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ABSTRACT

While current speech enhancement algorithms can signifi-
cantly reduce background noise, the output speech is com-
monly unacceptably damaged — a strong penalty for sensi-
tive applications. Alternatively, reducing the aggressiveness
leads to more background residual noise — another rejection
criterion in practice. In this work, a cost-effective technique
for residual noise reduction is presented as a postprocessor
for less aggressive enhancement algorithms. The main mo-
tivation is to keep their beneficial characteristics, and use
the noisy and pre-enhanced signals to remove the remaining
noise. The proposed method decomposes pre-enhanced sig-
nals into subbands, then performs framewise scaling of the
downsampled subband time series based on the estimated
Signal-to-Residual-Noise Ratio. Since many popular en-
hancement algorithms already operate in subbands, the ap-
plication of the postprocessor is appealing from a compu-
tational standpoint. Results show the method consistently
reduces background noise, with no further apparent speech
damage, as reported by several objective measures and infor-
mal listening experiments.

1. INTRODUCTION

One of the central issues in speech enhancement consists of
the tradeoff between noise reduction and intelligibility [1],
and it is in fact rare for a method to consistently improve
intelligibility. Rather than trying to improve it, practitioners
usually set the more reasonable goal of at least not affecting it
in the noise removal process. In sensitive applications where
intelligibility and naturalness are important, non-aggressive
setups for speech enhancement algorithms are thus privi-
leged, at the cost of the presence of a larger amount of back-
ground residual noise in the enhanced speech. In this work,
a post-processing technique is proposed with the following
objectives in mind:

1. Remove surplus background residual noise while retain-
ing the positive features of (pre)enhanced speech (i.e. in-
telligibility, low distortion, naturalness, etc)

2. As simple and efficient implementation as possible (i.e,
aim for low computational complexity).

Both objectives are treated here with equal importance:
indeed, if the second objective is not respected, one might
as well rework and upgrade the pre-enhancement scheme.
On the other hand, if the first objective can be attained with
very small additions, then the appeal is more significant
for real-world applications already employing certain well-
established algorithms. Indeed, in many real-word applica-
tions, real time requirements are to begin with hardly met
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and hence we are interested in improving performance with
adding very little computational requirements. Such a con-
cern would for example be applicable to the post-processing
method shown in [2], in which the non-negligible additional
workload consists of a harmonic analysis combined with
pitch tracking on the pre-enhanced signal, followed by a (pre-
trained) codebook mapping for the restoration of the parts of
the signal that were damaged during the initial noise reduc-
tion algorithm. In addition, note that the primary goal of
restoring damaged speech components is fundamentally dif-
ferent from our first objective of removing excessive residual
noise.

In this work, the objective of the post-processor is not
enhancement per se, but rather noticeable background noise
removal. Other methods with similar objectives have ap-
peared in the literature; for example the post-filtering method
of [3], based on the detection of formant locations and spec-
tral valleys, is found to perform well for narrowband speech
in AWGN. In contrast, the proposed post-processor shown in
this paper is designed to be incorporated naturally as a mod-
ule to already existing subband enhancement architectures,
and is meant to operate in the same complex noise condi-
tions. The paper is organized as follows: In Section II, the
procedure is formally introduced, accompanied by qualita-
tive explanations. In Section III, several tests are performed
with well-established algorithms in various conditions (bab-
ble, factory, military vehicle noise, and car interior noises).
The performance between direct output quality and post-
processed quality is compared using several objective mea-
sures and the conclusions of informal listening tests are re-
ported. Then, conclusions are given in Section I'V.

2. THE PROPOSED POST-PROCESSING SCHEME

In simple terms, the idea consists of scaling, on a frame-by-
frame basis, the pre-enhanced signals depending on the re-
spective estimated levels of speech and residual noise. How-
ever, even in ideal conditions, it is not desirable to apply such
volume-scaling in a fullband setup, as it would perceivably
modulate the amplitude of the signal in a potentially disturb-
ing manner. Thus, the method is chosen to be applied in the
subband domain, as in the generic structure shown in Fig-
ure 1. A similar form of subband-signal scaling structure has
been successfully applied as the core of a “standalone” sub-
band speech enhancement algorithm (as opposed to a mere
“post-processor’”’) in [4], where subband gains are directly
applied to the incoming noisy speech, and are determined
from a VAD-based estimation of the a posteriori Signal-to-
Noise Ratio. In our context however, the goal is to determine
scaling factors to be applied to pre-enhanced subband speech
signals, for which an estimate of the SNR has already been
determined or is directly accessible.
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For simplicity, assume that each subband domain signal
(i.e., each of the decimated signals at the outputs of the filters
of the filterbank) are here real-valued and locally viewed as
time-domain signals.
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Figure 1: The proposed post-processing scheme. The Signal
to Residual Noise Ratio (SRNR) is estimated from both the
noisy fullband and the enhanced subband signals to produce
scaling factors which are then applied before reconstruction.

To determine the scaling function in this context, we
begin by assuming that the speech and noise statistics are
fixed over small frames. Denote by y,,(:,i) the pre-enhanced
decimated speech vector at subband m and at the i frame,
assumed to contain the sum of the clean subband vector
Xm(:,i) and some residual noise r,(:,i). Next, suppose that
over the i frame, x,,,(:,i) and r,,(:, 1) are approximately i.i.d.
with respective distributions .4 (0; 6, (i)?) and .4 (0; 6, (i)?)
(the sequences can indeed be negative-valued, as opposed to
spectral amplitudes in usual frequency-domain processing
for example). With these assumptions, it is easy to show
that, for all k£ indexing the subband frame:

p (xm(k’ i)|ym(:7 i) =

. L oi)? o:(i)*o, (i)

N k k ; 1

(xm( vl)|ym( al) Gx(i)2+6r(i)2 O-x(i)z'i‘cr(i)z ( )

From the above, we can thus write the conditional ex-

pected value of x,,(:,7) in terms of the Signal-to-Residual-

Noise-Ratio, denoted here by SRNRy,(i), to obtain the post-
processed enhanced series £, (:,1) = & (xm (k, 1) |y (:,1)) as:

() = (14 SRNRu(i) ")y (:,) @)

The gain function is shown in Figure 2. As the reader will
have noted, in its form the gain function given in Eqn. 2
is essentially superimposable to an SNR-based frequency-
domain filtering formulation of a spectral subtractive gain.
Besides the distinct decimated filterbank context and as-
sumptions regarding the nature of the intervening signals,
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Figure 2: The proposed subband scaling function. When the

subband Signal-to-Residual-Noise Ratio SRNR is low, the

subband frame is strongly scaled down. As it can also be
seen, the variable p > 1 is an aggressiveness factor.

there are notable differences of practical nature: what is pro-
posed here is to reduce the gain to a single number per band
and per frame — i.e., to locally reduce it to a scaling factor.
In other words, we take advantage of the time/frequency lo-
calization of each small frame of data at the output of the
decimated filters to formulate some simplifying assumptions
resulting in the application of a fixed gain within one sub-
band over a few consecutive samples. To respect this crite-
rion, a “medium” amount of subbands and a relatively small
subband frame size is required. As an important practical
advantage, our proposed method is both embeddable in ex-
isting enhancement algorithms already using filterbanks, and
the resulting scaling is very efficient.

Obviously, the above requires the knowledge of
SRNR, (i), which is difficult to accurately estimate as it
strongly depends on the method/algorithm used and on the
noise conditions. Nevertheless, a practical solution con-
sists of estimating it from SNR,, (i), the Signal-to-Noise Ra-
tio in the current subband frame (obtainable from the pre-
enhancement stage) — the two are indeed strongly correlated.
For this purpose, several methods can be envisioned: For ex-
ample, using various training data obtained specifically us-
ing the chosen pre-enhancement algorithm, some mathemat-
ical relationship (e.g. linear regression) between the two sets
of subband SNRs could be obtained. On the other hand, a
complex scheme will threaten the crucial simplicity objective
stated in our introduction. While attempting to efficiently
approximate it, heuristically it was found that satisfactory re-
sults can be obtained by using the simple following rule:

SRNR,,(i) ~ max{SNR,,(i), SNR(i)} 3)

In the above rule, the practical value used to represent the
residual noise ratio in each subband is simply taken as the
maximum between the fullband estimated SNR and the cur-
rent subband estimated SNR. The rationale for incorpo-
rating the fullband SNR was initially based on the obser-
vation that in many situations the “local” subband SNR is
found to be in discordance with the fullband SNR and thus
some low-amplitude speech components that are still im-
portant for intelligibility are more at risk of being scaled
down. Note also that from Eqn. 3 we necessarily have
SRNR,(i) > SNRy,(i), which is consistent with the expected
effect of the pre-enhancement scheme. In practice, to further
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account for the effect of pre-enhancement, we found that the
introduction of a parameter p > 1 is also beneficial and pro-
vides an accessible aggressiveness parameter, so as to obtain
the final rule:

»
Zn(y0) = (1+SRNRy(i)) ") 2 ym(2,0) 4)
In our implementations, p is set to 1.15. The use of Eqn. 4 al-
lows for a very low-cost post-processing (one of our primary
goals), while the effectiveness of the above solution will be
confirmed in practical tests in Section 3.

Regarding once again computational complexity, note
that if the pre-enhancement scheme is already frame-based
and employing subbands, the overall computational overhead
is minimal.

3. EXPERIMENTAL RESULTS

3.1 Speech and noise material

The audio material used in this paper has a sampling fre-
quency of 20 kHz. The clean speech material is obtained
by concatenating multiple speakers from the TIMIT database
[5], and inserting silences in order to obtain a 60% activ-
ity rate (as recommended for objective quality estimation
in [6]). The total length of the clean speech material is ap-
proximately 30 seconds. The noise data was obtained from
http://spib.rice.edu/spib/select_noise.html, containing exam-
ples from the NOISEX-92 database [7]: the babble, factory,
and military vehicle noises were used. The obtained noisy
signals are scaled with 3 different values to obtain various
conditions, from low to high input SNR. Thus, 9 different
conditions were tested for 3 different algorithms.

3.2 Objective quality measures

In order to illustrate the performance of our postproces-
sor, we resort to several objective speech quality measures.
The tools used are the SNR and the average segmental
SNR (ASNR) [8]; the Coherence Speech Intelligibility In-
dex (CSII) [9]; the wideband extension for the PESQ score
(WPESQ) from [10]; and the three composite measures
shown in [1], meant to reflect the level of speech distortion
(Csig), the level of background noise intrusiveness (Cbak),
and the overall quality (Covl). For the CSII and WPESQ,
the signals are resampled at 16 kHz beforehand, and for the
Csig, Cbak, and Covl, at 8 kHz.

3.3 Choice of enhancement algorithms used as pre-
processors and subband decomposition

First, in order to test our post-processor, we choose two well-
established and well-recognized algorithms:

e The statistical-based (LMMSE) algorithm, presented in
[11]. The performance of this method is very well rated
amongs various algorithms (see [13]).

e The multi-band spectral subtractive algorithm (MSSUB)
shown in [12], which is shown to largely outperform the
traditional spectral subtraction algorithm.

The MATLAB implementations for these two methods
were directly used from the accompanying CD-Rom from
[1]. The post-processed version of these algorithms are de-
noted by LMMSE-P and MSSUB-P. Next, our postprocessor
is chosen to operate in 32 subbands, obtained via pseudo-
QMF filterbanks decomposition [14]. For further illustrative

purposes, the LMMSE algorithm above is adapted to func-
tion in these subbands, in a configuration identical to that
shown in Figure 1. To distinguish this method with the full-
band LMMSE, we denote it by LMMSE-S.

3.4 Results and analysis

For the sake of clarity and concision, the output scores were
averaged over all types of noise for each of the three SNR
conditions — yielding three tables. Some example waveforms

in military noise conditions are given in Figure 3.

Average scores for Low SNR conditions

Type of algorithm Objective measures
ype o] atg SNR ASNR CSII' WPESQ GCsig Cbak  Covl
Noisy -0.32 -5.16 0.04 1.04 1.39 122 .12
LMMSE 9.02 0.22 0.77 1.21 1.48 1.60 1.25
LMMSE-P 10.61 1.91 0.97 1.32 1.60 1.76 1.38
Difference 1.59 1.69 0.20 0.11 0.12 0.16 0.13
LMMSE-S 10.04 0.85 0.86 1.26 1.53 1.67 1.35
LMMSE-S-P 11.34 2.30 0.97 1.36 1.66 1.78 1.40
Difference 1.30 1.45 0.11 0.10 0.13 0.11 0.05
MSSUB 9.45 -0.05 0.86 1.28 .71 1.73 1.45
MSSUB-P 10.01 1.21 0.97 1.41 1.73 1.85 1.52
Difference 0.56 1.26 0.11 0.13 0.02 0.12 0.07

Table 1: Average results for low SNR input conditions. Each
result reported in this table are an average over 4 simulations
for each method (corresponding to the 4 types of noise used).

Average scores for Medium SNR conditions
Type of algorithm Objective measures

Y & SNR ASNR CSII' WPESQ GCsig Cbak  Covl
Noisy 5.69 -1.64 0.89 1.12 1.88 1.64 1.50
LMMSE 12.83 2.83 0.98 143 1.87 2.02 1.62
LMMSE-P 13.26 391 0.99 1.52 1.85 2.10 1.70
Difference 0.43 1.08 0.01 0.09 -0.02  0.08 0.08
LMMSE-S 13.45 3.23 0.99 1.48 2.03 2.04 1.70
LMMSE-S-P 13.80 4.04 0.99 1.54 2.10 2.09 1.75
Difference 0.35 0.81 0 0.06 0.07 0.05 0.05
MSSUB 13.24 2.73 0.98 1.65 2.26 222 1.95
MSSUB-P 13.43 3.56 0.99 1.78 2.34 2.37 2.24
Difference 0.19 0.83 0.01 0.13 0.08 0.15 0.29

Table 2: Average results for medium SNR input conditions.
Each result reported in this table are an average over 4 simu-
lations for each method.

Average scores for High SNR conditions

Type of algorithm Objective measures
ype o] atg SNR ASNR CSII' WPESQ Csig Cbak  Covl
Noisy 11.71 2.26 0.99 1.40 2.41 2.17 1.99
LMMSE 16.20 532 0.99 1.66 2.25 2.40 1.97
LMMSE-P 16.73 6.34 0.99 1.71 2.31 2.47 2.06
Difference 0.53 1.02 0 0.05 0.06 0.07 0.09
LMMSE-S 15.98 5.16 0.99 1.68 2.36 2.35 1.99
LMMSE-S-P 16.64 5.98 0.99 1.73 2.38 2.37 2.11
Difference 0.66 0.82 0 0.05 0.02 0.02 0.12
MSSUB 15.25 4.86 0.99 2.0T 271 2.63 2.38
MSSUB-P 15.80 5.69 0.99 2.12 2.72 2.68 2.45
Difference 0.55 0.83 0 0.11 0.01 0.05 0.07

Table 3: Average results for high SNR input conditions.
Each result reported in this table are an average over 4 simu-
lations for each method.

First of all, observing Tables 1, 2, and 3, it is clear that

the post-processor consistently increases the objective scores
obtained by the enhancement algorithms. This is especially
the case for the average segmental SNR, the WPESQ, but
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Figure 3: Visual example of the effect of the post-processor.
The background noise is clearly reduced.

also the SNR and the Cbak measures. Moreover, it appears
that the most benefits are seen at medium and low SNR,
which correspond to situations where improvements are most
needed. Interestingly, the ASNR (the measure that is most
increased) and the Cbak measures have been shown to be
mostly correlated with the level of background noise intru-
siveness [1,15], and thus these results are consistent with our
objective of reducing the residual noise. From informal lis-
tening tests, we also find that the proposed post-processor
is able to remove a significant amount of background noise.
This is particularly noticeable when no speech is present,
but it can also be heard during speech utterances, especially
when the original noise contains high frequencies. This is
well observed in Figure 3. Note that the WPESQ, Csig,
Cbak, and Covl measures do not take into account silences,
confirming that the postprocessor also provides benefits dur-
ing speech. Some audio demonstrations can be found at
http://www.site.uottawa.ca/~bouchard/papers/Eusipco_RNR.zip

4. CONCLUSION

This paper introduced a very simple and low-complexity add-
on to speech enhancement algorithms, and it was shown that
it can reduce the excess of residual noise in the enhanced
speech without further damaging the remaining speech. The
method is particularly advantageous when the enhancement
algorithm used operates in subbands, in which case the addi-
tional complexity is minimal.
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