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ABSTRACT 

Digital video stabilization (DVS) allows acquiring video 

sequences without disturbing jerkiness, removing unwanted 

camera movements.  In this paper, we propose a novel DVS 

algorithm that adaptively compensates the camera jitters 

utilizing an adaptive fuzzy filter on the global motion of 

video frames. The adaptive fuzzy filter is a simple infinite 

impulse response (IIR) filter which is tuned adaptively by a 

fuzzy system. The fuzzy system has two inputs which are used 

as quantitative representations of unwanted and intentional 

camera motion.  The fuzzy system is also tuned adaptively 

during operation according to the characteristics of camera 

jitters. The global motion of video frames is estimated based 

on the block motion vectors which are resulted by video en-

coder during motion estimation operation. The  proposed 

method also utilizes an adaptive criterion for validating of 

motion vectors. Experimental results have indicated a good 

performance for the proposed DVS  algorithm. 

1. INTRODUCTION 

DIGITAL video stabilization techniques have been studied for 

decades to improve visual quality of image sequences      

captured by compact and light weight digital video cameras. 

When such cameras are hand held or mounted on unstable 

platforms, the captured video generally looks shaky because 

of undesired camera motions. Unwanted video vibrations 

would lead to degraded view experience and also greatly 

affect the performances of applications such as video        

encoding [1-2] and video surveillance [4]. With recent     

advances in wireless technology, video stabilization systems 

are also considered for integration into wireless video         

communication equipments for stabilization of acquired  

sequences before transmission, not only to improve visual 

quality but also to increase the compression performance [1]. 

A DVS system is implemented by software, which makes it 

easy to be miniaturized and updated. Consequently, DVS is 

suitable for portable digital devices, such as digital camera 

and mobile phone. 

     Generally a DVS system consists of two principal units:  

motion estimation (ME) and motion correction (MC) units. 

The ME unit estimates the global motion vectors (GMVs)      

between every two consecutive frames of the input video 

sequence. Using these GMVs, the MC unit then generates the 

smoothing motion vectors (SMVs) needed to compensate the 

frame jitters and warp the frames to create a more visual  

stable image sequence. 

   In the context of video stabilization, most previous           

approaches attempt to reduce the computational cost of ME 

by using fast algorithms [3, 5-7], or by limiting the global 

ME to small, pre-defined regions [5, 8]. Such approaches 

consider digital video stabilization and video encoding   

separately and attempt to trade the accuracy of motion      

vectors (MVs) for the computational efficiency.                

Nevertheless, they improve the computational efficiency at 

the expense of degradation in the accuracy of motion        

vectors. Since both the video encoder and the digital stabi-

lizer of a digital video camera need to compute the   image 

motion, we can integrate digital stabilizer with video encoder 

by making the two modules of a digital video camera share a 

common local motion vectors (LMVs) estimation process, as 

shown in figure1.   

     One of the essential tasks in DVS is to separate the      

unwanted hand jitters from the intentional camera movement 

utilizing the block motion vectors. The block motion vectors 

as local motion vectors are used for global camera motion 

estimation and compensation. Among the various MC      

algorithms proposed in the literature, smoothing of the global 

motion vector by low pass filtering is the most popular [9]. 

Kalman filter and fuzzy systems have widely been used in 

DVS applications.  A membership function adaptive fuzzy 

filter for image sequence stabilization is presented in [10] 

and a DVS system consists of a fuzzy system and the      

Kalman filter is presented in [11]. 

     In the proposed DVS in this paper, the global motion   

vector is estimated based on the block motion vectors 

(BMVs) which are estimated by the video encoder. The 

BMVs are estimated based on block matching using        

difference criteria such as MAD (Mean Absolute Difference). 

In  a  video  sequence  with  smooth  or  rough  regions,  the 

 

 

Figure 1- Integration scheme of the video stabilizer and the 

video encoder 
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estimated BMVs may not be in coincidence with the real 

motion of the blocks. Although such LMVs are applicable to 

the local motion compensation task which is executed in the 

encoder, they cannot be used for the global motion         

compensation which is executed by the DVS. These LMVs 

include some noises that degrade the global motion          

estimation task. Two qualifying tests, namely “Lack of      

Features” and “Low SNR”, are used in [9] to remove the 

noisy LMVs by a simple thresholding algorithm. An adaptive 

thresholding algorithm is proposed in this paper for removing 

the noisy LMVs and a global motion vector is computed for 

each video frame based on the filtered LMVs. Then, a fuzzy 

adaptive IIR filter is applied to the global motion vectors to 

smooth the unwanted camera motions. The IIR filter is tuned 

adaptively by a fuzzy system and the fuzzy system is also 

tuned adaptively according to the characteristics of camera 

motions. Experimental results show a good performance for 

the proposed DVS algorithm. 

     The rest of this paper is organized as follows. The details 

of the proposed DVS algorithm are described in Section 2. 

Some experimental results are presented in Section 3 and the 

paper is concluded in section 4. 

2. THE PROPOSED METHOD 

The flowchart of the proposed DVS system is depicted in 

figure 2. The details of proposed system are described in the 

sequel. 

 

2.1       Block-Based Motion Estimation 

The block-based motion estimation is used to generate the 

local motion vectors (LMVs). Since the motion estimation is 

executed by the video encoder, there is no any computational 

complexity cost for the DVS. In this paper, to test the       

proposed DVS independent of the encoder, a full search   

motion estimation algorithm with full-pixel resolution is used 

for 8×8 blocks with a 33×33 search area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Flowchart of the proposed DVS system. 

2.2      LMV Validation 

The block motion estimation module typically computes 

some wrong motion vectors which are not in coincidence to 

the real motion direction of the blocks. Although, such     

motion vectors can be used for the block motion              

compensation and encoding, they include noise and should 

not be used for the global motion compensation and video       

stabilization. The noisy LMVs are separated from the valid 

motion vectors by using an adaptive thresholding method. 

The noisy motion vectors are mostly obtained from two types 

of regions including: very smooth regions with lack of     

features and very complex uneven regions. Two qualifying 

tests, namely “Smoothness” and “Roughness”, are used to 

detect and remove the noisy motion vectors as follows:  

2.2.1 Smoothness Test  

The noisy motion vectors corresponding to the smooth  

regions such as sky image are detected by thresholding of 

the average of MAD (mean absolute difference) as:  

n

avg 1MAD < th ,                              (1) 

where n

avg
MAD  denotes the average of calculated MADs 

within the search area, during motion estimation of thn

block. 
1

th is also defined as: 

        
n n

1 min 1 avgth = MAD +T  Mean(MAD ),
           

(2) 

where n

minMAD  denotes the minimum value of computed 

MADs within the search area, during motion estimation of 
thn block.  

1
T

 
is an experimentally obtained constant coef-

ficient about 0.45 and n

avgMean(MAD )  denotes the  average of 
n

avgMAD , over all blocks of the frame. 

 2.2.2 Roughness Test 

The noisy motion vectors corresponding to the rough     

regions are identified by another thresholding as:  

                   
n

minMAD > 
2th ,                

 
(3) 

where threshold 
2

th  is defined adaptively as:         

n

2 2 minth =T Max(MAD ),                        (4) 

where 
2

T
 
is an experimentally constant coefficient about 

0.45, and
 

n

minMax(MAD )  denotes the maximum value of 
n

minMAD , over all blocks of the frame. 

 

2.3      Global Motion Estimation 

The global motion estimation unit produces a unique global 

motion vector (GMV) for each video frame, which represents 

the camera motion during the time interval of two frames. 

Since the MVs obtained from the image background tend to 

be very similar in both magnitude and direction, we used a 

clustering process to classify the motion field in two clusters 

corresponding to the background and foreground. The global 
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motion induced by camera movement is determined by a 

clustering process that consists of the following steps.  

 

 Step 1) Construct the histogram H of the valid   

local MVs. The value of H[x, y] is incremented by 

one each time the local MV(x, y) is encountered. 

 Step 2) As long as the scene is not dominated by 

one single moving object, the cluster corresponding 

to the background blocks has the maximum votes in 

the clustering process. The max of this cluster is 

chosen as the global motion vector. 

 

As an example, Figure3 shows the cluster located at (5, 12) 

receives the maximum vote, and the peak of this cluster 

yields the GMV. 

 

2.4      Unwanted Motion Estimation and Correction 

An estimated GMV may consist of two major components: 

an intentional motion component (e.g. corresponding to 

camera panning) and unintentional motion component   

(e.g. corresponding to handshake). A good motion         

correction algorithm should only remove the unwanted  

motion while maintain the intentional motion. Assuming 

that the unwanted motion is corresponding to the                  

high   frequency components, the proposed algorithm uses a 

low pass filter to remove the unwanted motion component. 

A smooth motion vector (SMV) is resulted by filtering that 

resembles the intentional camera movement. The proposed 

method calculates the SMV in the form of first-order auto 

regression as 

 

SMV (n) = α SMV (n-1) + (1 – α) GMV (n),         (5) 

 

where (0 ≤ α ≤ 1) and the index n indicates the frame     

number. The reasons of using this first-order IIR filter are:  

(i) it can be used in real-time systems, (ii) it requires little   

memory, (iii) it involves little computations and (iv) the 

smoothed motions produced by the filter are satisfactory to 

human’s eyes if a suitable value is selected for α. The       

parameter α can be regarded as the smoothing factor. A larger 

smoothing factor leads to a smoother, but a larger lag during 

intentional camera motion that makes artificially stabilized, 

image sequence. Therefore, a fixed value of α hardly leads to 

good stabilized image sequences. To avoid the lag of         

intentional movement and to smooth the unwanted camera 

motion efficiently, the following fuzzy adaptation mechanism 

of α is proposed. 

 

2.4.1 Fuzzy Adaptation of Smoothing Filter 

The smooth filtering is implemented on the vertical and 

horizontal components of the global motion vectors sepa-

rately. The smoothing factor of filter is adjusted by a fuzzy 

system continuously. In facts, two fuzzy systems with a 

similar structure are used corresponding to the vertical and 

horizontal motion components. The fuzzy system has two 

inputs (Input1, Input2) and one output. The fuzzy inputs are 

defined as:  

 

Figure 3- Clusters of motion field. 

n

1 x x

i=n-2

1
x = GMV (i)-GMV (i-1) ,

3
                 (6) 

2 x x
x = GMV (n)-GMV (n-3) .                   (7) 

 

n

1 y y

i=n-2

1
y = GMV (i)-GMV (i-1) ,

3
            (8)                                    

   
2 y y

y = GMV (n)-GMV (n-3) .                    (9)                                  

where 1x  and 2x  denote the inputs of fuzzy system used for 

adaptive filtering of the horizontal motion component and 

also 1y  and 2y
 
are the inputs of fuzzy system used for adap-

tive filtering of the vertical motion component. 
x

GMV (n)
 

and 
y

GMV (n)  indicate the horizontal and vertical compo-

nents of the GMV of last frame. The fuzzy system inputs, 

Input1 ( 1 1x ,y ) and Input2 ( 2 2x ,y ), are used as quantitative 

representations of unwanted camera motion (noise) and in-

tentional camera motion acceleration, respectively. The value 

of Input1 is proportional to the noise amplitude and the value 

of Input2 is proportional to the intentional motion accelera-

tion. In the first-order IIR filter, a higher noise needs a larger 

smoothing factor for filtering. On the other hand, a large 

smoothing factor prevents tracking of intentional camera 

motion when acceleration. Therefore, the smoothing factor 

should be tuned carefully. 

   The proposed fuzzy system tunes the smoothing factor of 

the IIR filter adaptively according to the amount of noise and 

camera motion acceleration. In the proposed fuzzy system, 

trapezoidal and triangular membership functions (MFs) are 

used for each input and the output, respectively. The number 

of membership functions has been selected so as to obtain 

decent performance with as few membership functions as 

possible to maintain low system complexity. The  experimen-

tally designed input and output membership functions are 

shown in Figure 4. The constructed rule base is containing 30 

rules as presented in Table I. The proposed fuzzy was      

implemented in MATLAB software while, the implication 

was set to min and the aggregation method to max. The    

defuzzification method was set to centroid. The output of 

fuzzy system defines the smoothing factor of IIR filter. 
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(a) 

 
(b) 

 
(c) 

 
      (d) 

Figure 4 - The membership functions of fuzzy system.                    

(a) Input1, (b) Input2, (c) Output and (d) Surface. 

2.4.2 Adaptive Fuzzy Membership Functions  

Study on a number of video sequences has shown that the 

range of fuzzy inputs ( Input1, Input2 ) is very variable on 

different video contents. Therefore, fixed MFs for the inputs 

of fuzzy system cannot provide a good performance for the 

stabilization system over all video contents. In order to have 

a good performance for the stabilization system over        

different video contents, it is proposed to adapt the         

membership functions of fuzzy inputs according to recently 

received video frames. The range of MFs for the fuzzy inputs 

i.e. [0, Input1(max)] and [0, Input2(max)] are modified  

adaptively as: 

Input1 (max)= Max of input1
 
over recent 60 frames, 2 1 12Input     (10) 

Input2(max)= Max of input2 
 
over recent  60 frames, 2 2 23Input   (11) 

If1.5(Input1(max))<Input2(max) Then Input1(max) =1.25(Input1(max))(12) 

2.4.3 Motion Correction 

After computing the smoothing factor α via the fuzzy system, 

SMV is calculated by (5). For the first three frames, a fixed 

Large  value  for  α  is   used.   After   computing   SMV,  the 

unwanted motion vector (UMV) is obtained by        
 

Table I: Rule Base for the Fuzzy System*. 

 Input1 

In
p
u
t2

 

 L ML M MH H VH 

L 0.85 0.87 0.9 0.94 0.97 0.97 

ML 0.8 0.85 0.87 0.9 0.94 0.97 

M 0.7 0.8 0.85 0.87 0.9 0.97 

MH 0.6 0.7 0.8 0.85 0.87 0.97 

H 0.5 0.6 0.7 0.8 0.85 0.94 
* L=Low, ML=Medium Low, M=Medium, MH=Medium High, 

H=High, VH=Very High 

UMV (n) = GMV (n) - SMV (n).                  (13) 

To restore the current frame to its stabilized position, we  

offset the current frame by the accumulated unwanted motion 

vector, AMV, defined by 
n

i=m

AMV(n)= UMV(i).                             (14) 

where m is the number of first frame since the last scene 

changes. 

3. EXPERIMENTAL RESULTS 

The performance of the proposed DVS is evaluated against 

15 video sequences covering different types of scenes. Sam-

ple video sequences are available at [12], [13]. These se-

quences have a frame rate of 25 fps and a picture size of 

352×288 pixels. Also the proposed fuzzy system has been 

tested with several synthetics data to simulate various situa-

tions.  Some results for real and synthetics data are shown in 

figure 5. In this figure, 3 upper graphs are related to the real 

data and the rest graphs are related to the synthetics data. We 

worked with both gray-scale and color test sequences where 

in both cases motion estimation is done on the Y plane of 

YIQ color space. Stabilizer performance is assessed accord-

ing to the smoothness of the resultant global motion com-

pared to the original sequence and the gross movement pres-

ervation capability. Results are compared with provided re-

sults by presented algorithms in [9] and [11]. An adaptive IIR 

filtering technique and a fuzzy kalman system are proposed 

for motion correction in [9], [11], respectively. In each of our 

videos, there are jitters caused by car vibration, and shaky 

hands. Figure 5 presents the comparison between the original 

motions and the smoothed motions resulted by our DVS and 

presented algorithms in [9] and [11] for the real and synthetic 

data. Provided results by the presented algorithm in [9] show 

that changing the parameter α from 0.9 to 0.1 lead to unde-

sirable movement in frame position, and also provided results 

by the presented algorithm in [11] show that we have close 

tracking of gross camera movements but at the cost of 

slightly reduced stabilization capabilities. Whereas results           

demonstrate that proposed fuzzy system provides expanded 

stabilization, while enables close tracking of gross camera 

movements. Our subjective experiments also demonstrated 

that human eyes have good visual perception to the stabilized 

video sequences by the proposed method due to removing 

unwanted camera motions (jitters) .                
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Figure 5- the absolute frame positions before and after                

stabilization for the real and synthetic data and their comparison 

with two previous presented algorithms. 

4. CONCLUSION 

In this paper, we proposed a computationally efficient digital 

video stabilization scheme using motion information        

obtained from a hybrid block based video encoder. Since 

some of the obtained motion vectors are not valid, an     

adaptive thresholding was developed to filter out valid     

motion vectors. To compute a global motion vector for each 

frame, the proposed stabilization technique effectively     

estimates the intentional camera motion by exploiting the 

characteristics of unwanted motions; an adaptive and low-

complexity  fuzzy  IIR  filter  is  proposed  to fulfil  two ap-

parently conflicting requirements:  close follow-up of   the 

intentional camera movement and removal of the handshake. 

In order to improve stabilization performance, inputs     

membership functions of the fuzzy system are continuously 

adapted according to motion properties of a number of     

recently received video frames.  Simulation results show a 

high performance for the proposed algorithm. With a low 

degree of computational complexity, the proposed scheme 

can be effectively used for the mobile video communications 

as well as the conventional video coding applications to   

improve the visual quality of digital video and to provide a 

higher compression performance.           
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