19th European Signal Processing Conference (EUSIPCO 2011)

Barcelona, Spain, August 29 - September 2, 2011

FRACTAL CODING OF IMAGE-COLOR SPACES FOR SALIENCY-BASED OBJECT
DETECTION IN NATURALLY COMPLEX SCENES

Kohji Kamejima

Faculty of Information Science and Technology, Osaka Institute of Technology
1-79-1 Kitayama, Hirakata 573-0196 JAPAN
phone: +81-72-866-5406, fax: +81-72-866-8499, email: kamejima@is.oit.ac.jp
web: http://www.is.oit.ac.jp/ kamejima

ABSTRACT

A saliency-based approach is presented for object detection
in naturally complex scenes. By regenerating the chromatic
diversity in a probabilistic color space, the distribution of
saliency colors is extracted as the viewer specific visualiza-
tion of landmark objects. The saliency distribution is artic-
ulated into a system of fractal attractors spanning object im-
ages. Detected fractal models are visualized according to the
perspective underlying the scene image.

1. INTRODUCTORY REMARKS

Despite infinite diversity of appearance, natural scenes ex-
hibit environment specific landmarks to be identified within
individual intention of viewers. To control the focus to such
a landmark object, perception processes should gather ran-
domly distributed image features and apply ‘feature integra-
tion’ schemes to generate ‘visual saliency’ associated with
the complex scene [3]. Due to the redundancy of natural
scene relative to specific decision making by the multitude
of the viewers, however, such computational feature integra-
tion processes easily fall into combinatorial explosion.

As the results of the evolution in the really existing
world, human’s vision system is equipped with not-yet-
explicated information processing mechanism for under-
standing the scenes thronged with friendly or undesirable
neighbors. Through the co-evolution process, the inherent
vision has developed an attention control mechanism within
the surroundings [5] on the premise that imminent decision
making should be evoked by early perception of unstructured
ambient light [1] and universal preference to a class of fractal
patterns [2]. Based on such physical-geometric structure un-
derlying the naturally complex scenes, we can articulate the
scene image into two fractal attractors spanning a connected
open space and a distribution of boundary objects as shown
in Fig. 1; the ground area and boundary distribution are visu-
alized by a closed link and capturing probability with respect
to associated fractal models, respectively [4].

Noting this, in this paper, we consider the multi-fractal
coding of the boundary distribution in scene image. The
problem is to extend the fractal articulation to the chromatic
diversity arising in a color space.

2. LOCALLY GAUSSIAN PALETTE

To cooperate with human’s inherent perception, the chro-
matic diversity of the boundary distribution should be re-
generated in terms of at least three ‘primary colors’. Let
Q be a image plane and suppose that the information con-
veyed by the ambient light is observed through a distribu-
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Figure 1: Generic Structure of Naturally Complex Scene
a connected open space is identified with a fractal code spanning
scale features (green circles); inherent perception articulate the
boundary distribution into landmarks exhibiting saliency colors.

tion of incoming light f, on Q. For precise evaluation of
the chromatic complexity, let the saliency of the incoming

light be detectable through spectral factorization: f&5°° =

s fo fg}T, ® € Q, where £ designates subjective
weight of the primary (-). Define ¢y, = f5°2/|f2CE|. By
identifying the totality of the chromatic information ¢, with
the positive part of a unit sphere ®* we can induce the fol-
lowing index:
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for arbitrary ¢ € ®; following experimental studies using
various roadway scene images, the sensivity factor ¢ should
be adjusted to 1/10 ~ 1/100. For sufficiently small chro-
matic variation, the index g¢ (¢|9e) approximates the Gaus-
sian distribution on local tangential space at ¢y. Adding to
the local measure, the constraint |¢,|> = 1 yields the follow-
ing index for evaluating the predictability of the chromatic
impression:
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(b) Filtered Image

Figure 2: Complexity Reduction via W, Channel

an artificial scene can be articulated with respect to conventional
trichromatic primary.

Figure 3: Complexity Reduction via y,, Channel

trichromatic articulation may miss and/or degenerate some saliency
patterns (?) in naturally complex scenes.

In this indexing, the complexity of substantial process imple-
mented by the retina system is evaluated in terms of Shan-
non’s entropy HECP; the complexity reduction in subsequent
mental process is identified with vitals specific ‘neg-entropy’
generation. By using the indexing (2), we can visualize
saliency distribution in well-structured scene as illustrated in
Fig. 2 where the chromatic diversity of the ‘block world’ (a)
is ‘matted’ with respect to the index Y, to yield the saliency
patterns in noisy background (b).
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Figure 4: Chromatic Diversity in RGB Color Space

the chromatic diversity associated with artificial objects yields 2D
distribution essentially expanded towards the trichromatic primary.

The saliency indexing (2) can be applied to naturally
complex scene to generate the distribution f5 " Wy, as shown
in Fig 3 where landmark objects distributed in the scene (Fig.
1) are partially visualized; objects exhibiting ‘natural colors’
may pass through the filtering process. To correct such sub-
stantial bias of the y,-filter, we need the adaptation of the

primary system to the chromatic diversity of the scene.

3. CHROMATIC COMPLEXITY GENERATOR

Consider the fractal model generating the chromatic com-
plexity as shown in Fig. 4. In this figure, the diversity of
the chromatic information in the scene (Fig. 2) is visualized
in the following linear color space:

eRGB ¢w7

et) = [cos B, sinG(.)}T,

I'sy

with a priori orientation of the trichromatic primaries Og =
/2,6c ) = Or + (—)2m/3; the distribution of the chro-
matic information is expanded towards the preassigned RGB
primaries in the color space I'. This implies that the chro-
matic complexity of the natural scenes, partly missed in Fig.
3, can be regenerated through the adaptation of the primary to
the observed images. Let IT= { #; } be a set of such as-is pri-
maries with size ||[T||. Suppose that samples of the chromatic
information s are collected in a scene image and diffused via
the following process in I':

J 1
w = 540 (71s)+p [4a — 9o (Vi9)] . ()

where y, denotes the aggregation of Dirac’s delta measure
distributed on the set {y(q)w) | b 65}. By adjusting

p = log, ||[T1||, we can identify the information ¢, (y|s) with
the probability distribution for capturing a fractal attractor
controlled by a set of fixed point. Hence, we have the fol-
lowing procedure for an estimate of the as-is primary IT on
the Laplacian-Gaussian boundary 9%y [4].
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Figure 5: Complexity Reduction via {, Channel

the chromatic diversity of a naturally complex scene is reduced into
saliency patterns with respect to shifted as-is primaries i and fg.

(i) Fixed Point Allocation: First, a boundary point éyf €
08y, is expanded via the following successive scheme:

i, = tudrt, 5)
atf = {oy | voy:m (o7 1) = (a7.0)) },

Iy, 0y € %y — T,
with respect to the semi-distance 1 (y,A) = aninh/—M.
e

The expansion process halts at the increment dff satisfying

max 1 (ytf,f",f) <2/p.
¥ edi

(ii) Vertex Selection: To minimize the as is primary set,
next, the set of vertices I = { § € IV } satisfying the fol-
lowing conditions are selected:

Vm7k: emk_enk < T, (6)
To=f = [i = w0,

%y €T 7= |l e/

(iii) As-is Primary Separation: Finally, the distribution of
I' is expanded along the following repulsive force:

Y (e—7)8a (9cl9)), (7

g€l

dfe =

within the possible coloring circle || < 1. As the results,
the vertices { §; } are separated each other to yield a set of
as-is primaries ITin T.

The effectiveness of the as-is primaries is illustrated in
the main window of Fig. 5 where four instances of as-is pri-
maries IT={ 7., Ry, Agp, o } are estimated to implement the
following as-is saliency filter:

Vo = oxp|-Thol, ®)
o = - Zp(%lﬁi)logp(%lﬁi), Yo = €0,
ﬁr,-efl
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with respect to the primary selection probability given by

8o (90 l|%i) '
Y 2a(9olf)

ﬁiefl

P(¢co|7%i)

In this equation, 7; is restored via the following procedure:

RGB
7,

# = m+T e 1 1),

T . — . . .
¥ and 7; designates a nominal bright-

where #; = % (€5°7)

ness level given as the solution to the following
37 + 27 1P T+ |7 = L

The implication of the chromatic complexity generator is
demonstrated in the subwindows of Fig. 5; the distribution of
the samples s and the associated field ¢, (y|s) are displayed
in upper and lower subwindows, respectively. Through the
comparison of Figs. 5 with 3, the as-is primary is effective to
extend the focus of perception channel to landmark patterns
wrapped by ‘natural colors’.

4. MULTI-FRACTAL ARTICULATION

For the set of the chromatic information s = { ¢; } with size
|Is||, define the local diversity parameter by

2
1 %o
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Then we can introduce a matching rule for selecting the pix-
els supervenient to an as-is primary:

8 (0F) >Ry = 90 < 7. (10)

Let O be such a saliency pattern given by

o = {oca|pner}, (11)
and suppose that a fractal attractor Z is generated via succes-
sive applications of the contraction mappings p; : Q — Q of
the following form:

1 .
ui(o) = 7[m+w,{,.}, i=1,2,....||v], (12)
where w{; is associated fixed point. Noticing that the fixed

points should be located the Laplacian-Gaussian boundary
089, we can apply the successive expansion scheme (5) to
the saliency pattern, as well. For articulating the set d0O
with respect to the saliency patterns, a fixed point in the set
Q/ should be expanded via the following unification scheme:

o= Qudey, (13)
4o {8(0* | vaw:ﬁ(aw*,g;f)g‘ﬁ(aw,gf)},
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Figure 6: Fractal Articulation in Image Space

a saliency pattern associated with fU--primary (Fig. 5) is articulated
and allocated in the ground-object structure (Fig. 1).

where do*,dw € Q‘é — Q7. To confine the attractor
within a saliency pattern, the process(13) is interrupted
at the increment dQ/ satisfying the breakdown condition
minge (§[7) < R

Figure 6 shows the result of the fractal articulation pro-
cess applied to the scene image (Fig. 1); in response to the
selection of an as-is primary #, € I, the distribution of
saliency colors © is extracted and articulated via the suc-
cessive procedure (13); resulted attractor is displayed in a
subwindow localized within the perspective induced by the
ground-object structure.

5. EXPERIMENTS AND DISCUSSIONS

The fractal articulation process is effective to separate a land-
mark object in complex background including distractive ob-
jects wrapped by similar colors as shown in Fig. 7. In this
close-up view of the ground-object structure (a), 995 sam-
ples of unique chromatic information was collected to ex-
tract a saliency pattern £ with respect to a shifted and split-
ted version of as-is primary IT = { %, Rrg, By, Aigp, Ty } (b);
the fixed points are successively articulated to specify a chro-
matically consistent subset O at the first interruption (c); the
fractal attractor controlled by the fixed points is indicated in
the perspective of the scene (d). Figures 8 and 9 show the
results of other experiments. In these experiments, saliency
patterns are extracted as indicated in (a); associated fractal
codes are visualized in the ground-object structure as illus-
trated in (b). These experimental results demonstrate that the
fractal coding scheme is effective for the structurization of
even ill-conditioned scenes where landmark objects are not
observed as dominant patterns; a warning color of vehicles
sometimes smaller image than attractive distractions as dis-
played in Fig. 8; the post is rather ‘low-keyed’ object in a
night view as shown in Fig. 9. Even in such scene images,
shifted version of the as-is primary is effectively estimated to
generate , fa°B-image.

The essential part of the g, -filtering is formalized by
one dimensional successive manipulation (5)+ (6)+ (7) of fi-
nite features I/. Noting that the features are extracted via
parallel distributed system (4), we can implement the object
detection scheme consisting of locally parallel processors.

The effectiveness of saliency-sensitive image analysis
crucially dependent on the selection of the primary system.
Through experimental studies using various types of scene
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(d) Contextual Visualization

Figure 7: Fractal Coding of Scene Image

saliency patterns associated with as-is primary are articulated into
a fractal attractors to allocate a landmark in the scene image.

images, it has been demonstrated that the as-is primary is
well instantiated to restore saliency colors missed and/or de-
generated in conventional RGB-based image analysis. The



(b) Contextual Visualization

Figure 8: Fractal Coding of Scene Image

saliency patterns associated with R-primary (a) are articulated
into a fractal attractors to allocate a landmark (b).

(a) Complexity Reduction via {, Channel
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(b) Contextual Visualization

Figure 9: Fractal Coding of Scene Image

saliency patterns associated with f.-primary (a) are articulated
into a fractal attractors to allocate a landmark (b).

significance of the {-filtering is summarized in Table 1
where the reduction of the unpredictability is evaluated in
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Table 1: Complexity Reduction via {,-Filtering

scene d8¢ d8q¢ d8 4 lhsd]
Figs.3, 5 0.131512 < 0.995172 < 2.032901 4
Fig.7 0.199979 < 2.016679 < 2.884059 5
Fig.8 0.103411 < 1.831957 < 2.059536 3
Fig.9 0.148436 < 1.481229 < 3.189055 3
Fig.2 0.196245 < 0.616455 < 1.266864 4

terms of relative complexity index d8(.) = Sp — 3.); Sp and
8¢ designate the Shannon’s entropy with respect to the uni-
form distribution and the gray level distribution of f,, re-
spectively; 83¢ and 8, stand for the entropy with respect
to the normalized versions of the distributions y, and ¥,
respectively. As shown in Table 1, the essential length of
decision steps on the W, fE°®-image is reduced to e 4S5 =
1/3 ~ 1/24 of random search; except for distractive scene
(Fig. 8), the computational complexity based on the as-is pri-
mary is no greater than 40% of the decision steps by using
conventional trichromatic system.

6. CONCLUDING REMARKS

A multi-fractal coding was applied to saliency based object
detection in naturally complex scenes. By identifying the
chromatic diversity with a fractal attractor in a color space,
an as-is primary system is estimated to extract saliency pat-
terns. Via multi-fractal coding of the saliency patterns, land-
mark objects are detected and allocated within the perspec-
tive of the ground-object structure. The predictability of the
as-is primary in the variation of ambient light is left to future
investigations.
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