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ABSTRACT
1
 

The paper considers a new method of the spectrum 

scheduling process and QoS support in distributed wireless 

networks using a game theoretic-framework. The game uses 

incomplete information model, so the concept of the 

Bayesian Nash equilibrium is used. Moreover, we consider 

the new algorithm of distributed spectrum sharing based on 

the Cournot oligopoly competition. Multiple traffic classes 

of high and low priority have been used with special 

parameters which represent priority classes and the volume 

of users’ individual demands. The proposed resource-

sharing algorithm may be used in distributed opportunistic 

or cognitive wireless networks. 

1. INTRODUCTION 

In contemporary wireless communication, radio spectrum is 

the scarce resource, particularly in scenarios, where there 

exist multiple players (network users and nodes) with high 

Quality of Service (QoS) demands. This spectrum has to be 

efficiently and fairly shared by the players. In a centralized 

architecture, it is easier to solve the problem of resource 

scheduling, because at the central element of that network 

(the resource manager or the spectrum broker) usually the 

channel state information (CSI) for all players is available. 

In the networks without that element a fair spectrum sharing 

algorithm is difficult to design. In this paper, we discuss the 

Cournot spectrum-sharing competition, which can be used 

for the distributed resource assignment, and which 

incorporates some fairness and QoS-support mechanisms. 

Our approach proposed below can be used in the cognitive 

wireless networks with a decentralized architecture, in 

which some information is made available to all network 

devices, e.g. in the case, when one of the cognitive devices 

becomes a central (master) node, has some management (or 

broadcasting) rights, but is not interested in sharing the 

computing resources with other players. The model of the 

considered network is shown on Figure 1.  

The idea of the Cournot competition has been first shown 

and applied in economy. Studies of that game have been 

presented in [1] and [2]. The same idea has been adopted in 

radio communication for resource-sharing in [3] and [4]. 

Here below, we contribute to the advance of the work 

presented in [3] and [4]. We adopt the same utility function, 

extend the Cournot model to the distributed spectrum 
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management game with incomplete information, and 

analyze the Bayesian Nash Equilibrium (BNE) in this game. 

 

 

Figure 1 – Cognitive devices in a distributed network 

2. GAME MODEL 

A. System description 
 

Let us consider a decentralized network with N users. We 

assume that there is some spectrum available, and its size is 

given by B. The demand of an i-th user for some portion of 

that spectrum is denoted by bi. We assume that the users 

monitor the behaviour of the rest of the players, and that 

their effective SNR’s are made known to all of them (e.g. by 

the master node). This concept is used to hide the CSI in one 

parameter called effective SNR denoted by γi for the i-th 

player [6]. The values of γi may be easily sent in a 

signalization channel (e.g. in the Cognitive Pilot Channel – 

CPC [5]) without wasting much of the spectrum for that 

purpose. Each player maps her frequency-selective channel 

characteristic and the associated SNRs in the considered 

band to one effective γi value. This value is used to make an 

efficient decision on the adaptive transmission parameters, 

e.g. coding scheme and rate, adopted power, modulation 

constellation. The effective-SNR concept is presented in [6]. 

In the effective scheduling process, the players use the 

continuous function of their spectral efficiency. For an i-th 

player it is defined as ([7]): 

  ( )iii γαη ⋅+= 1log2 ,    (1) 

where for the QAM modulation schemes: 
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and 
ie

P  is the target Bit Error Probability (BEP) of an i-th 

player. The αi  parameter allows to estimate the data rate and 

the spectral efficiency for a target BEP [7]. The players may 

transmit data of various QoS demands and priorities which 

are reflected in the pair of parameters (
ie

P , ri) (ri is the 

revenue per unit of the allocated spectrum, the parameter 

characterizing the traffic class of an i-th user). These pairs 

translate to traffic classes. We assume that the probability 

that other user wants to transmit the data of the k-th priority 

is given by pk. We can also assume that users, which 

compete for the spectrum, always have enough data to send. 

In other case we can assume that they are out of the game.  

 

B.  The principles of the Cournot competition  

 

Let us consider the static Cournot competition to model the 

spectrum sharing market. In that market, the players compete 

for an available bandwidth. If there are two players the 

market is called duopoly, if there are more than two players 

we have the oligopoly [3]. The strategy of each player is 

related to the amount of spectrum which they want to 

demand and use (bi). The cost function (reflecting the cost of 

the acquired spectrum) for all competing users given by [4]: 

 ( )
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where b is the vector of (b1, …, bN), x is a fixed cost of 

spectrum sharing, y is the cost of the spectrum unit (assumed 

to be the same for all users), which affects (increases) the 

players’ cost, and thus also reduces their demands, and τ is 

the factor additionally impacting the cost, as well as the 

fairness of spectrum sharing. We consider cost function with 

τ = 1 for the oligopoly case. The revenue of the i-th player is 

related to the obtained spectral efficiency, and is given by [4, 

7] 

 iiii brR ⋅⋅= η ,   (4) 

where ri (let us note again) is the revenue per unit of the 

allocated spectrum of an i-th user. The profit of the i-th 

player is given by the revenue minus the cost: 

 ( ) ( )bb cbbr iiiii ⋅−⋅⋅= ηπ . (5) 

The above profit function is a concave function of bi [4], and 

thus, we can find its maximum by solving the equation: 
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For τ = 1, and in the oligopoly case, we obtain the best-

response function of an i-th player (for other players the 

formula is the same) which is given by 
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To obtain the Nash Equilibrium (NE) of this game, the set of 

equations must be solved, as defined above for i = 1, …, N. 

For the duopoly case, the solution (NE) is given by the 

following equation: 

 
y

xrr
b

jjii

i ⋅

−⋅−⋅⋅
=

3

2
*

ηη
.  (8) 

 

C.  Enhancements of the Cournot competition model 

 

Let us assume that the nature of the transmitted traffic in the 

network is unknown. Any station can transmit data with 

various priorities (the priority is the feature of a traffic class). 

Without the loss of generality, we will consider two players 

(duopoly case) and a finite number K of traffic classes, 

defined by priorities }{
kjj rr ∈  (where k = 1,…, K). The 

players know only the effective SNRs of the rest of the 

players and the probabilities (pk) of the traffic class of the 

opponent (which can be collected during the previous 

observations as this may be the characteristic cognitive 

feature of the cognitive radio). Equation (8) presents the 

Nash equilibrium for the case of the perfect and complete 

knowledge of the opponent’s parameters: rj and ηj. Now we 

can add the element of uncertainty to the game of two 

players. We assume that the target BEP of that both traffic 

classes is the same, and we use x = 0, y = 1, τ = 1 in the cost 

function (3). The mobile device knows her own traffic class 

(
ie

P , ri), and she also knows with probability pk that the 

other player wants to transmit the data with the priority class 

k. She does not know the exact nature of the traffic that is in 

the buffers of the other player. According to the theory of 

games with incomplete information [2] we have to find the 

Bayesian Nash equilibrium, and we have to consider not only 

one opponent but actually K opponents with different traffic 

behaviour, denoted by jk (for k = 1,…, K).  

Let us assume that the particular player i wants to transmit 

data of the priority class ri. The profit of the other (j-th) 

player in case of having priority 
kj

r data in buffers is given 

by: 

 ( ) ( )ikjjjjjj bbbbr
kkkk

+⋅−⋅⋅= ηπ b .  (9) 

and the profit of the considered (i-th) player is given by 

( ) 
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The sum of probabilities pk must be equal to 1. Now, the 

profit maximization proceeds according to the same steps as 

in the classic Cournot competition (6): 
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The result of (11) is the following set of equations: 
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where ( )...ib  is the best-response spectrum demand of the i-

th user. It can be written in the matrix form as 

 DbA =⋅ T , (13) 

where 

 



















=

2001

0201

0021

2 21

L

O

L

L Kppp

A , (14) 

  























⋅

⋅

⋅

=

jj

jj

ii

K
r

r

r

η

η

η

M
1

D ,  (15) 

and  
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The result (the BNE) is given by  

 DAb ⋅= −1*T . (17) 

For two players in the game (denoted by i and j) it is easy to 

write the full formula for the Bayesian Nash equilibrium as 

the result, and it is given by: 
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Formula (18) is the most important for us because in the 

duopoly case each player uses that formula for the decision 

on her strategy.  

We have obtained the result with the element of uncertainty 

defined by the probability pk which may be modelled by 

observing the character of the traffic in the network. For 

more than two players, we can start gathering the statistics of 

the other players as one and use these statistics for each 

player. Using one parameter as generalization of all users 

may be better and simpler than gathering statistics for each 

user separately, but in terms of game-solution effectiveness it 

may produce worst results. We suggest that the collection of 

data should be done separately for each user only when 

number of users is small and compressed to one number 

when there is more than an assumed threshold. One of the 

disadvantages of the Bayesian games is that when we have N 

players then we have to consider (NK-K+1) equations.   

We can write presented game for N players. We assume x = 

0, y = 1, τ = 1 . The profit of considered (i-th) player is given 

by 
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The profit of anyone of the rest of the players, e.g. of the j-th 

player having the k-th traffic class is given by: 
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Now, the profit maximization proceeds according to the 

analogous steps as in the classic Cournot competition (6) and 

in the duopoly game (11). Then we can achieve the matrices 

A, D, and b
*T
 in the same way as in the previous game. 

Below we present the matrices A, D, and b
T
 for the game 

with three players and K = 2. 
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In that game each player solves equation (17) and is looking 

only for her solution (b1). That value is processed in next 

stages of the new spectrum sharing algorithm. Observing 

(21), (22) and (23) it is easy to generalize those matrices for 

N players and K traffic classes. It is also worth to mention 

that ri parameters have to be chosen correctly and are strictly 

dependent on the available bandwidth size.   

3. DISTRIBUTED SPECTRUM SHARING 

ALGORITH 

In the previous section we have formulated the enhancement 

of the Cournot competition and we added the elements of 

uncertainty into the players’ strategies. Now, let us propose 

the new algorithm of the spectrum sharing in the distributed 

cognitive networks, where each player may demand a portion 
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of the spectrum from 0 to all available bandwidth. This 

algorithm is defined as follows: 

1. One of the mobile devices starts to play a leading 

(master) role the distributed network and informs the 

players about the beginning of a new game and about 

the effective SNRs in the network.  

2. The players solve the Cournot competition according to 

(17) or (18) for the game of two players or according to 

generalized (17) for n players.  

3. The players’ demands are sent to the network master 

node. Each player sends only her demand. 

4. The master-node of the network makes an adjustment to 

the Available Bandwidth Size (ABS) according to the 

following formulas, as suggested by us in [8]: 

 ∑=
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where D is the sum of players’ demands, S is the number of 

available spectrum units (the element of the game) and si is 

number of assigned spectrum units. This is the only 

operation which is processed by the master node. This step 

may be omitted but the advantages of this step are that the 

entire available spectrum is utilized, and that the sum of 

demands does not exceed the ABS.  

5. The master node informs the players about the amount 

of spectrum units they may use. 

6. The players transmit their data and build their statistics 

which will be used in the next games. 

4. NUMERICAL RESULTS 

In this section we show the effect of uncertainty in the 

Cournot game presented in Section 2, which is the basis of 

the new spectrum sharing algorithm presented in Section 3. 

We consider the game of two players and an algorithm with 

an adjustment to the ABS. As mentioned above this 

adjustment action is needed because for some values, the 

sum of demands may be higher than available spectrum. 

Demands for both players have been calculated as if they did 

not know the opponent’s revenue parameter. We consider 

only two traffic classes of two priorities resulting in the 

revenue parameter values: ρ1 = 12 for the high priority data 
(first traffic class) and ρ2 = 8 for the low priority data (second 
traffic class), i.e. r1, r2 ∈ {ρ1, ρ2}. Moreover, we consider the 

system with the following parameters: B = 15 MHz of the 

ABS, x = 0, y = 1, τ = 1, 
1e

P = 
2e

P = 10
−4
 and p11 = p21 = p 

being in the range [0, 1] (it implies p12 = p22 = 1 − p). An 
example of γ1 = γ2 = 10 has been considered for comparison 

of the game with complete and incomplete information. 

First, in Table 1 the solutions are presented for the game with 

full information and for the game with incomplete 

information (concerning the traffic classes). These solutions 

are obtained after step 3 of the algorithm discussed in the 

previous section. It is easy to observe that all demands from 

Table 1 are in the area of the Bayesian game in Figure 2, 

where the Cournot-game solution options are presented. We 

can observe the effect of uncertainty in the second player 

demands, which are calculated may be not optimal. In case 

when one player has high priority data, her demands may be 

in the range of [6.29, 8.38] and are dependent on the traffic 

priority of the other player. The resulting demands of the 

player with the low-priority traffic are in the range of [2.10, 

4.19]. The area of the Bayesian game shown on Figure 2 is 

dependent on the p parameter.  

TABLE 1. Results of using BNE and NE in the Cournot 

competition for spectrum sharing. 

Parameters 

used 

Results 

(MHz) 

Remarks on the types of the 

game and solutions 

r1 = ρ1, r2 = ρ1  b1 = 6.29 

b2 = 6.29 

complete information, NE  

r1 = ρ1, r2 = ρ2 b1 = 8.38 

b2 = 2.10 

complete information, NE 

r1 = ρ2, r2 = ρ1 b1 = 2.10 

b2 = 8.38 

complete information, NE 

r1 = ρ2 r2 = ρ2 b1 = 4.19 

b2 = 4.19 

complete information, NE 

r1 = ρ1, r21 = 

ρ1, r22 = ρ2,   
p = 1 

b1 =  6.29 

b21 = 6.29 

b22 = 3.14 

incomplete information, BNE 

r1 = ρ2, r21 = 

ρ1, r22 = ρ2, 
p = 1  

b1 =  2.10 

b21 = 8.38 

b22 = 5.24 

incomplete information, BNE 

r1 = ρ1, r21 = 

ρ1, r22 = ρ2, 
p = 0.5  

b1 =  7.34 

b21 = 5.76 

b22 = 2.62 

incomplete information, BNE 

r1 = ρ2, r21 = 

ρ1, r22 = ρ2,  
p = 0.5 

b1 =  3.14  

b21 = 7.86 

b22 = 4.72 

incomplete information, BNE 

r1 = ρ1, r21 = 

ρ1, r22 = ρ2,  
p = 0  

b1 =  8.38 

b21 = 5.24 

b22 = 2.10 

incomplete information, BNE 

r1 = ρ2, r21 = 

ρ1, r22 = ρ2,  
p = 0 

b1 =  4.19 

b21 =  7.34 

b22 = 4.19 

incomplete information, BNE 

 

Figure 2. Demands of the players resulting from the Bayesian game 
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Figure 3 – Spectrum assigned to players (after the adjustment to 

ABS) versus the channel condition of player 2 in case of player 1 

and 2 having the high and low priority traffic respectively  

 

In Figures 3 and 4, the final results (in MHz) of the 

spectrum sharing algorithm are presented, that uses the 

Cournot competition and the final adjustments to the ABS. 

These presented results have been calculated based on the 

values obtained in spectrum units and on the total available 

bandwidth B. In both figures, the impact of the second 

player variable channel-quality on the game solution is 

presented, however for different distribution of traffic 

priorities. We can observe that when the quality of the 

second player’s channel increases, her demands for the 

spectrum increase too. In the same time, the first player has 

to verify and decrease her demands, even though her 

channel quality is not decreasing.  

5. CONCLUSIONS 

The paper has presented the idea of sharing the resources in 

the distributed cognitive wireless network based on the 

Cournot competition with the elements of uncertainty about 

the players’ strategies. The Bayesian Nash equilibrium, as 

stable solution of that game, has been examined. The 

possibility of the transmission of the traffic with various 

priorities has been also considered, as well as the uncertainty 

concerning the players’ revenue parameters (that translate to 

traffic classes and their priorities). Moreover, the revenue 

parameters are strictly dependent on the available spectrum 

size and should be chosen correctly for efficient results.  

Our presented idea may be used especially in the wireless 

distributed networks, where multiple stations take 

independent decisions, and one station (master) plays a 

leading role in that network and decides about the final 

resource allocation, based on the players’ demands. Each 

station must solve a set of KN-K+1 equations (that set of 

equation is different for each of n stations) to obtain her own 

demand for the spectrum. Due to the fact that the network is 

distributed, each station must observe the network, collect 

data and build her own statistics on the traffic classes, 

because they are needed to make the best decisions. 

Moreover, the efficient SNR values of the other stations have 

to be obtained (e.g. from the CPC) by each player. Thus, the 

idea of the cognitive radio is perfectly fitted in our 

framework. The considered model can be directly applied in 

flat-fading environment. In the selective-fading scenario, our 

proposed model requires an amendment on the distribution of 

spectrum units acquired by the users according to their sub-

band channel qualities. This is a subject of our ongoing work. 

 
Figure 4 – Spectrum assigned to players (after the adjustment to 

ABS) versus the channel condition of player 2 in case of player 1 

and 2 both having the high priority traffic. 
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