorithms were executed on all 8 test channels; results 

are shown here for Channel 3. Figure 3 shows the convergence 

of the ABR for Channel 3 being equalized by the basic FLP, for 

scenario SNRs of 45dB and 20dB. The Matched-Filter Bound 

(MFB) for the channel is included for comparison. Equivalent 

results for the SAM algorithm are shown in Figure 5.  

(Note that there are 544 samples in a Symbol, and 10
4
 sam-

ples is approximately 18 Symbols.) 
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Figure 4   Channel 3, FLP and Effective Channel IRs 

The impulse responses (IRs) of the channel, the equalized chan-

nel and the equalizer are shown in Figure 4 for the 45dB sce-

nario. The equalized channel IR has not reduced to a single 

spike, but to the minimum-length impulse response possible 

where the mixed-phase channel is equalized by a minimum-

phase filter.    

 

 
 

Figure 5 Ch. 3 Equalization by SAM, 45dB and 20dB 

 

 
Figure 6  Ch. 3 Equalization by DFLP, 45dB and 20dB 

 

Figure 6 shows the ABR convergence and Figure 7 the IRs for 

the Delayed FLP (DFLP), the channel-shortening version of the 

FLP.   It can be seen that the shortened channel IR and the chan-

nel IR are coincident for the first 17 taps, after which the short-

ened channel IR energy falls to near-zero.   

 

 
Figure 7   Channel 3, DFLP and Effective Channel IRs 
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Comparison of the Achievable Bit-Rate for the different equal-

izers or shorteners shows: 

1. At 45dB, the SAM algorithm is significantly faster than the 

FLP, and the DFLP is slowest. For the particular adaptation 

constants used here, and measuring the time taken to converge to 

80% of the final value, SAM is about 25 times faster than the 

FLP, and 80 times faster than the DFLP.  

2. The FLP achieves the highest level of ABR over this length 

of scenario. Longer scenarios show that the SAM algorithm 

ABR wanders, and the FLP delivers consistently higher ABR 

than SAM. The DFLP performance is lower than the FLP, but is 

higher than SAM.  

3. For the 20dB scenario the SAM algorithm remains fastest, 

but the DFLP delivers higher ABR than SAM or the FLP. This 

is the case for each of the 8 channels, with the DFLP being bet-

ter than SAM and the FLP by a factor between 2 and 5. Lower-

ing the adaptation step size for SAM by a factor of 16 did not 

improve its ABR.  

It is assumed here that this improved behaviour is due to 

lower noise of the DFLP filter, given the lower level of the tap 

coefficients.  

4. Inspection of the z-plane zeros of the original channel and 

the effective channel after equalization by the linear predictors 

shows that channel maximum-phase zeros (those outside the 

unit-circle) remain after equalization. This is as expected, since 

the FLP and DFLP are constrained to be minimum-phase. The 

energy of the maximum-phase zeros remains in the effective IR, 

so the FLP by attempting equalization has effectively shortened 

the channel to the length of the maximum-phase channel zeros.  

The significant observation is that the linear predictor, equal-

izing only with minimum-phase zeros, provides an effective 

shortening algorithm for the 8 mixed-phase ADSL test channels.   

The retention of the maximum-phase channels may also be 

seen in the behaviour of the DFLP. When the predictor delay D 

was extended beyond 24, the performance dropped markedly, 

since the effective channel then included the maximum-phase 

zeros and a longer minimum-phase IR.    

6. CONCLUSION 

Two primary outcomes are demonstrated here by these results. 

A single-channel forward linear predictor will effectively equal-

ize a mixed-phase (though mainly minimum-phase) ADSL 

channel, by reducing the channel IR to its maximum-phase ze-

ros.  By including a delay in the predictor, the Delayed FLP will 

introduce channel-shortening.    

The FLP and DFLP are much lower in computational load 

than another blind autocorrelation based algorithm, SAM. If a 

channel length of 100 is assumed (a parameter in the SAM algo-

rithm), the load improvement is by about two orders of magni-

tude.  

This comes at a cost in speed; the linear predictors are sig-

nificantly slower than the SAM algorithm. Although not demon-

strated here, introduction of the steepest-descent adaptation algo-

rithm is likely to remove much of the speed difference, while 

retaining a computational load improvement over SAM by about 

one order of magnitude.  

The Delayed FLP algorithm shows no advantage over the 

FLP for high SNR scenarios, however for the lower SNR sce-

nario, it delivered a significantly better equalization performance 

over both SAM and the FLP.  This is interesting for equalization 

of noisier channels.  

The limitation that a forward linear predictor always has 

minimum-phase zeros (and conversely, maximum-phase zeros 

for a backward predictor) remains, so that an FLP or DFLP can-

not fully equalize a mixed-phase channel. But for schemes such 

as MCM that can tolerate a limited amount of ISI, this work 

demonstrates that the predictor can act as an effective blind 

equalizer while only equalizing minimum-phase channel com-

ponents. There is potential for the use of the predictor to be ex-

plored for other mixed-phase channels, such as wireless chan-

nels.  
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