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ABSTRACT

Feature extraction is an important stage in speaker recogni-
tion systems since the overall performance depends on the
type of the extracted features. In the framework of speaker
recognition, the extracted features are mainly based on trans-
formations of the speech spectrum. In spite of the great va-
riety of features extracted from the speech, the common em-
pirical approach to select features is based on a complete per-
formance evaluation of the system. In this paper, we propose
an information theory approach to evaluate the information
about the speaker identity contained on the speech features.
The results show that this approach can help on a more effi-
cient feature selection. We also present an alternative AM-
FM based magnitude representation of the speech that attains
better performance than the MFCCs. Moreover, we show
that phase information features can perform well in speaker
verification systems.

1. INTRODUCTION

Speaker recognition aims at finding a set of characteris-
tics that best represents a specific speaker voice. Formally,
speaker recognition is defined as the process of automatically
recognizing who is speaking based on information provided
by speech signals. Speaker recognition contains two main
phases: training and classification. In the training phase,
the extracted features are used to create speaker models. In
the classification phase, the speaker models are used to clas-
sify new input utterances to the system. Speaker recognition
systems can also be categorized depending on their tasks in
Speaker Identification (SID) and Speaker Verification (SV)
systems [1]. SID systems determine from a set of predefined
models to which of them belongs an input test utterance.
Conversely, SV systems are employed to validate whether
the speaker is who he or she claims to be.

Feature extraction, also called front-end, is the first stage
in speaker recognition systems. In this stage, speech samples
are transformed to a sequence of numerical descriptors called
features. The extracted features contain individual and essen-
tial characteristics of the speakers and are used to estimate
the speaker model parameters. In the speaker recognition
framework, the basic front-end extracts and transforms the
magnitude spectrum of the speech signal. The most common
features in speaker recognition are the Mel Frequency Cep-
stral Coefficients (MFCCs) based on the known variation of
the human ear’s critical bandwidths, with filter-banks that are
spaced linear at low frequencies and logarithmic at high fre-
quencies [2]. The extracted features are often complemented
with their delta and double delta, which capture the dynamic
information of the features or in combination with other fea-
tures [3]. On the other hand, focusing on the phase spectrum

features, the Modified Group Delay Features (MGDFs) have
proven to be useful in the extraction of speaker information
from the phase of speech signals. These features are based
on the group delay function [4].

The AM-FM representation can also be used as an al-
ternative method for feature parametrization. This technique
was used specially in the context of modulated signals [5].
In the area of speech processing, this technique is mainly
utilized for formant tracking, speech synthesis, speech and
speaker recognition. The AM-FM modeling decomposes the
speech signals into decorrelated bandpass channels. Each
channel is characterized in terms of its envelope (instanta-
neous amplitude) and phase (instantaneous frequency). In
this work, we propose a methodology to extract features
from the AM-FM representation, called instantaneous Am-
plitude Modulated features (AMFs) and Instantaneous Fre-
quency features (IFFs).

Feature selection is not a new subject, studies comparing
between magnitude spectrum features can be found in [6].
The importance of feature selection lies in the correlation
between the extracted features and the performance of the
system.

Information theory has proven to be useful in analyzing
and selecting features in speaker recognition and in other ap-
plications. Several papers address the use of mutual informa-
tion (MI) between features as a selection criterion [7]. The
main advantage of using MI as a performance measure is that
an analytical solution can be found and maximized.

In spite of the great variety of features extracted from
the speech, the common empirical approach to select fea-
tures is based on a complete performance evaluation of the
system. In this paper, we propose an information theoretical
approach to evaluate the information about the speaker iden-
tity contained on the speech features. We study magnitude
and phase information features and the results show that this
approach can help on a more efficient feature selection.

2. FEATURE EXTRACTION

In this work, we will analyze MFCCs, MGDFs, AMFs and
IFFs. The reason for choosing these features, is to compare
phase information and magnitude information features from
an information theoretical perspective. Moreover, we ana-
lyze the phase of speech signals, such that discriminative in-
formation about the speaker can be used in the recognition
process.

2.1 Modified Group Delay Features (MGDFs)

The MGDFs are features based on the group delay func-
tion [4]. This function provides a way of estimating the for-
mants of the speech directly, without involving the process of
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unwrapping the speech signal. The formants are resonances
of the vocal tract containing discriminative information about
the speaker. The MGDFs are defined as
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where XR(ω), XI(ω) are the real and imaginary parts of the
Fourier transform (speech spectrum) of the original speech
signal x[n], respectively. Additionally, YR(ω) and YI(ω) are
the real and imaginary parts of the Fourier transform of nx[n],
respectively. S(ω) represents a smoothed version of the spec-
trum, ζ (ω) defines the sign function of the group delay pro-
file and α and γ are tuning parameters with typical values of
0.1 and 0.9, respectively. After obtaining the MGDFs, the
DCT is applied to decorrelate the feature set. Finally, the
feature set is truncate to the desired number of coefficients.

2.2 The AM-FM Parametrization

This type of representation decomposes the speech signal
into decorrelated bandpass channels, each of them character-
ized by its envelope and phase. We will describe the steps for
computing the instantaneous amplitude and frequency. Two
steps are common for both feature extractors: the bandpass
filtering of the speech signal and the computation of the an-
alytical representation for the filtered signal. Then, separate
steps are required to extract each of the features. We must
denote that the speech signal should be pre-processed before
the AM-FM parametrization, i.e., the speech signal should
have been preemphasized and framed and each frame have
to be windowed.

Bandpassing the Speech Signal: The first step is to
bandpass the speech signal such that a number of decorre-
lated bandpass channels are attained. Three main require-
ments are specified for the design of the filters: central fre-
quency, bandwidth and the type of the filter. The central fre-
quencies are similar to the frequencies used in MFCCs, the
bandwidth is defined by the perceptual critical band [8], and
the filter type is a bandpass finite impulse response (FIR) fil-
ter.

Computation of the Analytical Signal: In order to char-
acterize a single instantaneous frequency and amplitude for
a real-valued signal, the analytical signal xa(t) is constructed
from each of the bandpass filtered signal as

xa(t) = x(t)+ jx̂(t), (2)

where x̂(t) is the Hilbert transform of x(t) [5]. The analytical
signal approach provides a signal with no negative frequency
components.

2.3 Amplitude Modulated Features (AMFs)

To extract the AMFs, the framed speech signal is bandpassed
such that a waveform νi(t) is obtained for each i-th channel
and for each frame. Then, the magnitude of the analytical
representation can be computed for each speech frame as

ai(t) =
√

ν2
i (t)+ ν̂2

i (t), (3)

where ν̂i(t) is the Hilbert transform of the i-th bandpassed
waveform νi(t). Subsequently, we average the ai(t) over

each frame and apply the logarithm in order to obtain a
smooth representation of the magnitude and to emphasize the
small variations of the signal for each channel.

Ai = logEa
i
[ai(t)], (4)
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where E[·] represents the expectation, and Ai are the average
smoothed amplitude features for each i-th channel and T is
the size of the frame. Finally, we decorrelate the Ai using
again the DCT transformation.

2.4 Instantaneous Frequency Features (IFFs)

The IFFs are obtained from the analytical representation of
the waveform after bandpass filtering the speech frame. The
instantaneous frequency can be computed as the derivative of
the instantaneous phase defined as

fi(t) =
1

2π

∂

∂ t

[

arctan

(

ν̂i(t)

νi(t)

)]

. (6)

An alternative method to compute the IFFs is to use the an-
alytical form of the waveform, i.e., νa

i (t) = νi(t) + jν̂i(t).
First, the instantaneous frequency can be estimated as [9]

fi(t) =
1

4π
arg
[

−(νa
i [t + 1])(νa

i [t − 1])∗
]

, (7)

where νa
i [t − 1]∗ is the conjugate of the analytical represen-

tation of the waveform νa
i [t−1]. Then, fi(t) is averaged over

each frame, in order to obtain a smooth representation of the
instantaneous frequency for each filtered signal.

Fi = E
fi
[ fi(t)], (8)

=
1

T

T

∑
t=1

fi(t), (9)

where T is the frame size. Finally the DCT-transform is com-
puted and the new set of features are obtained.

3. SPEAKER MODELING

Gaussian Mixture Models (GMMs) have become the domi-
nant approach for modeling speakers over the last years [10].
Given a feature vector xt , the probability density function
(pdf) of the speaker features p(xt |λ ) can be approximated
as a GMM

p(xt |λ ) =
K

∑
k=1

wkN (xt |µk,Ck), (10)

where N (xt ,µk,Ck) is a Gaussian distribution, µk is the
mean vector,Ck is the covariance matrix and wk is the weight
of the k-th Gaussian distribution. The GMM can also be de-
fined by a set of parameters, i.e., λ = {wk,µk,Ck}

K
k=1, es-

timated by the EM algorithm. In SV systems, two models
are defined: the target model and the impostor model. The
impostor model; also known as the Universal Background
Model (UBM), is first trained using the Expectation Max-
imization (EM) algorithm and a pool of speakers different
from the speaker we would verify. Then, the speaker model
is derived from adapting the mean vectors of the UBM using
Maximum a Posteriori (MAP) [11].
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4. CLASSIFICATION

The extracted features from a speaker test utterance {xt}T
t=1

are compared against the speaker GMM. The speaker recog-
nizer computes the log-likelihood of a given speaker model
λ for the test utterances as

L(x|λ ) =
T

∑
t=1

log p(xt |λ ). (11)

Depending on the likelihood values obtained and the
task, the system will emit a decision: the speaker is ac-
cepted/rejected or identified. To evaluate the performance
of a speaker recognition system, we use the probability of
error Pe = Pr[s 6= ŝ] where s represents the identity of the
true speaker and ŝ the decision emitted by the recognition
system. Focusing on the speaker recognition tasks, SV is a
statistical hypothesis test between two hypotheses [10]: the
target and the impostor model. Moreover, each trial consists
of a speaker test utterance and a claimed identity. From each
trial, a log-likelihood ratio is computed and a score Θ is de-
termined as

Θ = log





p(x|λ )

p
(

x|λ̂
)



 ; Θ

accept
≥
<

reject

τ (12)

Θ = L(x|λ )−L
(

x|λ̂
)

, (13)

where λ denotes the hypothesis to accept an utterance
{xt}T

t=1 as being produced by the target speaker. The im-

postor model or UBM (λ̂ ) denotes the hypothesis to reject an
utterance {xt}

T
t=1 as being produced by the target speaker and

τ is the threshold that minimizes the expected cost of errors.

5. INFORMATION THEORETICAL APPROACH

Our feature selection approach is based on the MI between
the set of features and the speaker identity providing a way
to quantify the amount of speaker information contained on
each feature set. In [12], the bounds for the classification er-
ror tied to the mutual information between the feature set and
the speaker identity are presented. The minimum possible
classification error probability (Pe) for values less or equal
to 0.5 is related to the MI between speakers and the feature
vector sequences C as

I(C;S)≤ log2 M− 2Pe, (14)

I(C;S)≥ log2 M−H(Pe)−Pe log2(M− 1), (15)

where M represents the total number of classes or speakers,
which addresses the assumption of a uniform distribution of
the classes S. Figure 1 presents an example of the bounds
for M = 32 speakers for different kinds of features. Note
that the bounds presented in (14) and (15) are based only on
the extracted features and the number of speakers enrolled in
the system. Further improvements on the bounds cannot be
made without knowledge of the actual problem.

5.1 Analytical Expression for Mutual Information

To compute the MI, we let the set C = {c1, . . . ,cZ} contain
all the feature vectors used in the classification. For simplic-
ity, we will assume that independence between consecutive
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Figure 1: Bounds for the probability of error as a function of the
mutual information I(S;C) for a SID system consisting of M = 32
speakers. The squares, triangles and asterisks represent actual val-
ues from experiments performed with MGDFs, IFFs AMFs and
MFCCs, (See section 6 for definitions) respectively.

features so that the entropy is the sum of the frames entropies.
Moreover, we will divide our database into M partitions, i.e.,
{cs,t}T

t=1, s = 1, . . . ,M with equal size T for each partition.
Then, the MI can be defined as

I(c;S) = h(c)− h(c|S), (16)

where h(c) is the entropy of the features and h(c|S) is the
conditional entropy of the features c averaged over all the
speakers enrolled in the database M. The MI in (16) can be
written as

I(c;S) =−E

[

log2

M

∑
s=1

1

M
p(c|s)

]

+E [log2 p(c|S)] , (17)

where p(c|s) is the speaker pdf. We decided to use the
GMMs since the speaker pdfs are already estimated with this
method in speaker recognition systems. Substituting the ex-
pectations in (17) by the sample means and the pdfs by (10),
we attain

I(c;S) = I (x;λS)≈−
1

MT

M

∑
s=1

T

∑
t=1

log2

M

∑
i=1

1

M
p(xs,t |λi)

+
1

MT

M

∑
s=1

T

∑
t=1

log2 p(xs,t |λs). (18)

where x is the feature vector and λi is the speaker model or
class. The major advantage of using the MI as a performance
measure instead of directly using the classification probabil-
ity of error, is that the MI can be analytically computed and
maximized more straightforward than the classification error.
Using the MI estimator defined in (18), we can determine for
any kind of proposed features which of them contains the
largest MI with respect to the speaker and also the lowest Pe.

6. EXPERIMENTAL SETUP

Two different experimental setups were determined. In
the first setup, the experiments were conducted using the
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“YOHO” database [13]. The first session of each of the
first 30 speakers in the enrollment session has been used.
In each speech file, the silences at the beginning and at the
end were removed. Then, the speech file was segmented
into frames of 25 ms and 10 ms of overlapping. Each frame
was pre-emphasized and Hamming-windowed. Four differ-
ent features sets were created: MGDFs, MFCCs, AMFs and
IFFs. In the case of the MFCCs and the MGDFs, we used
a 256-th Fast Fourier Transform (FFT) to extract the spec-
trum. Then, we compute the MGDFs and reduce their di-
mensionality to 22th-order after the DCT. The MFCCs were
extracted with a 23th-order Mel triangular filter-bank. The
first coefficient was discarded after the DCT, attaining 22th-
order coefficients. For the AMFs and the IFFs, we use 23
different bandpass filters. The central frequency of the filters
were similar to the MFCCs filters and the filters bandwidths
were specified by the perceptual critical band [8]. The fea-
tures extracted were used to train 32-mixtures GMM for each
speaker. Then, we estimate the MI using the GMMs for each
feature set. Moreover, we evaluate the system in open test
conditions with 40 trials per speakers.
In the second setup, we verified that the selection of features
for a larger database. The experiments were conducted using
the female speakers from the 2004 NIST-SRE “core” cor-
pus [14]. Each speech file consists of approximately five
minutes one-side telephone conversion. A similar proce-
dure to the first setup was used to create the frames. Then,
MFCCs, MGDFs, AMFs and IFFs are obtained and warped
with a 3 seconds Gaussian window [15]. Afterwards, deltas
(∆), double deltas (∆∆) and delta log-Energy (∆ logE) were
computed. Later, a 512-mixtures UBM was trained and the
speaker models were derived using MAP adaptation and their
own feature set. Finally, we perform verification according
to the 2004 NIST-SRE “core” corpus and compute the MI for
the feature parameterizations with the best performance.

7. RESULTS

In figure 2, a comparison of the MI as a function of the num-
ber of coefficients for different features is presented. The
results show that the AMFs contain the highest discrimina-
tive information about the speaker compared to the other
feature sets. However, the results also show that the phase
information features contain useful information about the
speaker. Note that the MI is always an increasing function
since the computation of the MI is done in closed test condi-
tions (i.e., both model training and MI computations use the
same database).

In figure 3, we present the MI and the Pe as a function
of the number of coefficients for different features in open
test conditions (i.e., different databases were used for model
training and MI computation). We can observe that the mu-
tual information for the magnitude features is always higher
than for the phase information features. However, the MI
computed from the phase features provides evidence that in-
formation about the speaker is contained in the phase. Note
that in this case, the MI is a concave function. The reason
of this behavior is related to the bias and the variance of
the model. In open test conditions, the performance of the
recognition system (i.e., Pe and MI) improves as the number
of parameters increases due to a reduction on the bias of the
model. However, the variance of the model grows as well
as the number of parameters increases due to the uncertainty

in the parameter estimation, until the variance of the model
is extremely high that has a detrimental effect on the perfor-
mance of the system [16]. Moreover, we can notice an agree-
ment between low Pe and high MI for the different feature
sets. Although the best performance is achieved for MFCCs,
the AMFs maintain their performance for higher number of
coefficients indicating that information can be extracted from
these coefficients. In figure 4, we present the performance
evaluation of a SV system using the second setup. Table 1
shows the EER and the MI for the different features showing
that the best performance can be achieved with the AMFs.
Additionally, an agreement between the MI computed previ-
ously and the DET curves of the different features is illus-
trated. Note that the magnitude features provides higher MI
and also better performance.
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Figure 2: Comparison of MI as a function of the number of coeffi-
cients for different magnitude and phase features (closed-test).
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Figure 3: Comparison of MI and Pe for different magnitude and
phase features (open-test).

8. CONCLUSION

In this work, we extracted features based on the AM-FM
representation and compared with others from an informa-
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Figure 4: Comparison of DET curves for magnitude and phase fea-
tures.

Table 1: EER and MI comparison for different feature sets.

Feature Set EER % MI

13th MFCCs +∆+∆∆+∆ logE 10.4561 0.2957
13th AMFs +∆+∆∆+∆ logE 10.2267 0.3064

20th MGDFs+∆ logE 19.0134 0.1262
13th IFFs +∆+∆∆+∆ logE 18.7126 0.2325

tion theoretical point of view and show that the MI is closely
connected to the performance of the system (Pe). Our re-
sults show that the magnitude features attain higher MI and
lower Pe. We highlighted that the knowledge of the MI be-
tween features and the speakers can help us for a better fea-
ture selection. Moreover, we address the issue that the phase
of speech signals contains important discriminative informa-
tion, useful for speaker recognition. Finally, we present that
for our SV database, the AM-FM representation attains bet-
ter performance.
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