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ABSTRACT

Parahermitian matrices arise in broadband multiple-impuitiple-
output (MIMO) systems or array processing, and requirersioa
in some instances. In this paper, we apply a polynomial eajen
decomposition obtained by the sequential best rotatioarithgn
to decompose a parahermitian matrix into a product of twaypar
nitary, i.e. lossless and easily invertible matrices, ardlagonal
polynomial matrix. The inversion of the overall parahefaritma-
trix therefore reduces to the inversion of auto-correfaiequences
in this diagonal matrix. We investigate a number of différap-
proaches to obtain this inversion, and and assessment pfither-
ical stability and complexity of the inversion process.

1. INTRODUCTION

When characterising a vector proceda] € CM, which may repre-
sent spatio-temporal data acquired frifrsensors witm being the
discrete time index, a space-time covariance matrix of die f

RI1] :é"{x[n}-x"'[n—r}} (1)
can be defined. Its Fourier pdR(z) e—o R[7],
R(2) = S R[1]z T 2

is a power spectral matrix, which takes the form of a matriypo-
mial in z[1]. This power spectral matrix is parahermitian, fulfitin

R(2) = R(2) € CM*M(2) with the parahermitian operatdr} that
implies complex conjugate transposition and reversal®piblyno-
mials, i.eR(z) = R"(z1). An example of a X 3 parahermitian
matrix of order 4 is given in Fig. 1.

The inversion of such a parahermitian matrix is requiredferg
the generalised Wiener filter sought in [2] and [3]. The appio
in [2] is not further elaborated and the solution approxiedaby a
scalar matrix, while [3] is a very coarse attempt at what flziper
addresses below.

The inversion of parahermitian matrices also arises asqgfart
the pseudo-inverse of an arbitrary rectangular polynommatrix
C(2) € CM*N(2), which can represents the transfer function of a

broadband MIMO system. Here, the transfer path between eac

pair of transmit and receive antennas requires to be mablble
an FIR filter, instead of the simpler complex gain factor tbam

be used in the narrowband case. To compute a zeo-forcingrline
precoder or equaliser, the pseudo-invers€¢) is given by

{ (C@c@) *Cr)

C(»(CC@)"

where the product€(z)C(z) and C(z)C(z) are parahermitian.
Such MIMO systems can be found in multichannel deconvatutio
problems in audio and acoustics [4, 5, 6, 7] as well as in coniimu
cations [2, 3].

This paper is organised as follows. Sec. 2 will review emigti
time- and frequency-domain methods for the inversion of/ipo!
mial matrices. The proposed approach will be outlined in. S8ec

M >N
M<N

Cl(z) = 3

e
(2))
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and require the inversion a auto-correlation sequenceishwiill
be addressed in Sec. 4. Finally, simulation results will fesented
in Sec. 5 and conclusions be drawn in Sec. 6.

2. STATE OF THE ART

To the best of our knowledge, polynomial space-time cowaga
matrices have not been inverted previously. However, sivarap-
proaches exist for dispersive MIMO systems in audio and stics)
as well as communications. In the following, a number of the a
proaches mentioned in Sec. 1 will be outlined.

2.1 Time-Domain/ MMSE Inversion

An early reference to the inversion of MIMO systems can befbu
in [4], where a linear system with convolutional matricesésup
that allows to solved for the inverse system using standasht
algebraic techniques. However, this requires to selecbttier of
the inverse system a priori, on which the accuracy of thetisolu
will depend.

2.2 Freguency Domain Inversion

For a similar problem in acoustics, [5] uses a DFT approadie-to
duce the broadband problem into narrowband problems tindbea
independently solved using standart matrix inversionrggkes in
each frequency bin. Evaluating on a finite grid of frequencints
Qj, the inversion of a MIMO system matri&c(z) is based on the

DFT representatio(2)|,_qe, = C(el?), such that
C %) =) Ae?) (4)

whereby the matrix (e/?) is a reference control system, which can
e.g. be utilised to permit a delay for the overall system. fasailts
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Figure 1: Example of a 8 3 parahermitian matriR(z).
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Figure 2: Power spectr;(e/?) for the matrixR(2) in Fig. 1, ex-
hibiting spectral majorisation.

is transformed back into the time domain by means of an levers

DFT, but if the number of frequency bins is selected too lowd a
the inverse is longer than anticipated, wrap-around duked®i-T
implementing a cyclic convolution will occur.

The paraunitarity of)(z) plays a vital role in the simplicity of this
inverse. It remains to invert the diagonal polynomial matxiz),
which can be achieved by inverting all elements along on tamm
diagonal,

, (10)
Am-1(2)

whereby A (2)Ai(z) = 1. Next, a practical decomposition to de-
termine Q(z) will be reviewed, before methods to invert the on-
diagonal element4;(z) are discussed in Sec. 4.

3.3 Sequential Best Rotation Algorithm

SBR2 s an iterative broadband eigenvalue decomposit@mique
based on second order statistics only and can be seen asralgene
sation of the Jacobi algorithm. The decomposition dft&erations

is based on a paraunitary matii}_(z),

L
u@-[]ane (11)

Similar to the solution in [5], OFDM approaches to broadbandwherebyQ; is a Jacobi rotation and the matiix(z) a paraunitary

MIMO inversion will be based on a solution in the DFT domain.
In the following, an approach based on polynomial matricéishe
proposed and evaluated.

3. POLYNOMIAL EVD-BASED INVERSION

The inversion technique for parahermitian matrices pregos
this paper is based on the polynomial eigenvalue deconiposit
(PEVD) by McWhirter et al. [8]. First, the PEVD is charactel,
before the inversion methods and a practical algorithm fgément
a PEVD are presented.

3.1 Polynomial EVD

A polynomial eigenvalue decomposition of a parahermitiatrin
R(2) € CM*M(2) is defined as

R(2) = Q(2A(2Q(2) ®)
wherebyQ(z) € CM*M(z) is paraunitary, i.e.
Q(2Q(2)=Q2Q(2 =1 (6)

and A(z) € CM*M(z) is parahermitian and diagonal with diago-

matrix of the form

Fi(z)=1— ViViH 4z ViViH (12)

with vi =[0---010--- 0] containing zeros except for a unit ele-
ment in thegth position. Thud'j(z) is an identity matrix with the
&th diagonal element replaced by a defay.

At the ith step, SBR2 will eliminate the largest off-diagonal
element of the matritU;_1(z2) Rww(2)Uj_1(2), which is defined by
the two corresponding sub-channels and by a specific lagcinde
By delaying the two contributing sub-channels approplyatéth
respect to each other by selecting the posipand the delay;,
the lag value is compensated. Thereafter a Jacobi rot@jocan
eliminate the targetted element such that the resultingéwas on
the main diagonal are ordered in size, leading to a diageatadin
and at the same time accomplishing a spectral majorisation.

SBR2 only achieves an approximate diagonalisation after a
finite number of iteration steps when off-diagonal elemeants
smaller than a threshold,

QN2 +E(2)Q(2)

with A(z) diagonal andE(z) a non-sparse error matrix with
IE(2)]]le < 8. Here, the infinity norm|R(2)||« is defined as re-

R(2) = (13)

nal elements\;(z) ordered such that the power spectral densitiesurning the largest element across all matrix-valued ctiefits of

Ai(e19) fulfill

A€ > A1), VQ, i=0...(M-2) 7

The property (7) is called spectral majorisation. While agpical
decomposition algorithm developed in [8] will be discus$ater,
an example for the spectrally majorisAdz) arising from the de-
composition of the matrix in Fig. 1 is given in Fig. 2.

3.2 Polynomial Inverse
Based on the PEVD, the inverse can be formulated as

R(2) = Q@A 1 (2Q@ ®)
It is straightforward to show that
R 1(2R(2 =R(ZR (2 =1 9)
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the polynomialR(z),

IR (2)le0 = max||Ry [o (14)
An alternative stopping criterion is to define a maximum nenf
iterations for SBR2 [11, 13].

3.4 Error Gain

SBR2 will reach a decomposition where the mai@¥Xz) is per-
fectly paraunitary by definition. However, SBR2 only acleig\an
approximate diagonalisation, and as a result the invergioness
has an inherent error as off-diagonal terms will be ignordgtnv
computing (10) later.

The decomposition with SBR2 can be characterised as follows

Q2N (2
Q2N (2

R(7 = (2+QE@Q()

(9 -E1(2)

Q (15)
Q (16)



where/\(z) is perfectly diagonal and the termiE1 (z) describes any
remaining off-diagonal elements due to the finite numbertet
tions of SBR2. Ingnoring off-diagonal elements in the isien
process leads to

QA 2Q(2)

An important measure therefore is the amplification of eletsién
—E1(2) due to the inversion process, resultingEn(z). An inter-
esting performance measure of inversion is therefore tioe gain

(R(2)+E1(2) '=R Y2 +Ex(2) (17)

_ B2

AT (18)

where the Frobenius norm of a polynomial matR(z) =
> RyzVisdefined as
1
) 2

Y=—o00
Next, we will concentrate on the inversion of the on-diadona
elements of\(z).

00

L

V=—00

IR(2)lF = ( (19)

4. INVERSION OF AUTOCORRELATION SEQUENCES

This section addresses the inversion of on-diagonal elemahn
N(2).
quences, i.e.

it = ri[~1) o—e Ri(2) =Ri(z })

This symmetry can be exploited in the inversion processesihe
inverse of a linear phase single-input single-output (SIS3tem
must also be alinear phase system and therefore have thesgame
metry properties [10, 9, 12]. Fromn(z)Rijl(z) =1 we deduce
rii[7] * si[1] = 8[1] wheres;[1] o—e Si(2) = R;1(2) is the inverse

of the auto-correlation sequence. We here 868 to describe the
inverse ofR(z) due to potential truncation errors in the methods
described below.

4.1 Spectral Factorisation

Due to its minimum phase property, each auto-correlatiotfan
can be factored into

Ni(2) = /\i,min(z)/\i.,max(z) (20)
with Aj min(2) minimum andAj max(z) maximum phase. In the

inversion process, we exclude spectral zeros fromAhg), as
this would lead to a non-invertible sequence.

Nimax(2) = /\*min(Zfl).

i
We calculate\; 1. () and have

—1 %
i,min

ANtz = /\ijnlm(z)/\ zh (21)
First order sections of; min(2) are inverted using geometric series
expansions of appropriate lengths in the time domain. Eitne

convolution yieldsA; min[7], and the estimate of the inverse is com-

puted according to
S (7] = Ai min[T] * A’ [~ T]

and truncated to the rangel <1 <T.
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These elements have the properties of auto-correlation se

4.2 TimeDomain/MMSE Inversion

The time domain inversion is based on a convolutional mateix
sciption of the convolution of an auto-correlation seqearin] and
its inverses[n],

r[N] -0 -
: S[~T] :
r[—N] r[N] : 0
o | =11
r[-N] rN] : 0
; ST :
_ r-N] | -0
or
As=d

With A € CETHN+Dx(2T+1) ¢ c C(2T+)) gndd € Z(@T+2N+1) A
solution can be obtained via the left pseudo-inverse,
s=(A"A)1AMa (22)
This solution should have the same symmetry propertiepasand
any deviation from symmetry must be due to numerical problam
the inversion process. The symmetry error
e=|s—Js"|3 (23)
should be as small as possible.

A minimum mean square error solution to (22) can be obtained
by including the noise-to-signal ratio for regularisatjmurposes.

4.3 Inversion with Explicit Symmetry Constraint

An ill-conditioned A can lead to an asymmetric solution in (22).
Hence it is advantageous to enforce symmetry in the setup.
This can be performed by a Lagrangian approach, which solves
the constrained optimisation problem
find

min||As —d||3 (24)
S

subjectto  s=Js" (25)
Instead of solving this Lagrangian problem, the next sectlis-
cusses a direct approach of embedding the constraint ietfoth

mulation.

4.4 Inversion with Implicit Symmetry Constraint
The symmetry condition can be incorporated into the systgua-e
tion by formulating

O(A)
O(A)

—-0(A)
O(A)

Do to symmetrylin this, the inverse is implicitly constrained by only defigihalf

the response as
s—T]

S[:ll
15/0]

2
with

Ir O

O(s) = o' 2 | O(w)=M10(w) (26)
Jr 0
It O

Os) = 0" 0 | O(w)=My0(w) (27)
-Jr 0
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Figure 3: Example of inverting an ACS of length 11 by a respons Figure 4: Example of inverting an ACS of length 11 by a respons
with length 2ZI' +1 = 101. with length 2I' + 1 = 501.

to reconstruct the real and imaginary part of the true smiuti indicate that the proposed approach can work well with neaisie
Therefore the problem formulation becomes complexity, and presents an attractive approach to egigtirersion
methods for arbitrary broadband MIMO systems.
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This paper has presented an inversion approach for parétarm
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Figure 9: SystenD (z) = R(2)S(2), with R(z) given in 1.




