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ABSTRACT
A new design concept for accelerating Sparse Matrix-Vector
Multiplication (SMVM) in FPGA by using Network-on-
Chip (NoC) is presented. In traditional circuit design on-chip
communications have been designed with dedicated point-
to-point interconnections or shared buses. Therefore, regular
data transfer is the major concern of many parallel imple-
mentations. However, when dealing with the SMVM opera-
tion, which is the main step of most iterative algorithms for
solving systems of linear equations, the required data trans-
fers are usually dependent on the sparsity structure of the ma-
trix and can be extremely irregular. Using a NoC architecture
makes it possible to deal with arbitrary structure of the data
transfers, i.e. with arbitrary structured sparse matrices. In
this paper, a configurable interface is presented which can
generate the pipelined SMVM calculator based on NoC ar-
chitecture with size of 2×2, 4×4, . . ., p× p (p∈N). The im-
plementation is done in IEEE-754 single floating-point pre-
cision on the Xilinx Virtex-6 FPGA.

1. INTRODUCTION

Over the past 30 years, researchers and scientists have tried
various approaches to mitigate the poor performance of
sparse matrix computations. Despite these efforts, the spar-
sity of the matrices still dominates the performance of the
Sparse Matrix-Vector Multiplication (SMVM) computations
[1]. SMVM is used in many applications. For example, Fi-
nite Element Method (FEM) is a widely applied engineer-
ing analysis tool which is based on obtaining a numerically
approximate solution for a given mathematical model of a
structure [2, 3]. In general, iterative solvers, such as the
Conjugate Gradient (CG) method, are almost dominated by
SMVM operations (i.e. usually more than 95%). The CG
method is the most popular iterative method for numeri-
cally solving systems of linear equations [4, 5]. Moreover,
Google’s PageRank (PR) Eigenvalue problem is considered
to be the world’s largest sparse matrix calculation. This al-
gorithm is also dominated by SMVM operations where the
target matrix is extremely sparse, and unstructured.

In the last decade, many researchers have dealt with
the integration of pipelining and parallelism inherent in the
SMVM computation in hardware designs. Sun et al. [6]
proposed a SMVM design on FPGA containing many Pro-
cessing Elements (PEs) with pipelined floating-point units.
Gregg et al. built a specialized memory controller to ac-
celerate the SMVM in [7]. Götze and Schwiegelshohn [8]
presented a systolic algorithm which allows the parallel exe-
cution of SMVM on VLSI circuit. Williams et al. [9] used a

multi-core environment, the heterogeneous x86 based quad-
core CPU to speed up SMVM. Google’s PR problem has also
been investigated for acceleration with FPGA in [10, 11].
Conventional SMVM architectures are usually focused on
a dedicated internal chip interconnection to forward vector
components and nonzero matrix elements among several pro-
cessors. For instance, the fat-tree style designs, which re-
quire pre-sorting and pre-ordering before input the data [12],
will become extremely difficult when the matrix is very large
and sparse.

To solve these challenges, a paradigm shift in on-chip
interconnection to packet-based switch network is motivated.
This new packet switching architecture is called Network–
on–Chip (NoC) [13,14]. The basic idea of the NoC is that we
regard a System-on-Chip (SoC) device as a micro network of
components and the data are switched through the routers.

In this paper, we present an FPGA accelerator for SMVM
based on the NoC architecture (SMVM-NoC) to solve
the problems, which arise from large sparse matrices with
their extremely irregular structures. The basic idea of this
design is to implement an on-chip internal network as the
main transmission bone for the data transfers required for
the SMVM computation. The presented architecture is able
to handle large sparse matrices, especially it can deal with
arbitrary sparsity structures. We have generated 4× 4 and
8× 8 pipelined SMVM-NoC calculators through a config-
urable interface, then implemented it on Xilinx Virtex-6 ML-
605 FPGA. According to the implementation results, utiliz-
ing the packet-based forwarding functionality is beneficial
concerning high capability of heterogeneous IP integration
and flexibility.

This paper is organized as follows: In Section 2, an brief
introduction to the SMVM operation, the design technique
of NoC and the basic idea of proposed SMVM-NoC archi-
tecture is give. The hardware implementation is described in
Section 3 in detail. In Section 4, our experimental results are
given. Section 5 concludes this paper.

2. SMVM ON NETWORK-ON-CHIP

A typical SMVM operation can be expressed as follow:

A · x = b, (1)

where x and b are vectors of length n and A is a n×n sparse
matrix. Many researchers have already utilized pipelining
and parallelism to improve the performance. However, the
performance is still determined by the sparsity of the matrix
A [3].
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The growing complexity of multi–core architectures will
soon require highly scalable communication infrastructure
for the integration of more than thousand IP cores [15]. As
the VLSI technology keeps shrinking down into nanoscale,
the wire delays become more critical than gate delays caus-
ing performance degradation and synchronization problems
[16, 17]. Moreover, the data synchronization issue with a
single clock source will also become a critical problem for
circuit synthesis [13, 18]. That means the issue of conver-
gence for timing closure on the large SoC design is difficult
to be solved. In order to solve these problems, NoC was
presented as a new SoC paradigm to replace the traditional
on-chip interconnections by packet based switch network ar-
chitecture [19, 20].

In general, a typical multi-core system based on mesh
style network consists of a regular n× n array of tiles. Fig-
ure 1 shows a 4×4 array which is connected by a two dimen-
sional mesh topology. Each tile could be a general-purpose
processor, a DSP, a customized IP or a subsystem. A Net-
work Interface (NI) is embedded within each tile for connect-
ing itself with its neighboring tiles. The data communication
can be achieved by routing packets in the network.

SMVM is performed on this array using the packet-based
switch network for the required data transfers. For instance,
Figure 1 also shows a simple scenario. The circle symbols
denote the nonzero elements of the sparse matrix, the square
symbols denote the vector elements, and the rhombus sym-
bols denote the results, respectively. First of all, the vector
components x j and nonzero matrix elements Ai j will be dis-
tributed to the corresponding PE according to the coordinate
index i and j through the mesh network; i.e. vector x1 arrives
at the PE with A11, A21, and A51. Now the partial products

b( j)
i =Ai j ·x j must be computed and then the b( j)

i are accumu-

lated to form bi = ∑i b
( j)
i . Note that the number of nonzero

elements nz is usually larger than the number of PEs.

Figure 1: A simple example of direct mapping for parallel
SMVM operations in NoC architecture

Table 1: Packet Format

Packet Format
Bit Functionality
51 Finish flag
50 OPCode:0⇒Multiplication and 1⇒Accumulation
49 DataType:0⇒Matrix and 1⇒Vector

40-48 Y–Coordinate
32-39 X–Coordinate
0-31 Pay-load

3. IMPLEMENTATION

In this section, a brief introduction of how to map the pro-
posed design concept for parallel SMVM operations on NoC
architecture is given. Figure 2 shows the block diagram of a
4×4 SMVM-NoC in Xilinx Virtex-6.

Figure 2: The system level view of a 4× 4 SMVM-NoC in
Virtex-6 (p× p is reconfigurable) [21]

3.1 Packet Format

The packet format that is used to communicate over the
proposed NoC architecture is summarized in Table 1. The
packet is mainly constituted by the header and the pay-load.
The header contains three flags and two addresses. The three
flags are named Finish, OPCode, and DataType. The Finish
flag tells the routers that this packet contains the result and
needs to be forwarded to the exit port. The OPCode informs
the PE which floating-point operation is going to be per-
formed (multiplication or accumulation), and the DataType
flag represents the type of input data (matrix element or vec-
tor element). The objective of two coordinate addresses is to
locate the position of the PE for the multiplier or the accu-
mulator.

3.2 Switch Architecture

The switch is the most important component concerning the
performance of SMVM-NoC. In [21], we built up a proto-
type SMVM–NoC platform, where the mesh network size is
fixed to 4×4. However, in order to reduce area overhead and
power consumption, a regular 5× 5 crossbar switch is now
divided into two 3× 3 switches. This method can signifi-
cantly reduce the complexity of arbitration since smaller and
fewer arbiters imply fewer contentions [22]. This new switch
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component for the local PE to communicate with its neigh-
bor PEs consists of a set of input/output ports, dual-crossbar
switches, four input FIFOs and controllers. It is illustrated in
Figure 3.

Figure 3: Detailed switch interconnection including two 3×
3 crossbars, five I/O ports and four FIFOs

In order to further improve the performance of the switch,
the 3× 3 switch is pipelined into 5 stages as shown in Fig-
ure 4. The five stages are named as Fetch, Routing, Chan-
nel Request, Channel Acknowledgment and Output, respec-
tively. Fetch stage reads a packet when there is a packet avail-
able in the FIFO and forwards it to the next stage. Routing
stage decomposes the header information for routing. Chan-
nel Request stage sends a channel request to the crossbar.
The packet will be forwarded if desired channel is not occu-
pied, otherwise it will be stalled until the requested channel
is free. In an ideal situation, a three-port switch can transmit
three packets in each clock cycle. There are two conditions
that stall the pipeline, either output FIFO full or the requested
channel has been occupied by another request. When a stall
event happens, the switch will first move the packet in the
last stage to a stall register since the Fetch stage cannot pre-
dict the stall event while reading the input FIFO. This might
result in one more packet that has been read after stall hap-
pened. After the stall event is dissolved, the switch will re-
trieve the packet from the stall register.

3.3 Routing Algorithm

For simplicity and flexibility of the proposed SMVM–NoC
hardware implementation, direct routing algorithm is se-
lected (a.k.a. XY deterministic routing) for our NoC archi-
tecture design. In XY routing, the switches in the network
are indexed by their XY coordinates. When a switch receives
a packet from other switches, it will first extract the header
information of this packet and arbitrate the direction, then
transmit to next switch. Each packet is first routed along
X coordinate and then along Y coordinate until the packet

Figure 4: A 5-stage pipelined switch with two 3× 3 cross-
bars, five I/O ports and four FIFOs.

reaches its destination.

3.4 Processing Element

The PE is designed to deal with the floating-point opera-
tions for SMVM–NoC as illustrated in Figure 5. The PE
used in the proposed architecture contains a control circuit,
a floating-point multiplier, a floating-point adder, a data ar-
biter, a 2× 1 multiplexer, and four FIFOs. Multiplier and
adder are used to perform multiplication and accumulation,
respectively. The data arbiter receives the packet from the
switch and extracts the header. Then it forwards the data to
proper FIFOs or lookup tables. The multiplexer is used to
select one of the two result FIFOs as data output. The Vec-
tor Table and the Sum Table can contain at most 16 matrix
vector elements and 16 accumulation results for each.

Figure 5: Schematic view of the PE

3.5 Data Mapping

When mapping a SMVM operation into the 4× 4 SMVM-
NoC, we first need to pack nonzero elements of sparse ma-
trix and the corresponding vector elements with a proper
header. Packing examples are listed in Table 2, where the
two addresses (X–, Y–Coordinate) are separated into three
sub parts. The lower 2 bits of the two addresses are used to
indicate the horizontal and vertical positions of PE for mul-
tiplication. The third and forth bits are used to address the
PE for accumulation operation. Note that these two address
lengths should be long enough when the size p of SMVM-
NoC increases. The higher 4 bits of X-Coordinate are used
as an index for matrix Vector Table to cache 16 entries in PE
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for multiplication, whereas the higher 4 bits of Y-Coordinate
are used for Sum Table to buffer 16 entries for accumulation.

If we look at Figure 1 and Table 2 as an example, the
nonzero elements A11, A21 and A51 need to perform multipli-
cations with the vector element x1. The addresses of these
three nonzero elements and one vector element should be
mapped to the same PE. This means that the lower 2 bits in
those packets have to be identical (emphasized in italic style).
On the other hand, the multiplication results (A21 × x1) and
(A23 × x3) need to be accumulated in the same PE so that the
third and forth bits of A21 and A23 and sum index (empha-
sized in bold style) should be identical, too.

4. EXPERIMENTAL RESULT

The proposed SMVM-NoC platform has been first modeled
in Verilog HDL and synthesized with Xilinx ISE 11.5 target-
ing on XC6VLX240T-1FF1156. Later the implementation
has been verified on the Xilinx ML-605 development kit with
Xilinx Platform Studio 11.5 as shown in Figure 2. The syn-
thesized resource utilization reports are listed in Table 3. In
Figure 6, an overall comparison is made between Pentium-4
PC and pipelined SMVM-NoC with different size of sparse
matrix. A set of random matrices from the size of 16× 16
to 256× 256 with sparsity from 10% to 50% is tested. Ob-
viously, the pipelining improves the performance. For exam-
ple, when the matrix size is 128× 128 , the performance of
the proposed pipelined SMVM–NoC with the size of 4× 4
can reach 580 MFlops. Therefore, it can obtain a speed up
by a factor of 2.8 compared to the Pentium-4 using Matlab
SMVM operation. The ideal performance of the SMVM-
NoC platform with 4× 4 mesh network can achieve a peak
performance 8.8 GFlops in theory. Each PE can perform at
most two floating-point operations in one clock cycle. The
peak performance can be calculated as:

Per f ormancepeak = FPOPC ∗PEC ∗ f , (2)

where FPOPC, PEC and f are the Floating-Point Operations
Per Cycle in one PE, the number of processor and the maxi-
mal clock frequency.

Figure 6: Performance analysis of different matrix size with
random sparsity on the 8 × 8 SMVM-NoC (operating at
200MHz)

Figure 7 shows that the performance of SMVM-NoC is
influenced by the sparsity of the matrix. Matrices containing

around 6,500 nonzero elements with sparsity from 10% to
50% are tested. For the SMVM, the variance of the perfor-
mance is smaller than the general processor.

Figure 7: Influence of sparsity on different architectures with
random sparsity from 10% to 50%.

However, according to Figure 6 we currently could only
obtain an average performance in the range of hundreds of
MFlops from the experimental results. Therefore we fur-
ther look into the packet distribution analysis between the
PEs and the switches as illustrated in Figure 8. The prob-
lem is that most of the time the packets are stuck in the
switches due to the traffic congestion and poor throughput
of the switches. On the other hand, the switches transmitting
packets over the network have much shorter latency com-
pared to the PEs. Therefore, the switch is compromised with
the PE on clock rate, which results in performance decre-
ments. This caused a huge performance gap. In this regard,
our future work will extend this architecture to speed up the
clock rate of the switch by separating the clock signal into NI
clock and PE clock (asynchronous NoC architecture). Fur-
thermore, the pipeline stage of PEs can also be adjusted in
order to reduce the packet injection rate.
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Figure 8: Analysis of the packet traffics for the 4×4 SMVM-
NoC

5. CONCLUSION

In this paper, a new design concept for accelerating SMVM
based on NoC in an FPGA was presented. Matrix-vector
multiplications with various random sparse matrices in
IEEE–754 single floating point precision has been tested on
the Xilinx Virtex–6 FPGA. The advantages of introducing
the NoC structure into SMVM computation are given by
high resource utilization, flexibility and the ability to com-
municate among heterogeneous systems, such that more ac-
celerators can be configured into a larger p× p array (p =
,2,4,8, . . . ,2k

,k ∈ N). The synthesis results showed that the
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Table 2: An example of packing vector elements and nonzero matrix elements into packet format

Finish Operation Data Y–Coordinate X–Coordinate Pay
Flag Code Type Sum Acc Mul Vector Acc Mul load
0 /0 0 /0 /0 /0 /0 /0 /0 10 0110 /0 /0 11 x1
0 /0 0 /0 /0 /0 /0 /0 /0 10 0001 /0 /0 10 x3
0 0 1 0111 11 10 0110 11 11 A11
0 0 1 0100 10 10 0110 10 11 A21
0 0 1 1010 10 10 0110 11 11 A51
0 0 1 0100 10 10 0001 10 10 A23

Table 3: Synthesis Results for pipelined SMVM-NoC Architecture in Xilinx Virtex-6 (XC6VLX240T-1FF1156)

Size Logic utilization Used Available Util. Freq. Peak Flops

4×4
Slice Registers 69,224 301,440 22%

275 MHz 8.8 GFlopsSlice LUTs 77,540 150,720 51%
DSP48E1 80 768 10%

8×8
Slice Registers 254,960 301,440 84%

199 MHz 25.47 GFlopsSlice LUTs 318,076 150,720 211%
DSP48E 320 768 41%

advanced FPGA with the chip-internal NoC network can pro-
vide a solution for sparse matrix computation to further ac-
celerate many iterative solvers in hardware, such as solving
systems of linear equations (CG Method), FEM problem and
so on. Moreover, the NoC structure can receive data from
and forward results to different entries simultaneously. This
makes it possible to deal with very large sparse matrices with
arbitrary sparsity structure of the matrix without interfering
the performance by the sparsity of the matrix.
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