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ABSTRACT 
In this paper, the design of variable fractional order differ-
entiator (VFOD) using expansion of hyperbolic function is 
presented. First, the ideal frequency response is decomposed 
into the sum of hyperbolic cosine and sine functions. Then, 
the power series expansions of hyperbolic functions are used 
to implement VFOD. The proposed VFOD requires less 
storage requirement of filter coefficients and implementation 
complexity than the conventional Farrow structure at cost of 
longer filter delay. Finally, the numerical examples are 
demonstrated to show the effectiveness of the proposed de-
sign approaches.  

1. INTRODUCTION 

    In recent years, fractional calculus has been received great 
attentions in many engineering applications and science in-
cluding image processing, automatic control, electromagnetic 
theory and electrical networks [1]-[9]. The integer order de-

rivative q

q

dx
xfd )(  of a function )( xf  has been generalized 

to the fractional order derivative p

p

dx
xfd )( , where q  is an in-

teger and p  is a fractional number. One of important re-
search topics of digital signal processing in fractional calcu-
lus is to design a fractional order differentiator (FOD) such 
that the fractional order derivative of a digital signal can be 
obtained by using FOD. The ideal frequency response of 
fractional order differentiator is given by 

                        Djp
d ejpH ωωω −= )(),(                   (1) 

where D  is a prescribed integer delay and p  is a fractional 
number in the range ]5.0,5.0[− . Thus, the FOD design 
problem is how to find a filter such that its actual frequency 
response fits the ideal response ),( pH d ω  as well as pos-
sible. When the order p  is fixed, it is called the fixed frac-
tional order differentiator (FFOD) design [4]-[6]. If the order 
p  is adjustable, it is called the variable fractional order 

differentiator (VFOD) design. This problem is a research 
branch of variable filter design.  So far, several methods 
have been proposed to solve the VFOD design problem such 
as the weighted least squares method [7][8] and series ex-
pansion method [9]. Each method has its unique features. 

    In the conventional VFOD design, the Taylor series expan-
sion of filter coefficient is used to decompose the design of 
fractional order differentiator into some fixed sub-filters de-
signs. Then, the WLS method is applied to design sub-filters. 
One of the main advantages of this approach is that the de-
signed variable fractional order differentiator can be imple-
mented efficiently by using Farrow structure [7]. Except Tay-
lor series expansion, there exist various power series expan-
sion methods in the literature [10]. Thus, it is interesting to 
use these expansion methods to design variable fractional 
order differentiators. The purpose of this paper is to study the 
hyperbolic function based expansion design method and to 
compare this method with conventional Taylor series expan-
sion method. 
    This paper is organized as follows. In section II, the con-
ventional WLS design of variable fractional order differenti-
ator using Taylor series expansion is first described briefly. In 
section III, the ideal frequency response is decomposed into 
the sum of hyperbolic cosine and sine functions. Then, the 
power series expansions of hyperbolic functions are used to 
obtain two implementation structures of variable fractional 
order differentiator which only contains two kinds of sub-
filters. Finally, some numerical examples are demonstrated to 
show the effectiveness of the proposed design methods and 
conclusions are made. 

2. CONVENTIONAL DESIGN 

  In this section, the conventional WLS method will be re-
viewed briefly. The transfer function of the variable FIR filter 
used to approximate ),( pHd ω  is chosen as follows:  

                         n
N

n
n zphpzH −

=
∑=

0
1 )(),(                  (2) 

Using the Taylor series expansion, filter coefficient )( phn  
can be expressed as power series form: 

                            ( ) ∑
∞

=

=
0m

m
nmn paph                         (3) 

Because p  is a fractional number, )( phn  can be truncated 
into the polynomial function in p  of degree M  below: 

                             ( ) ∑
=

≈
M

m

m
nmn paph

0

                       (4) 
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Since coefficient )( phn  is real valued, the frequency re-

sponse ),(1 peH jω  is conjugate symmetric, i.e., 

                          *
11 ),(),( peHpeH jj ωω =−               (5) 

where * denotes the complex conjugate. Substituting (4) into 
(2), the transfer function can be rewritten as 

                  

∑

∑ ∑

=

= =

−

=

=

M

m

m
m

m
M

m

N

n

n
nm

pzA

pzapzH

0

0 0
1

)(

),(
               (6) 

where n
N

n
nmm zazA −

=
∑=

0

)( . Thus, the filter ),(1 pzH  can 

be implemented by the structure I shown in Fig.1(a) once the 
sub-filters )( zAm  have been designed. This structure is the 
well-known Farrow structure in the literature. Because the 
sub-filters )( zAm  are all fixed, we can adjust the parameter 
p  to change the order of the differentiator. Now, the design 

problem becomes how to find nma  such that the frequency 

response ),(1 peH jω  fits ),( pHd ω  as well as possible. In 
the following, the weighted least squares method is described. 
Using the lexicographic ordering to map two-dimensional (2-
D) sequences into one-dimensional (1-D) sequences, the fre-
quency response ),(1 peH jω can be rewritten as 

                         ),(),(1 ppeH Tj ωω ca=                        (7) 
where superscript T denotes transpose and two vectors are 
defined by 

  
TMNjjj

T
NM

pepepep

aaa

][),(

][
1000

0100
ωωωω −−−=

=

L

L

c

a
   (8) 

In WLS method, the coefficient vector a  is obtained by 
minimizing the weighted least squares error below: 

dpdpHpeHpWJ d
j ωωω

Ω

ω∫ ∫−
−=

5.0

5.0

2

11 ),(),(),()(a  (9) 

where ),( pW ω is a nonnegative weighting function, and 

region −+ ∪= ΩΩΩ  with interested frequency bands 
given by ],[ 21 ωωΩ =+  and ],[ 12 ωωΩ −−=− . Substi-
tuting (7) into (9) and using conjugate symmetry in (5), we 
get 

r

dpdpHppWJ
TT

d
T

+−=

−= ∫ ∫−

φaΦaa

caa

2

),(),(),()(
5.0

5.0

2

1 ωωωω
Ω  (10) 

where matrix Φ  vector φ  and scalar r  are given by 
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where superscript H denotes the Hermitian and Re[.] stands 
for real part of a complex number. Because )(1 aJ  is a 

quadratic function of a , the optimal solution is unique and 
can be obtained by solving simultaneous linear equation: 
                                   φΦa =                                        (12) 

Since matrix Φ  is a positive-definite, real and symmetric 
matrix, the simultaneous linear equation can be solved by a 
computationally efficient method, like Cholesky decomposi-
tion. Now, let us study one example below. 
Example 1: In this example, the performance of Farrow 
structure is studied. The design parameters are chosen as 

40=N , 5=M , 20=D , 1),( =pW ω , 
πω 05.01 =  and πω 95.02 = . Fig.2(a)(b) show the 

magnitude response and absolute error of frequency response 
of the designed variable fractional order differentiator. To 
evaluate the performance, the normalized root mean squares 
(NRMS) error is defined by 
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Obviously, the smaller NRMS error kE , the better perform-
ance of the design method. In this paper, the double integrals 
in Eq.(13) are computed by using numerical rectangular inte-
gration method in which the step size of ω  is 300

π  and the 
step size of p  is 40

1 . In this example, the NRMS error 1E  
is 0.6028%. Because the sub-filters )(zAk  are not linear 
phase filters, the number of filter coefficients needed to be 
stored in memory is 246)1)(1( =++ MN . This number is 
often large, so it is an interesting research topic to reduce the 
memory requirement of filter coefficient storage in the 
Farrow structure of Fig.1(a). In this paper, the expansion 
method of hyperbolic function will be used to achieve this 
purpose. Moreover, the number of multiplications to imple-
ment all sub-filters of the Farrow structure I in Fig.1(a) is 

246)1)(1( =++ MN  for this example. 

3. PROPOSED DESIGN METHOD 

  In this section, the hyperbolic function is first reviewed. 
Then, the power series expansions of hyperbolic functions 
are used to design variable fractional order differentiator. 
Two implementation structures are developed which only 
contain two kinds of sub-filters, so the memory requirement 
of filter coefficient storage can be reduced. 
3.1 Hyperbolic Function 

The hyperbolic cosine and sine functions are defined by 

                           
2

cosh
xx eex

−+
=                         (14a) 

                           
2

sinh
xx eex

−−
=                         (14b) 

Clearly, xcosh  is an even function, and xsinh  is an odd 
function. It is easy to show that the following equality is 
valid: 
                        xxe x sinhcosh +=                     (15) 
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This means that the exponential function is the sum of hy-
perbolic cosine and sine functions. Once xcosh  and 

xsinh  are expanded into the infinite series, the exponen-
tial function xe  is expanded. In what follows, two struc-
tures are studied: 
3.2 Structure II 

From the book [10], we have the power series expansion 
of hyperbolic function: 

                        ∑
∞

=

=
0

2

)!2(
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k

k

k
xx                           (16a) 
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=
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Substituting (16) into (15), we have 
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Because the frequency response pj )( ω  is rewritten as the 
following form: 

                       )ln(

)ln()(
ω

ωω
jp

jp

e
ej

p

=

=
                            (18) 

Using (18) and the variable substitution )ln( ωjpx = , 
equation (17) reduces to 
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Because the p  is a fractional number, the above series ex-
pansion can be truncated into the following form 
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In the above, the truncation orders of both series expansions 
are chosen as  L . Choosing RLD )1( +=  and multiply-

ing both sides of (20) by the factor Dje ω− , we obtain the 
following expression: 
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                                                                                            (21) 
If two sub-filters )(zB  and )(zF  are designed to satisfy    
the following two approximation conditions: 

                      Rjj ejeB ωω ω −≈ 2)][ln()(                      (22a) 

                       Rjj ejeF ωω ω −≈ )ln()(                         (22b) 
then the frequency response of the following filter 
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will approximate the ideal response ),( pH d ω  well. 
Moreover, the above filter can be implemented efficiently 
by using the structure II in Fig.1(b) where we choose 

2=L . In this structure, the sub-filters corresponding to 
kp 2  and 12 +kp  share the same filter kzB )( . Compared 

the structures in Fig.1(a)(b), three observations are made 
below: 
 (1) Storage requirement: There are 1+M  sub-filters 

)( zAk  needed to be designed and implemented in struc-
ture I, but there are only two sub-filters )( zB  and )(zF  
needed to be designed and realized in structure II. So, the 
memory storage of filter coefficients in structure II is less 
than that of conventional structure I. 
(2) Filter delay: The delay D  of structure I is often chosen 
as half order of sub-filters )(zAk  in (6), that is, 2

ND = . 

And, the delay of structure II is 2)1()1( NLRLD ×+=+=  if 
delay of sub-filters )(zB  and )(zF  is chosen as 2

NR = . 
So, the delay of structure II is greater than the one of struc-
ture I. 
(3) Implementation complexity: The structure I needs to 
implement 1+M  sub-filters, but the structure II only 
needs to implement 1+L  sub-filters. In this paper, the L  
is chosen half of M , so the implementation complexity of 
structure II is less than that of structure I. This is because 
the sub-filters corresponding to kp 2  and 12 +kp  share the 
same filter kzB )(  in the structure II. 
  Now, the remaining problem is how to design two sub-
filters )( zB  and )(zF  in structure II. The transfer func-
tions of two sub-filter are chosen as 

                             n
N

n
znbzB −

=
∑=

0
)()(                          (24a) 

                             n
N

n
znfzF −

=
∑=

0
)()(                        (24b) 

 And, the filter coefficients are determined by minimizing the 
following cost function: 

   ωω
ω

ω

ωω dejeBJ Rjj
2

2
2

2

1

)][ln()()( ∫ −−=b   (25a)  

   ωω
ω

ω

ωω dejeFJ Rjj
2

3
2

1

)ln()()( ∫ −−=f      (25b) 

where the coefficient vectors  TNbbb )]()1()0([ L=b  
and  TNfff )]()1()0([ L=f . Because this is a stan-
dard least squares FIR filter design problem, its optimal solu-
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tion can be obtained easily [11]. Moreover, the delay R  is 
often chosen as half order of sub-filter, so we select 2

NR =  
in the design of structure II. Now, let us study one example 
below. 
Example 2: In this example, the performance of structure II 
is studied. The design parameters are chosen as 40=N , 

2=L , 20=R , 60)1( =+= RLD , πω 05.01 =  and 
πω 95.02 = . Fig.3(a)(b) show the magnitude response and 

absolute error of frequency response of the designed variable 
fractional order differentiator. In this example, the NRMS 
error 2E  is 0.5192%. The number of filter coefficients of 
sub-filters )( zB  and )(zF  needed to be stored in memory 
is 82)1(2 =+N . Moreover, the number of multiplications to 
implement all sub-filters of the structure II in Fig.1(b) is 

123)1)(1( =++ LN  for this example. 
3.3 Structure III 
  In equation (20), the truncation orders of both series ex-
pansions are equal to L . In fact, these two truncation or-
ders may differ. Now, one of the other choices is studied 
below: 
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Clearly, the truncation orders of two series expansions are L  
and 1−L . Choosing LRD =  and multiplying both sides 
by the factor Dje ω− , we obtain the following expres-
sion:
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                                                                                             (27) 
Using the approximations of two sub-filters )( zB  and 

)(zF  in equation (22), then the frequency response of the 
following filter 
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will approximate the ideal response ),( pH d ω  well. The 
above filter can be implemented efficiently by using the 
structure III shown in Fig.1(c) where we choose 3=L . In 
this structure, the sub-filters corresponding to kp 2  and 

12 +kp  also share the same filter kzB )( . The comparisons 
of structure III with conventional Farrow structure in Fig.1(a) 

are similar to those of structure II, so they are omitted here. 
The designs of sub-filters )(zB  and )(zF  in structure III 
are also same as those in structure II. Now, let us study one 
design example of structure III below. 
Example 3: In this example, the performance of structure III 
is studied. The design parameters are chosen as 40=N , 

3=L , 20=R , 60== LRD , πω 05.01 =  and 
πω 95.02 = . In this example, the NRMS error 3E  is 

0.5120%. The number of filter coefficients of sub-filters 
)( zB  and )(zF  needed to be stored in memory is 

82)1(2 =+N . Moreover, the number of multiplications to 
implement all sub-filters of the structure III in Fig.1(c) is 

164)1)(1( =++ LN  for this example.  
  Compared the results in examples 1-3, it is clear that the 
proposed structures II and III require less memory to store 
filter coefficients and less number of multiplications to im-
plement VFOD than conventional Farrow structure I. How-
ever, the proposed structures need a longer filter delay D . 

4. CONCLUSIONS 

   In this paper, a series expansion of hyperbolic function has 
been presented to implement variable fractional order differ-
entiator. As a result, the proposed VFOD requires less stor-
age requirement of filter coefficients and implementation 
complexity than conventional Farrow structure at expense of 
longer filter delay. Some numerical examples are demon-
strated to show the effectiveness of the proposed structure. 
However, only one-dimensional fractional order differenti-
ator is studied in this paper. Thus, it is interesting to extend 
the proposed method to design two-dimensional fractional 
order differentiator in the future. 
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Fig.1 (a)  Structure I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 (b)  Structure II. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Fig.1(c) Structure III. 
 
Fig.1 The structures for implementing the variable fractional 
order differentiator (a) Structure I with M=3. (b) Structure II 
with L=2. (c) Structure III with L=3. 

 
                        (a)                                              (b) 
Fig.2 The designed results of structure I. (a) Magnitude re-
sponse |),(| 1 peH jω  (b) Error |),(),(| 1 pHpeH d

j ωω −  of 
frequency response. 

 
                          (a)                                          (b) 
Fig.3 The designed results of structure II. (a) Magnitude re-
sponse |),(| 2 peH jω  (b) Error |),(),(| 2 pHpeH d

j ωω −  of 
frequency response. 
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