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ABSTRACT

Sparsity of target space in subsurface imaging problem is
used within the framework of the compressive sensing (CS)
theory in recent publications to decrease the data acquisition
load in practical systems. The developed CS based imaging
methods are based on two important assumptions; namely,
that the speed of propagation in the medium is known and
that potential targets are point like targets positioned at dis-
crete spatial points. However, in most subsurface imaging
problems these assumptions are not always valid. The prop-
agation velocity may only be known approximately, and tar-
gets will generally not fall on the grid exactly. In this work,
the performance of the CS based subsurface imaging meth-
ods are analyzed for the above defined problems and possible
solutions are discussed.

1. INTRODUCTION

In recent years the sparsity information about the signals
has found itself a variety of very interesting applications in-
cluding image reconstruction [1], medical imaging [2], radar
imaging [3], shape detection [4] and direction of arrival es-
timation [5]. In these applications the sparsity information
about the signals led to lower number of measurements for
correct reconstruction. The recent theory of compressive
sensing (CS) [6–8] details the reconstruction of sparsely rep-
resentable signals from very small number of linear mea-
surements. Assume a K-sparse signal x = Ψs with length
N, where x is sparse in the basis Ψ with at most K nonzero
entries in s. Instead of measuring all N componenets of x,
CS takes small number of M non-traditional linear measure-
ments in the form of y = Φx. The signal x can be recon-
structed exactly from M = C

(

µ2(Φ,Ψ) logN
)

K [9] com-
pressive measurement with high probability by solving a
convex optimization problem of the following form:

min‖s‖1, subject to y = ΦΨs (1)

which can be solved efficiently with linear programming.
The optimization program in (1) selects the sparsest signal
constraint to the measurements y. The required number of
measurements are only on the order of O(K log(N)).

Although CS enables lower required data acquisition, it
is more important in areas where data acquisition is hard or
expensive. One such area is remote sensing and radar imag-
ing. CS theory is first used in radar literature in [3] where in
simulation it was demonstrated that the radar profile could
be constructed with less number of measurements. Later
in [10, 11] the compressive sensing ideas are extended to
time domain and stepped frequency ground penetrating radar
(GPR) for subsurface imaging with experimentally shown re-

sults. In the development of the theory, the target space was
discritized and assumed to be composed of small number of
point reflectors. A linear relationship (transform or dictio-
nary) between the discritized target space and the measured
time domain samples are constructed assuming a known ve-
locity of propagation in the subsurface medium. Instead of
measuring frequency steps, it was shown that much cleaner
(sparser), robust and high resolution images could be ob-
tained using small number of random frequency step mea-
surements resulting a practical decrease in total data acquisi-
tion time. Recently extended works about MIMO radar [12]
and CS based remote sensing [13] have also been published.

The developed CS based subsurface imaging methods
[10,11] create a model GPR data dictionary by first discritiz-
ing the target space and synthesizing the model GPR data for
each discrete target space position for the data acquisition
process of the radar. Later the imaging problems are formal-
ized as representing the data from the created overcomplete
dictionary. However there are two important points needing
further exploration. First the actual targets might not be point
targets exactly on the grid positions. Depending on the dis-
critization density actual points will be off the grid with vary-
ing levels of distance. It is important to understand the effect
of the grid and the grid size on the imaging performance.
The second problem is to create the model GPR data. This
requires the knowledge of the wave propagation velocity in
the subsurface. Although this could be estimated or known
approximately in practice it is usually not known priori, thus
it is important to understand the effect of mismatch between
the true and assumed velocities on the imaging performance.
This paper analyzes these two problems and discusses possi-
ble solutions.

In Section 2 the CS based subsurface imaging method is
briefly summarized since the later sections uses and refers
to those results. Velocity mismatch problem is analyzed in
Section 3 and the griding problem is discussed in Section 4.
Conclusions are drawn in Section 6.

2. CS BASED SUBSURFACE IMAGING

The standard backprojection algorithms [14] generate sub-
surface images by mainly applying a matched filter of the
measured data with the impulse response of the data acquisi-
tion process. Different from the backprojection methods, the
goal in CS based subsurface imaging is to represent the mea-
sured data as a linear combination of possible measurements
from a dictionary. By this way any possible prior informa-
tion like sparsity could be used. Hence a GPR data dictionary
should be constructed.

A stepped frequency GPR (SF-GPR) is considered. A
detailed explanation on CS based imaging about SF-GPRs is
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given in [11]. Here only a summary is presented for this pa-
per. To generate a dictionary for GPR data, a target model for
which the expected target return can be calculated should be
selected. Although not required a simple point target model
is selected since the response from a point target can easily
be modeled. In addition to this, the total target space can be
seen as combination of small number of point targets making
the sparsity assumption feasible. Assume an SF-GPR taking
measurements over P targets. The received frequency mea-

surements at the ith scan point can be written as

di =
P

∑
k=1

rke− jω(t−τi(pk)) (2)

where τi(pk) is the time delay for the target at the position pk

and when the antenna is at the ith scan position. Note that for
correct calculation of the time delay from each GPR position
to each target position requires the knowledge of the wave
propagation velocity in the medium. Target reflectivity or
other effects are combined in the weights rk. To represent the

ith scan data di as a linear combination from a data dictionary
the target space πT is discritized to generate a finite set of
target points TS = π1,π2, ...,πN where N determines the total
number of possible discrete target space points and each π j is
a 3D vector [x j,y j,z j] representing one possible target space
point. A GPR data dictionary can be generated by synthe-
sizing the time/frequency data for each possible target space

point π j. Hence when the GPR is at the ith scan point the jth

column of the dictionary, corresponding to a target at π j can
be written as

[Ψi] j = exp [− jω(t − τi(π j))] (3)

Repeating (3) for each discrete possible target position
creates the dictionary Ψi. This is the dictionary for only the

ith scan position. Note that the dimension of Ψi will be L×N
if L frequency steps are used. Depending on the discritization
level, N, the possible target points π j will be close to the
actual target points pk. Hence the measured data di can be
represented as a linear combination of the dictionary columns
[Ψi] j as

di = Ψib+ e (4)

where b is a weighted indicator vector defining the target
space and e representing any unmodelled factor or noise.
From the linear relation defined in (4) the goal is to find b
which is actually an image of the medium.

Standard SF-GPRs measure a regularly spaced set of L
frequencies in the frequency band they are using. Sparsity
of the target space leads to less number of measurements,
thus instead of measuring L frequencies only a small random
subset, M of them are measured at each scan point. Here
M < L. The taken measurements are βi = Φidi where Φi

is designed to be an M ×L measurement matrix constructed
by randomly selecting M rows of an L× L identity matrix.
This effectively reduces the data acquisition time of the SF-
GPR by L/M. Using measurements βi from S different scan
positions the target space b is constructed [15,16] by solving

b̂ = argmin‖b‖1 s.t. ‖AT (β −Ab)‖∞ < ε (5)

where β = [β T
1 , . . . ,β T

S ]T , Ψ = [ΨT
1 , . . . ,ΨT

S ]T , Φ =

diag{Φ1, . . . ,ΦS} and A = ΦΨ

3. VELOCITY MISMATCH PROBLEM

One of the most important problems in the method summa-
rized in Section 2 is that the true propagation velocity might
be different than the velocity assumed for the creation of the
dictionary in 3. It is important to understand the effect of
this velocity mismatch on the CS imaging performance. To
do so, a simulated GPR data set from a single point target at
(x,z) = (0,−8) cm is generated using a true propagation ve-

locity of v = 2×1010 cm/s. The test data is used to image the
target space with assumed velocities varying from 1× 1010

cm/s to 3× 1010 cm/s. Hence dictionaries are created with
the assumed velocities. For each assumed velocity 100 in-
dependent images are computed with different noise realiza-
tions with signal to noise ratio (SNR) equals 10 dB and with
different random measurement matrices at each trial. Figure
1 shows the mean images out of these 100 trails.
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Figure 1: Average of the 100 independent imaging assuming

the propagation velocity is (a) 1× 1010 cm/s, (b) 1.5× 1010

cm/s, (c) 2×1010 cm/s, (d) 2.5×1010 cm/s.

Note that the actual target is at one of the grid positions
exactly and when there is no velocity mismatch, i.e., assumed
velocity is same as the true velocity 2× 1010 cm/s, the sin-
gle target is correctly found at its true position. Interestingly
when there is even important amount of velocity mismatch
the CS based imaging could still generate focused images but
the target appears at incorrect depths. This is because first the
CS based imaging algorithm tries generate sparse results and
second the dictionary model data for a different target posi-
tion is similar to the measured data from a different position
and velocity. The average distance of the estimated target
point from the true target position is shown in Fig. 2 as a
function of the assumed velocity.

When the assumed velocity is the same as the true ve-
locity for the medium the target is imaged as a single point
at its correct position as shown in Fig. 1(c). The distance
of the estimated target position from the correct target po-
sition increases as the assumed velocity is further from the
true velocity of the medium. It is important to note that the
CS method locates the x axis of the target correctly while
the unknown velocity affects the depth estimate only. The
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Figure 2: Distance of the estimated target point from the true

target location as a function of the assumed velocity

reason for this depth shift again is that the optimization in
(5) matches the measured data best with the given constraint
using a dictionary element corresponding to a target at an-
other depth. To see this better, Fig. 3(a) shows the model
GPR data from a target at (x,z) = (0,−8) using v = 2×1010

cm/s, while Fig. 3(b) shows the model GPR data from a tar-
get at (x,z) = (0,−4) using v = 1×1010 cm/s. The similarity
of these dictionary elements in two different dictionaries ex-
plains the results in Fig.1.
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Figure 3: Model GPR data (a) for a target at (x,z) = (0,−8)
using v = 2×1010 cm/s and (b) for a target at (x,z) = (0,−4)
using v = 1×1010 cm/s.

To determine the amount of depth shift consider a single
homogeneous medium where targets and antenna are both in
the same medium as shown in Fig. 4.

Figure 4: Two point targets in a homogeneous medium

The total time delay for two points targets p1 and p2

shown in Fig. 4 are τ1 =
2
√

(xA−x1)2+(zA−z1)2

v1
and τ2 =

2
√

(xA−x2)2+(zA−z2)2

v2
respectively. It can be noted that if

x1 = x2 then it is possible to get τ1 = τ2 for all antenna po-
sitions (throughout the full scan) if |zA − z2| = v2

v1
|zA − z1|.

This means that if the target space was homogeneous, apply-
ing our method with an unknown velocity v2 that is different
from the true velocity v1 will result a target space image with
only p2 instead of the correct target position p1, since the
measured data can be exactly matched using the element of
the data dictionary corresponding to p2. Since the results in
Fig. 1 are from a 2-layer medium (air and soil), we dont
observe this exact representation ; but similarly we observe
focused images with sparsely selected target points.

Although there might be exactly represented data for dif-
ferent velocities for a single homogeneous medium, extended
dictionaries can be used to both create a target space im-
age and estimate the wave propagation velocity. For the
extended dictionary case a combined dictionary is created
using a discrete set of varying possible medium velocities
and the imaging problem defined in (5) is solved to obtain
the target image. Using V number of discrete velocities ex-
tends the dictionary V times, thus the obtained vector b is of
length V N where each length N part corresponds to the im-
age with the corresponding assumed velocity. A simulation
is presented next detailing the extended dictionary idea for
the unknown velocity problem. Assume the target space with
3 point reflectors at the corresponding positions as shown in
Fig. 5(a). The space is 40× 40 cm2 area in x-z dimensions
discritized with 2 cm grid size resulting a total of 400 dis-
crete target space points. Actual targets are assumed to be on
the grid points and the true wave propagation is assumed to
be v = 2×1010 cm/s. A bistatic antenna with antenna height
of 10 cm and transmitter-receiver distance of 5 cm takes step
frequency measurements above the ground. The medium ve-
locity is assumed unknown and an extended GPR data model
dictionary is created for velocities 1.8,1.9,2,2.1,2.2× 1010

cm/s, thus the extended dictionary is 5 times wider than the
standard dictionary used in CS based method. When the
imaging is done with the explained extended dictionary, the
images corresponding to each velocity case is shown in Fig.
5. The created images are normalized to the maximum of
them all and they are all shown in the same 30dB scale.

As seen from Fig.5 although nothing is assumed about
the medium velocity the 3 target points appear only in the
image corresponding to the true velocity of the medium. In
30dB scale no other targets are visible in other velocity im-
ages. This shows that extended dictionary can be used to cre-
ate radar images where the wave propagation is not known
exactly but estimated in a range of velocities. Although
preleminary results shown in Fig.5 indicate promising con-
clusions, still important amount of research should be done
to understand pros and cons of such a method in varying con-
ditions. First using extended dictionaries increases both the
memory and computational requirements of CS based imag-
ing methods. Sub optimal greedy based methods [17] could
be used together with extended dictionaries. Next robustness
of such a method to small variations in velocity and the noise
level should be analyzed. Direct velocity estimation algo-
rithms from compressed measurements could also be devel-
oped.
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Figure 5: (a) Correct target space image, Target space image

corresponding to the dictionary part for the velocity (b) v =
1.8e+10 cm/s, (c) v = 1.9e+10 cm/s , (d) v = 2e+10 cm/s,

(e) v = 2.1e+10 cm/s, and (e) v = 2.2e+10 cm/s

4. TARGET OFF THE GRID PROBLEM

Another problem in dictionary selection algorithms is that the
actual targets don’t correspond exactly to any of the grid po-
sitions thus the columns of the dictionary don’t exactly rep-
resent the measured data. In this part velocity of the medium
is assumed known and the effect of the grid size on the cre-
ated subsurface images is analyzed only. A target space im-
aged with a grid size of 1 cm in both x and z dimensions and
with 30× 30 cm2 area is simulated. The target space con-
sists 3 point reflectors at off the grid positions as (7.3,-12.6),
(21.34,-8.9), and (16.5,-22.5). An SNR of 10dB is used. The
image obtained from the simulated data is shown in Fig.6(a).
Although the targets are not exactly on the grid positions,
the imaging algorithm could locate the targets. The reason
for this is that the discritization is fine enough so that the
optimization algorithm could match the data within the re-
laxed constraint using the corresponding closest dictionary
columns. The correct positions of the targets are marked
with circles on the images. Next the discritization in the tar-
get space is increased to 2 cm in both x and z dimensions.
The same data is used to create the target space with this in-
creased grid size. The obtained image is shown in Fig.6(b).
Since each dictionary column corresponds to possibly more
distant target space points, it is harder to match the measured
data using the dictionary. However for the grid size of 2 cm
still the targets could be located correctly but the sparsity of
the target space is less.

When the grid size is 3 cm the 3 peaks in the created
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Figure 6: Imaging for the targets off the grid with grid size

(a) 1cm, (b) 2cm, (c) 3cm, (d) 5cm

image close to the correct target positions can still be seen
although small variations all over the image start to increase.
Further increasing grid size to 5 cm creates totally a wrong
target space image. One advantage of higher grid size is
that the computational complexity of the algorithm decreases
since the total number of discrete points, N, decreases. Also
it can be seen that the discritization creates no problems un-
til a threshold grid size. This point can also be viewed as the
possibility of a multiresolution imaging. The target space im-
age can be created using a rough discritization which would
be around 3 cm for this case and the selected target areas can
be imaged using a finer grid in iterative steps. The future
work in this area will focus on understanding the relation be-
tween the used GPR system and transmitted pulses with the
data constraint parameter ε in (5) and the maximum allow-
able grid size for correct target space reconstruction.
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6. CONCLUSIONS

In this paper the two important assumptions; namely, that the
speed of propagation in the medium is known and that poten-
tial targets are point like targets positioned at discrete spatial
points are analyzed for the compressive sensing based imag-
ing algorithms. In most subsurface imaging problems these
assumptions are not always valid. It was shown that an ex-
tended dictionary can be used covering a range of possible
medium velocities can be used to both create a correct tar-
get space and a velocity estimate. Also it was shown that
the off the grid targets could be successfully imaged until
the grid size is below some threshold leading to the possi-
bility of multiresolution imaging. Also it should be noted
that all these problems are worked under the low number of
measurement case compared to standard backprojection al-
gorithms.
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