
NONCONVEX TOTAL VARIATION SPECKLED IMAGE RESTORATION VIA
NONNEGATIVE QUADRATIC PROGRAMMING ALGORITHM

Paul Rodriguez

Digital Signal Processing Group, Pontificia Universidad Católica del Perú
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ABSTRACT

Within the TV framework there are several algorithms
to restore images corrupted with Speckle (multiplicative)
noise. Typically most of the methods convert the multiplica-
tive model into an additive one by taking logarithms and can
only handle the denoising case. By contrast, there are only a
handful of algorithms that do not perform any conversion on
the raw data and can handle the denoising and deconvolution
cases, however their data fidelity term is non-convex.

In this paper, we present a flexible and computationally
efficient method to restore speckled grayscale/color images
via a non-convex multiplicative model. The proposed algo-
rithm uses a quadratic approximation of the data fidelity term
to pose the original problem as a non-negative quadratic pro-
gramming problem. Our experimental results for the denois-
ing and deconvolution cases shows that the reconstruction
quality of the proposed algorithm outperforms state of the
art algorithms for speckled image restoration and at the same
time offers competitive computational performance.

1. INTRODUCTION

For images acquired via ultrasound, SAR (synthetic aper-
ture radar) or coherent light imaging systems (e.g. Fabry-
Perot interferometer, etc.), Speckle noise is a critical factor
that limits their visual perception and processing (see [1, 2]
among others). Typically, the multiplicative model

b = (Au∗) ·ζζζ (1)

is considered, where A is a forward linear operator, u∗ is
the noise-free data and ζζζ is the noise; also, it is assumed
that b,u∗ > 0. Moreover, in the Speckle noise model, it is
considered that ζζζ follows the Gamma density

PZ(ζ ) =
LL

Γ(L)
ζ L−1e−Lζ (2)

with mean equal 1 and variance 1/L.
While the focus of this paper is to restore speckled im-

ages using the Total Variation (TV) framework, we mention
that there are several methods outside the TV framework:
for instance, in [2] an extensive list of despeckle filtering al-
gorithms is provided, which includes methods based on lin-
ear filtering (first-order statistics, local statistics, etc.), non-
linear filtering (median, linear scaling, etc.), diffusion filter-
ing (anisotropic diffusion, etc.) and wavelet filtering.

Within the TV framework, there are several approaches
to restore images corrupted with Speckle (multiplicative)

noise. Typically most of the algorithms [3, 4, 5, 6, 7] con-
vert the multiplicative model into an additive one by tak-
ing logarithms and can only handle the denoising case. To
the best of our knowledge, there are only a handful of algo-
rithms [8, 9, 10] that do not perform any conversion on the
raw data and typically can handle the denoising and decon-
volution cases (but not necessarily, e.g. [10] only addresses
the denoising case), however their data fidelity term is non-
convex.

In this paper we present a flexible and computationally
efficient method to restore (denoise/deconvolve) speckled
grayscale/color images. The proposed algorithm uses the
non-convex multiplicative model introduced in [9]:

T (u) = ∑
k

bk

(Au)k

+ log((Au)k)+

λ

q

∥

∥

∥

∥

√

∑
n∈C

(Dxun)
2 +(Dyun)

2

∥

∥

∥

∥

q

q

(3)

where n ∈ C = {gray}, q = 1, b is the acquired image data
(corrupted with Speckle noise), A is a forward linear oper-
ator, and (Au)m is the m-th element of (Au) (full notation
is described in Section 2); in [9] it was proved that (3) has
a unique minimizer. While an artificial time marching ap-
proach was used to numerically solve the resulting Euler-
Lagrange equation (from (3)) in [9], the proposed algorithm
uses a second order Taylor approximation of the data fidelity

term F(u) = ∑k
bk

(Au)k
+ log((Au)k) to pose (3) as a Non-

negative Quadratic Programming problem (NQP, see [11])
which can be solved with a similar approach as the IRN-NQP
algorithm [12, 13]. The resulting algorithm has the following
advantages:

• it is based on multiplicative updates only,

• has the ability to handle an arbitrary number of channels
in (3), including the scalar (grayscale) and vector-valued
(color) images (C = {r,g,b} as special cases,

• most of its parameters are automatically adapted to the
particular input dataset, and if needed, the norm of the
regularization term (q in (3)) can be different than 1 (0 <
q ≤ 2 ).

2. TECHNICALITIES

We represent 2-dimensional images by 1-dimensional vec-
tors: un (n ∈ C) is a 1-dimensional (column) or 1D vector
that represents a 2D grayscale image obtained via any order-
ing (although the most reasonable choices are row-major or
column-major) of the image pixel. For C = {r,g,b} we have
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that u = [(ur)
T (ug)

T (ub)
T ]T is a 1D (column) vector that

represents a 2D color image.

The gradient and Hessian of the data fidelity term in (3)

F(u) = ∑k
bk

(Au)k
+ log((Au)k) can be easily computed:

∇F(u) = AT

(

Au−b

(Au)2

)

(4)

∇2F(u) = AT diag

(

2b−Au

(Au)3

)

A, (5)

and its quadratic approximation, Q
(k)
F (u), can be written as

Q
(k)
F (u) = F(u(k))+g(k)T

v(k) +
1

2
v(k)T

H(k)v(k) (6)

where v(k) = u − u(k), g(k) = ∇F(u(k)) and H(k) =

∇2F(u(k)). Note that (6) remains the same for color images
(n ∈ C = {r,g,b}) and scalar operations applied to a vector
are considered to be applied element-wise, so that, for exam-

ple, u = v2 ⇒ u[k] = (v[k])2
and u = 1

v
⇒ u[k] = 1

v[k] .

Also, for the case of color images, the linear operator
A in (3) is assumed to be decoupled, i.e. A is a diagonal
block matrix with elements An; if A is coupled (inter-channel
blur) due to channel crosstalk, it is possible to reduced it to a
diagonal block matrix via a similarity transformation [14].

In the present work 1
q

∥

∥

∥

∥

√

∑
n∈C

(Dxun)
2 +(Dyun)

2

∥

∥

∥

∥

q

q

is

the generalization of TV regularization to color images
(n ∈ C = {r,g,b}) with coupled channels (see [15, Section
9], also used in [16] among others), where we note that
√

∑
n∈C

(Dxun)
2 +(Dyun)

2 is the discretization of |∇u| for

coupled channels (see [16, eq. (3)]), and Dx and Dy repre-
sent the horizontal and vertical discrete derivative operators
respectively.

3. NON-CONVEX SPECKLE IRN-NQP
ALGORITHM

In this section we succinctly describe previous works (within
the TV framework) that tackle the problem of multi-
plicative noise removal. We continue to summarized the
derivation of the non-convex Speckle IRN-NQP (Iteratively
Reweighted Norm, non-negative quadratic programming) al-
gorithm, where we also provide a brief description of the
NQP [11] problem to finally list the proposed algorithm.

3.1 Previous Related Work

The first method within the TV framework devoted to re-
store images corrupted with Speckle noise was [8], which
used a constrained optimization approach with two Lagrange
multipliers; the denoising and deconvolution problems were
addressed. In [3] the multiplicative model was converted
into an additive one and used a multigrid algorithm to solve
the resulting Euler-Lagrange equation. A framework based
on MRF with levelable priors for restoration of images cor-
rupted by Gaussian or Speckle (Rayleigh) was proposed in
[4]; only the denoising problem was addressed. In [9] the
data fidelity term was derived using (2) and the maximum a

posteriori (MAP) criterion; an artificial time marching ap-
proach was used to numerically solve the resulting Euler-
Lagrange equation; the denoising and deconvolution prob-
lems were addressed A general TV formulation was pro-
posed in [5] which included several models ([8, 4, 9]) as spe-
cial cases; it also replaced the regularizer TV(u) by TV(log
u); only the denoising problem was addressed. In [6] the
multiplicative model was converted into an additive one and
used the split Bregman approach to solve the optimization
problem; only the denoising problem was addressed. In [10]
the non-convex model introduced in [9] was augmented with
the Weberized TV as an extra regularizer and solved the
Euler-Lagrange equation via a fixed-point iteration; only the
denoising problem was addressed. A hard-thresholding of
the curvelet transform of the log-image followed by a ℓ1-TV
in the log-image domain was used in [7]; only the denoising
problem was addressed.

3.2 Non-negative Quadratic Programming (NQP)

Recently [11] an interesting and quite simple algorithm has
been proposed to solve the NQP problem:

min
v

1

2
vT Φv+cT v s.t. 0 ≤ v ≤ vmax, (7)

where the matrix Φ is assumed to be symmetric and positive
defined, and vmax is some positive constant. The multiplica-
tive updates for the NQP are summarized as follows (see [11]
for details on derivation and convergence):

Φ+
nl =

{

Φnl if Φnl > 0
0 otherwise

and Φ-
nl =

{

|Φnl| if Φnl < 0
0 otherwise,

v(k+1) = min

{

v(k)

[

−c+
√

c2 + υυυ(k)ννν(k)

2υυυ(k)

]

, vmax

}

(8)

where υυυ (k) = Φ+v(k), ννν(k) = Φ-v(k) and all algebraic oper-
ations in (8) are to be carried out element wise. The NQP
is quite efficient and has been used to solve interesting prob-
lems such as statistical learning [11] among others.

3.3 Non-convex Speckle IRN-NQP Algorithm

Our aim is to express (3) as a quadratic functional in order
to solve a NQP problem. First we note that after algebraic

manipulation, Q
(k)
F (u) (see (6)) can be written as

Q
(k)
F (u) =

1

2
uTH(k)u+c(k)u+ ζF , (9)

where ζF is a constant with respect to u, and c(k) =
(

g(k)−H(k)T
u(k)

)

= AT
(

2Au
(k)−3b

(Au(k))2

)

.

While not derived so here, the ℓq norm of the regulariza-
tion term in (3) can be represented by a equivalent weighted
ℓ2 norm (see [12, 13] for details):

R(k)(u) =
λ

2

∥

∥

∥

∥

W
(k)
R

1/2
Du

∥

∥

∥

∥

2

2

+ζR =
λ

2
uT DTW

(k)
R Du, (10)

where ζR is a constant with respect to u, IN is a N×N identity
matrix, ⊗ is the Kronecker product, C = {gray}, N = 1 or
C = {r,g,b},N = 3 and
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D = IN ⊗ [DxT DyT ]T W
(k)
R = I2N ⊗Ω(k), (11)

Ω(k) = diag

(

τR,εR

(

∑
n∈C

(Dxu
(k)
n )2 +(Dyu

(k)
n )2

))

. (12)

Following a common strategy in IRLS type algorithms
[17], the function

τR,εR
(x) =

{ |x|(q−2)/2 if |x| > εR

ε
(q−2)/2
R if |x| ≤ εR,

(13)

is defined to avoid numerical problems when q < 2 and

∑
n∈C

(Dxu
(k)
n )2 +(Dyu

(k)
n )2 has zero-valued components.

Combining (9) and (10) we can write the quadratic ap-
proximation of (3) as (the constant terms are left out)

T (k)(u) =
1

2
uT
(

H(k) + λ DTW
(k)
R D

)

u+c(k)T
u, (14)

to finally note that by using Φ(k) = H(k) + λ DTW
(k)
R D and

c(k) = AT
(

2Au
(k)−3b

(Au(k))2

)

we can iteratively solve (3) via (8).

Initialize
u(0) = b

for k = 0,1, ...

W
(k)
F = diag

(

τF,εF

(

2b−Au(k)

(Au(k))3

))

, H(k) = ATW
(k)
F A

Ω
(k)
R = diag

(

τR,εR

(

(Dxu
(k))2 +(Dyu

(k))2
))

W
(k)
R =

(

Ω
(k)
R 0

0 Ω
(k)
R

)

Φ(k) = H(k) + λ DTW
(k)
R D, c(k)=-AT

(

τF,εF

(

2Au(k)−3b

(Au(k))2

))

u(k,0) = u(k)

ε
(k)
NQP = γ ·1

(

‖Φ(k)
u

(k,0)+c
(k)‖2

‖c(k)‖2

)α
(NQP tolerance)

for l = 0,1, ..,L

υυυ(k,l) = Φ+(k)
u(k,l), ννν (k,l) = Φ-(k)u(k,l)

u(k,l+1) = min

{

u
(k,l)

[

−c
(k)+

√
c
(k)2

+υυυ(k,l)ννν(k,l)

2υυυ(k,l)

]

,vmax

}

if
(

‖Φ(k)
u

(k,l+1)+c
(k)‖2

‖c(k)‖2

<ε
(k)
NQP

)

break;

end m= 0,1, ..,M

u(k+1) = u(k,l+1)

end k = 0,1, ...

Algorithm 1: Non-convex Speckle IRN-NQP algorithm

It is easy to check that Φ(k) is symmetric and positive
define. Furthermore, we note that the proposed algorithm
does not involve any matrix inversion: the fraction in the term

c(k) = AT
(

2Au
(k)−3b

(Au(k))2

)

is a point-wise division (a check for

zero must be performed to avoid numerical problems) as well

as in the term H(k) = AT diag
(

2b−Au
(k)

(Au(k))3

)

A;

Two other key aspects of the non-convex Speckle IRN-
NQP algorithm is that it can auto-adapt the threshold value

εR and that it includes the NQP tolerance (ε
(k)
NQP), used to ter-

minate the inner loop in Algorithm 1 (see [13] for details).
Experimentally, α ∈ [1 .. 0.5], γ ∈ [1e-3 .. 5e-1], and L = 50
give a good compromise between computational and recon-
struction performance for the present work.

4. EXPERIMENTAL RESULTS

We compared the non-convex Speckle IRN-NQP algorithm
with two state of the art methods: BF (Bioucas-Figueiredo
[6]) and HXW (Huang-Xiao-Wei [10]). We note that for
the denoising of greyscale images both [6, 10] report re-
sults, whereas for color images only [10] reports results. For
the deconvolution case we only present results for the non-
convex Speckle IRN-NQP algorithm, since to the best of our
knowledge, the present paper is the only one that explicitly
presents results for this case. We use the relative error and

the peak signal-to-noise ratio (reErr =
‖u−u

∗‖2

‖u∗‖2
and PSNR

= 10log10
N(max{u∗})2

‖u−u∗‖2
2

, respectively, N: total number of ele-

ments of u, u is the observed/reconstructed image, u∗ is the
the original image and u∗ ∈ [0, 1]) as part of the reconstruc-
tion quality metrics to match the results presented in [6, 10];
we also provide the SNR and SSIM [18] metrics whenever
appropriate.

(a) (b) (c)

Figure 1: Input test images: (a) Cameraman (grayscale) , (b)
grayscale Lena and (c) color Lena. All images are 512×512.

All simulations have been carried out using Matlab-only
code on a 1.73GHz Intel core i7 CPU (L2: 6144K, RAM:
6G). Results corresponding to the non-convex Speckle IRN-
NQP algorithm presented here may be reproduced using the
the NUMIPAD (v. 0.30) distribution [19], an implementation
of IRN and related algorithms.

The test input images are greyscale Cameraman and Lena
(Fig. 1a and 1b respectively) and color Lena (Fig. 1c). For
the denoising cases Lena (grayscale and color) and Camera-
man were corrupted with Speckle noise (generated according
to (1)-(2)) with L = 33, 10, 5 and L = 13, 3 respectively, to
match the experiments setup of [6, 10]. For the deconvolu-
tion case all the images were blurred by a 7×7 out-of-focus
kernel (2D pill-box filter) and then corrupted with Speckle
noise of similar characteristics as for the denoising case.

In Table 1 we summarized the results for the denois-
ing case, where we show the ten-trial average of the SNR,
SSIM, PSNR and reErr of the restore images for the non-
convex IRN-NQP (10 outer loops with L = 50) and the BF
(Bioucas-Figueiredo [6]) and HXW (Huang-Xiao-Wei [10])
algorithms (as respectively reported in [6] and [10]). The

290



Image L
SNR SSIM [18] PSNR reErr Time (sec.)

RAW IRN-NQP RAW IRN-NQP RAW IRN-NQP BF(1) HXW (2) RAW IRN-NQP BF(1) HXW (2) IRN-NQP

Lena
33 6.32 16.12 0.40 0.817 20.5 29.47 – 28.4 0.17 0.057 0.068 0.066 55.84
10 1.10 13.63 0.26 0.719 15.2 27.45 – 23.6 0.30 0.077 – – 73.90
5 -1.89 11.72 0.18 0.662 12.3 25.83 – – 0.40 0.097 0.113 0.115 83.92

Cam.
13 4.47 16.73 0.32 0.838 16.7 28.39 – 26.43 0.26 0.069 0.089 0.090 73.99
3 -1.87 12.07 0.16 0.696 10.4 24.25 – – 0.49 0.124 0.133 – 88.95

Lena
(color)

33 7.60 18.16 – – 20.3 30.86 – 29.93 0.17 0.052 – 0.075 161.98
10 2.43 15.32 – – 15.1 28.04 – 27.15 0.30 0.073 – 0.104 264.54
5 -0.57 12.93 – – 12.1 25.65 – – 0.40 0.098 – – 272.28

Table 1: Denoising case: Ten-trial average of the SNR, SSIM, PSNR and reErr of the restore images for the non-convex
Speckle IRN-NQP (10 outer loops) algorithm and the BF (Bioucas-Figueiredo [6]) and HXW (Huang-Xiao-Wei [10]) algo-

rithms. (1) Results are taken from [6, Table I]. (2) Results are taken from [10, Tables I and III]. See Figs. 2 and 3.

  

(a) (b)
  

(c) (d)

(e) (f)

Figure 2: Speckled Lena with (a) L=33 (SNR=6.31dB),
(c) L=10 (SNR=1.12dB) and Cameraman (e) with L=3
(SNR=−1.92dB), and denoised versions via the non-
convex Speckle IRN-NQP algorithm (b) (SNR=16.12dB,
PSNR=29.47dB, reErr=0.057), (c) (SNR=13.63dB,
PSNR=27.45dB, reErr=0.077) and (f) (SNR=12.16dB,
PSNR=24.19dB, reErr=0.121) respectively.

quality reconstruction of the proposed algorithm outperforms
the BF and HXW for all cases. We also present the compu-
tational performance of our proposed algorithm in Table 1.

In Table 2 we summarized the results for the deconvolu-
tion case, where we show the ten-trial average of the SNR,
SSIM, PSNR and reErr of the restore images for the non-
convex IRN-NQP (8 outer loops, with L = 50). In Figs. 2, 3
and 4 we present the corrupted test images and their restored
versions.

Image L
SNR SSIM [18] PSNR reErr Time

RAW (∗) RAW (∗) RAW (∗) RAW (∗) (sec.)

Lena
33 5.7 14.400.27 0.774 19.9 28.080.180.069 77.88
10 0.9 13.370.18 0.717 15.1 27.070.300.078 90.97
5 -2.0 12.210.14 0.699 12.2625.750.410.091 96.41

Cam.
13 4.0 14.980.24 0.798 16.3 27.030.280.083100.15
3 -1.9 13.100.12 0.763 10.3 24.090.500.107 98.79

Lena
(color)

33 7.0 15.66 – – 19.7 29.170.180.069278.93
10 2.2 14.98 – – 14.9 28.400.300.075277.86
5 -0.6 14.14 – – 12.0 26.970.410.084275.52

Table 2: Deconvolution case: Ten-trial average non-convex

Speckle IRN-NQP(∗) (8 outer loops) SNR, SSIM, PSNR and
reErr of the restore images. See Fig. 4.

5. CONCLUSIONS

The reconstruction quality of the proposed algorithm outper-
forms state of the art algorithms [6, 10] for grayscale/color
image denoising corrupted with Speckle noise. One of the
main features of this recursive algorithm is that it is based on
multiplicative updates only, and to best of our knowledge, the
present paper is the only one that explicitly shows results for
the deconvolution case. Furthermore, we are currently suc-
cesfully applying our method to denoise real-world Fabry-
Perot fringes.
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