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ABSTRACT 

Adaptive interpolation filtering for sub-pel motion estima-

tion is one of several superior techniques of ITU-T KTA 

CODEC to the H.264/AVC CODEC. However, the adaptive 

interpolation filtering has a limitation in coding efficiency 

because of its frame-based update strategy of filter coeffi-

cients. In order to overcome such a problem, this paper 

presents a block-adaptive interpolation filtering using learn-

ing-based super-resolution. The proposed block-adaptive 

interpolation filtering for quarter-pel motion estimation 

consists of two steps: two-times up-scaling of half-pel accu-

racy and subsequent two-times up-scaling of quarter-pel 

accuracy. The dictionary optimized for each step is em-

ployed to produce the precise up-scaled blocks. Simulation 

results show that the proposed algorithm improves coding 

efficiency up to 5.3% in comparison with the previous adap-

tive interpolation filtering for KTA. 

 

1. INTRODUCTION 

Recently, with rapid development of semiconductor and digi-

tal display, high definition (HD) video contents have been 

popular. To efficiently transmit or store such huge video data, 

high compression technology is required. For example, 

H.264/AVC [1] is the latest video coding standard to meet 

such requirement, which was jointly implemented by ITU-T 

(International Tele-communication Union) and MPEG (Mov-

ing Picture Expert Group). As a key compression tool for 

H.264/AVC, sub-pel motion compensation is composed of 

half-pel motion compensation using 6-tap filter of fixed coef-

ficients, and subsequent quarter-pel motion compensation 

using bilinear interpolation. However, the fixed filter coeffi-

cients may often deteriorate coding efficiency because they 

never take into account spatial characteristics of every frame. 

For a recent few years, VCEG (Video Coding Experts 

Group) of ITU-T has developed KTA (Key Technology Area) 

software as an interim process for next-generation video cod-

ing standard by evaluating a lot of new compression tools 

and adopting high performance tools among them. As one of 

dominant techniques for KTA, AIF (Adaptive Interpolation 

Filter) for sub-pel motion compensation [2-4] improved cod-

ing efficiency up to about 10% in comparison with its coun-

terpart of H.264/AVC. However, the AIF does not sufficient-

ly consider local characteristics in a frame because it updates 

filter coefficients on a frame basis. This is a major drawback 

of the AIF method. Recently, MPEG has launched new cod-

ing standard to replace H.264/AVC in the future, which is 

called HEVC (High Efficiency Video Coding) [5]. For sub-

pel motion compensation, the up-to-date version of HEVC 

adaptively chooses one between a simple DCT (Discrete 

Cosine Transform)-based interpolation filter and directional 

interpolation filter. The interpolation method for HEVC is 

meaningful in terms of computational complexity, but it does 

not show better coding efficiency than the AIF for KTA. 

On the other hand, so-called super-resolution (SR) algo-

rithms [6-9] have been developed as the most promising up-

scaling approach. A typical SR makes use of signal 

processing techniques to obtain a high resolution (HR) image 

(or a sequence) from multiple low-resolution (LR) images. In 

general, success of such SR schemes depends on existence of 

sub-pixel motion between adjacent LR images and accurate 

sub-pixel estimation. However, sub-pixel motion estimation 

among neighbor LR images requires not only huge computa-

tional cost, but also its accuracy is not guaranteed in certain 

environments. In order to solve the above-mentioned prob-

lem, a lot of single image-based SR methods such as learn-

ing-based SR algorithms have been devised [7-9]. In general, 

learning-based SR is composed of two phases: Off-line learn-

ing phase and on-line synthesis phase. At the learning phase, 

the training data, i.e., dictionary consisting of LR and HR 

patches is constructed. The LR and HR patch pairs are ob-

tained from various training images. During the synthesis 

phase, the input LR image is super-resolved by using the 

dictionary. For each LR patch in the input image, its nearest 

neighbor LR patches are explored from the dictionary. The 

high frequency components of the input LR patch are synthe-

sized using the best matched LR patches [9]. Since this learn-

ing-based SR provides superior visual quality to conventional 

FIR filters at the expense of large memory size, it can be an 

attractive solution to high performance interpolation. 

In order to overcome the above-mentioned drawback of 

the previous AIF method, this paper proposes a block-

adaptive interpolation filter (BAIF) using learning-based SR. 

The proposed algorithm improves the performance of sub-pel 

motion compensation by adaptively updating filter coeffi-

cients on a block basis without additional side information. 

The BAIF consists of two steps for half-pel interpolation and 

quarter-pel interpolation. In off-line learning phase, the op-

timal dictionary of each step is derived from various LR and 

HR training images. Simulation results show that the pro-
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posed algorithm provides higher coding efficiency of up to 

5.3% than the previous AIF for KTA. 

2. PREVIOUS WORKS

This subsection describes several AIF methods for KTA. 

NSAIF (Non-Separable AIF) [2] interpolates a sub

two-dimensional (2D) filter coefficients optimized at the 

pixel position. In Fig. 1, a one-dimensional (1D) 6

is applied to sub-pels such as a, b, c, d, h, and

C1-C6 are used for the sub-pel positions a, b, c

for d, h, l. For each of the remaining sub-pel positions 

i, j, k, m, n, and o, the 6ⅹ6 filter coefficients are calculated. 

For all sub-pel positions, the optimal filter coefficients are 

calculated in a way that the prediction error energy is min

mized. The filter coefficients can be updated on a frame basis.

Since SAIF (Separable AIF) [3] is based on two 1D filter 

coefficients, it can achieve light interpolation complexity 

without any penalty on coding efficiency in comparison with 

NSAIF. Note that the computational expense of the

itself is reduced by 24% in case of 4ⅹ4 motion

blocks. 

As another low complexity AIF, DIF (Directional AIF) [

employs a single 1D directional interpolation filter coeff

cients at each sub-pel location. The direction of the interpol

tion filter is determined according to the alignment of the 

corresponding sub-pixel with integer pixel samples. For e

ample, two sub-pels e and o of Fig. 1 are interpolated by a

plying a 6-tap filter to six integer samples A1, B2, C3, D4, E5

and F6. Since all sub-pels are obtained using only 1D filter 

operations, the complexity of the DIF is significantly less 

than its counterparts. In the worst case, the interpolation 

complexity of the DIF is 1/3 of NSAIF and less than 1/2 of 

SAIF. 
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3. THE PROPOSED ALGORIT

In order to overcome the drawback of the previous 

adaptive AIF methods for KTA, we propose a block

AIF using learning-based SR as an interpolation tool for sub

pel motion estimation (see Fig. 2). At the first step, 

of half-pel accuracy are interpolated using the 1st step dicti

nary, and the remaining sub-pels, i.e., 

n, and o of 1/4-pel accuracy are interpolated using the 2nd 

step dictionary. From this dictionary

can achieve quarter-pel motion estimation and compensation 

guaranteeing high coding efficiency.

Like conventional learning-based SR algorithms [

optimal dictionaries can be derived from so

phase, which is described in the following subsection.

 

3.1 Off-line Learning Phase 
Fig. 3 describes the process to produce training images to the 

1
st
 and 2

nd
 step dictionaries in off

Fig. 3, the training images of half

size resolution are produced from the original HR images. 

Here, a well-known 5ⅹ5 Gaussian

anti-aliasing filter. The 1
st
 step dictionary for half

compensation is derived from half

ages. The 2
nd
 step dictionary is generated from the HR i

ages and the corresponding LR images which were r

structed from the quarter-size images synthesized by the pr

posed SR based on the 1
st
 step dictionary.
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Fig. 4. The overall process of producing the 1st step dictionary. 

 

Fig. 4 shows the overall process of producing the 1
st
 step 

dictionary in more detail. First, all possible LR and HR patch 

pairs of MⅹM size are extracted from several quarter-size 

(LR) and half-size (HR) images. Let 
i

LP  and 
i

HP  denote the 

i-th LR and HR patches at the same spatial position. Fig. 5 

describes an example of LR and HR patches when their sizes 

are set to 5ⅹ5. In this figure, all rectangles indicate HR pix-

els and grey rectangles indicate LR pixels. Each LR patch is 

extracted via proper overlapping with adjacent LR patches. 

In the current study, the M/2 pixels are overlapped between 

neighbor patches in both directions.  

An input LR patch should be compared with candidate LR 

patches in the dictionary, and its HR patch is synthesized 

using the high frequency information corresponding to the 

candidate LR patch(es) with minimum distance. In order to 

improve the accuracy of such matching in the synthesis 

phase, Laplacian of LR patch is employed [9]. The Laplacian 

of each LR patch is produced by applying a 3ⅹ3 Laplacian 

operator to every pixel in the LR patch. Subsequently, Lapla-

cian patches are normalized for further reliable matching. Let 
i

LQ  denote the normalized Laplacian of 
i

LP . 

Conventional learning-based SR requires as many patch 

pairs as possible to maintain reliable performance, which 

causes a tremendous memory cost as well as a significant 

matching computation. Therefore, we cluster similar LR and 

HR patch pairs. We apply K-means clustering based on LQ  

to all patch pairs.  

 

 
Fig. 5. An example of LR and HR patch pair. 

 

 
Fig. 6. The clustering results. 

 

As a result, K  LQ  cluster centers are obtained, and each 

cluster is indexed by its cluster center. Note that K is signifi-

cantly smaller than the number of entire patch pairs extracted 

from LR and HR training images. Fig. 6 shows the clustering 

results. Let jk

LP
,  and jk

HP
,  be the j-th LR and HR patches in 
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where (u, v) and (s, t) denote the pixel positions in the LR 

and HR patches, respectively. Now, we derive a common 

weight set 
kW )1(
, i.e., }1,,,0|),({ )1(

−≤≤ Mvutsvuw k

st  such 

that the squared sum of interpolation error by Eq. (1) is mi-

nimized for all LR and HR patches in the k-th cluster. In or-

der to seek such an optimal weight set for each cluster, we 

employ popular LMS algorithm [10]. The superscript (1) of 
kW )1(
 indicates the 1

st
 step. Finally, we can obtain the optim-

al 1
st
 step dictionary   }1|),{( )1()1( KkWQ kk

L ≤≤ . 

The 2
nd
 step dictionary is constructed in the same way as 

the 1
st
 step dictionary. The only difference is that the 2

nd
 step 

dictionary is trained from the original HR images and the 

half-size reconstructed images which are up-scaled from their 

corresponding quarter-size LR images using the 1
st
 step dic-

tionary as in the following subsection. 

 

3.2 On-the-fly Interpolation Phase 
For sub-pel motion estimation of each input block, two-step 

interpolation should be performed on an MⅹM block basis 

by using the 1
st
 and 2

nd
 step dictionaries as in Fig. 2. The 1

st
 

step interpolation is described in detail as follows: 

Fig. 7 describes the 1
st
 step interpolation process for half-

pel motion estimation of an arbitrary 4ⅹ4 block. In this fig-

ure, the red-line rectangles indicate the integer-pixels of the 

motion-compensated 4ⅹ4 block. Prior to sub-pel motion 

estimation of the current 4ⅹ4 block, the half-pels in the blue 

region should be interpolated. In order to interpolate such 

half-pels, nine 5ⅹ5 LR patches are super-resolved in zigzag 

scan with overlapping of 3 LR pixels in both directions. Note 

that the half-pels pixels only in the blue region need to be 

synthesized. Half-pel motion estimation for the other size 

blocks can be operated similarly.  
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Fig. 7. The proposed half-pel interpolation process. Here,  and  

 indicate integer- and half-pels, respectively. 

 

The synthesis process of the 1
st
 LR patch in Fig. 7 is de-

picted as follows. The normalized Laplacian in

LQ  for the in-

put LR 5ⅹ5 block in

LP  is first derived. Then, the nearest 

candidate LR patch to in

LQ  is searched in the 1
st
 step dictio-

nary. In the current study, the sum of squared errors (SSE) is 

employed as the distortion measure for matching of Lapla-

cian LR patches. Let 
k

bestW )1(
 be the weight set corresponding 

to the best-matched Laplacian LR patch. From the input LR 

patch, we can produce the interesting half-pels of the dotted 

box inside the 5ⅹ5 HR patch (see Fig. 7) by using 
k

bestW )1(
 and 

Eq. (1). Similarly, the remaining half-pels can be interpolated. 

For the half-pel positions in the overlapping region, multiple 

HR pixel values synthesized by Eq. (1) are averaged. At the 

same fashion, the quarter-pels can be derived from the integ-

er- and interpolated half-pels by using the 2
nd
 step dictionary.  

Note that the proposed algorithm does not have to transmit 

any side information related to filter coefficients to the de-

coder because the exact filter coefficients of every block can 

be obtained from the dictionaries in the decoder. 

4. EXPERIMENTAL RESULTS 

In order to evaluate the proposed algorithm, ten 1920ⅹ1080 

video sequences of Table 1 are used. Also, six 3840ⅹ2160 

training video sequences, which are not included in the test 

set, are employed to derive the 1
st
 and 2

nd
 step dictionaries.  

The proposed interpolation algorithm was implemented on 

H.264 KTA software called JM 14.0 KTA2.6. For this expe-

riment, RD optimization mode was off, CABAC was 

adopted for entropy coding, and the GOP structure was set to 

IPPPP. The first 5 frames of each test video sequence were 

encoded for 4 quantization parameters (QP), i.e., 22, 27, 32, 

and 37 in high profile.  

 

Table 1. The comparison in terms of BD_rate (%). 

 NSAIF BAIF 

Parkjoy -5.32% -9.22% 

Parkscene -6.01% -9.53% 

Crowdrun -8.11% -13.41% 

Bluesky -3.01% -4.61% 

Rolling 

tomatoes 
-2.03% -3.33% 

Basketdrive -6.58% -9.32% 

Rushhour -6.31% -10.34% 

Traffic -7.41% -10.91% 

BQTerrace -7.56% -11.30% 

Station -5.43% -8.63% 

 

The search range of integer-pel motion estimation was set to 

±32. The size of LR patch was 5ⅹ5, and the number of clus-

ters K was 512 for both 1
st
 and 2

nd
 step dictionaries.  

Table 1 compares the proposed BAIF with the convention-

al single-pass NSAIF of KTA and 6-tap filter of H.264/AVC. 

They were compared in terms of averaged BD_rate. The 

fixed 6-tap filter of H.264/AVC was selected as a baseline to 

compute the BD-rates.  

For example, the BAIF provides higher BD-rate of 5.3% at 

maximum than the conventional NSAIF for Crowdrun se-

quence. In general, the proposed algorithm shows much bet-

ter coding efficiency for video sequences with complex tex-

tures or edges such as Crowdrun than homogeneous video 

sequences such as Rolling tomatoes. This is because the 

learning-based SR is normally very useful to accurately syn-

thesize textures or edges.  

In addition, Fig. 8 compares the proposed algorithm with 

fixed 6-tap filter of H.264 and AIF of KTA in terms of RD 

(Rate-Distortion) curves. 

 
Fig. 8. RD curves of several algorithms for Crowdrun sequence. 
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(a)                                               (b) 

 
(c)                                               (d) 

Fig. 9. A part of the 5th frame of Crowdrun. (a) Original (b) H.264 

(PSNR: 35.92dB, QP: 40) (c) NSAIF (PSNR: 36.13dB, QP:  37) (d) 

BAIF (PSNR: 36.41dB, QP: 35). 

 

We can observe that the BAIF shows better coding per-

formance in higher bit-rates. Also, Fig. 9 compares the pro-

posed algorithm with previous works in terms of subjective 

visual quality. The Crowdrun sequence was encoded with 

proper QP values so that all the algorithms have almost same 

bit-rates, and then a part of the 5
th
 decoded frame was chosen 

for comparison. We can see that the BAIF shows much better 

visual quality than the existing algorithms. 

5. CONCLUSION 

This paper presented a block-adaptive interpolation filtering 

which shows better RD performance as well as higher sub-

jective visual quality than the conventional AIF for sub-pel 

motion estimation. The proposed algorithm employed the 

learning-based SR to maximize the interpolation accuracy. 

Also, the proposed algorithm does not have to transmit any 

side information related to filter coefficients because the ex-

act filter coefficients of every block can be derived from the 

equivalent dictionaries in the decoder. Simulation results 

show that the proposed algorithm provides higher BD_rate of 

13.4% at maximum than the conventional FIR filter of 

H.264/AVC. 
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