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ABSTRACT
Existing feature extraction techniques for BCI systems are
developed based on traditional signal processing techniques
assuming that the signal is Gaussian and has linear charac-
teristics. But the motor imagery (MI) related EEG is highly
non-Gaussian, non-stationary and non-linear. This paper
proposes an advanced, robust but simple feature extraction
procedure for MI based BCI system. This novel approach
uses higher order statistics technique, the bispectrum, and ex-
tracts the non-linear features from EEG. Along with a linear
classifier (LDA), the proposed technique has been applied
to an MI based BCI system. The performance (classifica-
tion accuracy, mutual information and Cohens kappa) of the
system is evaluated and compared with the power spectrum
based BCI. It is observed that the proposed technique extracts
more pragmatic information resulting in better and consis-
tent cross-session detection accuracy and Cohens kappa. It
is concluded that the bispectrum based feature extraction is a
promising technique for detecting different brain states.

1. INTRODUCTION

A brain-computer interfacing (BCI) system establishes a di-
rect communication channel between brain and a control or
communication device. This system is useful to the people
with total dysfunction of neuromuscular system due to com-
municational breakdown between brain and spinal cord. The
efficiency of a BCI system highly depends on three opera-
tions [12]: recording of the cerebral (brain) signal e.g., elec-
troencephalogram (EEG), electrocorticogram (ECoG); ex-
traction of information from the recorded signal; and trans-
lation of the extracted information to control a device.

The cerebral electrophysiological processes associated
with motor imagery (MI) are reported as a spatiotemporal
process [2]. A movement or MI of left or right hand results in
a desynchronization of µ-band (8-13 Hz) oscillations in the
contralateral EEG along with simultaneous synchronization
of central β -bands (18-26 Hz) oscillations in the ipsilateral
EEG [8]. Various digital filtering and signal processing tech-
niques are therefore applied to extract features from the MI
related EEG signals. Among variety of algorithms, common
spatial patterns (CSP) have successfully been used for the
pre-processing in BCI [9]. In power spectrum based tech-
niques, the band power value [6] and autoregressive (AR)
based feature extraction [10] attracted a lot of attention in
BCI. The joint time-frequency and time-scale have also been
found well suited for the EEG analysis; hence, wavelet based
methods have been used in BCI [5].

Due to highly non-stationary and non-linear nature of
MI related EEG signals, these traditional feature extraction

methods often fail to provide good performance from one ex-
periment session to another, i.e., these techniques do not pro-
vide time invariant separable features. To overcome the non-
linearity effect in BCI, [13] introduced higher order statistics
(HOS) along with traditional techniques: the algorithm deals
with 12 features where 8 features are extracted by traditional
signal processing methods and 4 features are by HOS. Since
the algorithm combines traditional features with HOS, it can-
not overcome the errors due to non-Gaussianity and nonlin-
earity in EEG signals. In order to account these factors in
more effective way, we propose(in Section 2) a new feature
extraction technique comprising of the bispectrum of EEG
signals. To evaluate the effectiveness of the proposed tech-
nique, we apply it to the Technical University of Graz dataset
provided in the BCI-competition IV and classify the features
by a linear discriminant analysis (LDA) method. The eval-
uation results and corresponding discussion are reported in
Section 3 and Section 4, respectively.

2. METHOD

An MI related BCI system is normally developed in two
phases: training phase and evaluation or application phase.
In the training phase, the EEG signals - recorded from motor
cortex area while a subject performs the imagination of mo-
tor movement, are processed to find the best (on the basis of
highest accuracy) parameters for feature extraction and fea-
ture classification process. With known class labels during
EEG recording, the selection of optimal parameters is made
by tuning various parameters related to feature extraction and
feature classification subsystem (i.e. a classifier); e.g., signal
segmentation and frequency bands for filtering. In evaluation
stage, the BCI system uses those optimal parameters and pro-
vides communication signal to control a device.

In this study we have developed a BCI system comprising
of a new feature extraction technique (described in section
2.1) and a widely used linear discriminant analysis (LDA)
classifier: Fishers LDA. The performance of our BCI system
has been assessed by three standard statistical measures (see
section 2.3).

2.1 Bispectrum based Feature Extraction
A bispectrum of a signal is the expectation of three frequency
components: two direct frequency components and the com-
plex conjugate component of the sum of those two frequen-
cies of a random signal [7]. Knowing the Fourier frequency
components of a random signal x(t)[t = 1,2, ..], its bispec-
trum, Bx(k, l), can be estimated as [7]

Bx(k, l) = E{X(k)X(l)X∗(k + l)} (1)
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where E{•} denotes the statistical expectation, X(•) =
FFT[x(t)]; k, l are the discrete frequency indices and ∗ de-
notes the complex conjugate term of X(•). The bispectrum
is a complex measurement and, therefore, it has magnitude
and phase components. A bispectrum of a random signal
provides supplementary information to the power spectrum
of that signal. Also a bispectrum of an additive statistically
independent multi-source signal is the sum of their individual
bispectrums. Like other HOS measurements, the bispectrum
of a Gaussian or independent, identically distributed (i.i.d.)
signal is theoretically zero. One of popular bispectrum esti-
mation procedures follows the formula given below [7]

Bx(k, l) =
1
N

N

∑
i=1

Xi(k)Xi(l)X∗
i (k + l) (2)

where i is the epoch index and N is the total number of epoch
within considered signal duration. Since any system noise is
generally assumed as Gaussian and/or i.i.d. signal, the Bx in
Eq. (2) is free from its effect. For the BCI system develop-
ment, the bispectrum was computed using Eq.(2) where the
preprocessed (here 8 -14Hz or 14-27Hz band passed) EEG
signal was considered as x(t). In order to characterize tempo-
ral bispectral information, we compute the sum of absolute
log-bispectrum over all bifrequencies in the non-redundant
region, θ (i.e., 0 ≥ k ≥ ( fs/2), l ≥ k, 2k + l ≥ fs, where fs is
the sampling frequency). Mathematically, the proposed fea-
ture vector for a BCI can be written as,

B(m) = ∑
k,l∈θ

| log[Bx(k, l)]| (3)

where m is a time index related with the time period for
which the bispectrum is estimated. The block diagram of
the proposed technique is illustrated in Fig. 1
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Figure 1: Block diagram of proposed features extraction
techniques with linear discriminant analysis classifier.

2.2 Classification Technique: Fisher’s LDA Classifier
The extracted features (e.g. B(m)) are often not straightfor-
ward to classify. In order to find the best combination of
features that separates different events/classes, we used one
of the most powerful and robust methods, Fishers LDA clas-
sifier [3]. Fishers LDA estimates a hyper-plane in the feature
space to separate the features into the two different classes.
It basically finds the separation between two distributions by
the ratio of two group-variances: between-class variance to
the within-class variance. The separation between two distri-
butions (separability factor) can be written as [3]

S =
σ2

between

σ2
within

=
(wµy=1−wµy=0)2

wT νy=1w+wT νy=0w
(4)

where µy is the mean and νy the variance of the feature dis-
tribution (B) within two classes (i.e., y = 0 and y = 1); and w
is known as the weight vector. From Eq.(4), it can be shown
that the maximum separation occurs when

w = (νy=0 +νy=1)−1(µy=0−µy=1) (5)

The weight vector w is the normal to the discriminant hyper-
plan. Fisher’s LDA decision plane uses the following repre-
sentation to classify the feature vector B(m) as [3]

d(m) = B(m)wT +b (6)

where b is the bias (threshold). The features are assigned to
one class or the other depending on the sign of d(m).

2.3 Evaluation Procedure
2.3.1 Accuracy

Two types of accuracy were computed for each time point of
MI paradigm (a computer controlled thinking procedure see
[1] for more detail). The classifiers output (the sign of d(m))
was compared with actual event(left or right)of MI. With a
confusion matrix (CM) for each time point of MI the left and
right accuracies were computed from the below formulas:

Left Accuracy =
True Negative in CM×100

Number of Actual Left

Right Accuracy =
True Positive in CM×100
Number of Actual Right

(7)

Considering all trials and its actual labels (left and right), av-
erage left and right accuracies were computed for each time
point of paradigm. The mean of left and right accuracy was
called here as overall accuracy.

2.3.2 Cohen’s Kappa Coefficient

Cohens kappa coefficient (also called Cohens kappa) is a sta-
tistical measure which provides an index of inter-rater relia-
bility. It is considered to be an improvement over using the
percent of accuracy, as the procedure of computing accuracy
(see Eq. (7)) does not involve the false positive or false neg-
ative effects. From the definition of Cohens kappa it can be
written as [11]

κ =
Po−Pc

1−Pc
(8)

where Po is the relative observed agreement between raters,
and Pc is the hypothetical probability of chance agreement.
The maximum possible value of Cohen’s kappa is limited
to 1 and then the raters are in complete agreement If there
is no agreement among the raters (other than what would be
expected by chance), κ = 0. To understand the entire compu-
tational procedure of Cohen’s kappa, readers can refer [11].

2.3.3 Mutual Information

The mutual information of two random variables is a quan-
tity that measures the mutual dependence of the two vari-
ables, i.e., how much one variable tells us about another. For
two discrete variables X and Y whose joint probability dis-
tribution is PXY (x,y), the mutual information between them,
denoted I(X : Y ), is given by

I(X : Y ) = ∑
x∈X

∑
y∈Y

PXY (x,y) log
(

PXY (x,y)
PX (x)PY (y)

)
(9)
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where PX (x) and PY (y) are the marginal probability distribu-
tion function of X and Y respectively: PX (x) = ∑y PXY (x,y)
and PY (y) = ∑x PXY (x,y).

If two random variables X and Y are independent, their
joint probability distribution PXY (x,y) = PX (x)PY (y) and the
mutual information I(X : Y ) = 0. In addition, a high value of
mutual information indicates a large reduction in uncertainty.

3. EXPERIMENTAL SETUP AND RESULTS

The proposed feature extraction technique has been devised
to a BCI system with the data provided by the Technical Uni-
versity of Graz (TUG) BCI lab as part of the BCI competi-
tion IV data-2b. The descriptions of signal and its recording
paradigm are reported in [1]. Our BCI system works with
only 2 channels (C3 and C4) of EEG signal. For each subject,
the system was trained with the EEG from 3rd session (i.e.,
signal from B0φ03T where φ is the subject number), and
evaluated (or tested) on the EEG from 4th and 5th sessions
(B0φ04E and B0φ05E). Since the MI task occurred after 3rd
second, we trained and evaluated the system with the signals
from 3s to 8s time course of a trial of the MI paradigm.

In the training phase, we tuned the system for highest ac-
curacy. The tuning parameters were the size of EEG segment
for bispectrum computation, number of bandpass filters, the
cut-off frequencies of band-pass filter(s)and the parameters
for bispectrum estimation. With different combination of
tuning parameters a 5-fold cross-validation was carried out to
find the possible classification accuracy (see Eq. (7)) by the
LDA classifier. In our experiment, we obtained best classifi-
cation accuracy for all 9 subject if the BCI system contained
two band-pass filters (with 8-14Hz and 14-27Hz) and the seg-
mentation of EEG signal is 2s with 0.1s step size. In order to
get an optimal LDA classifier (i.e. LDA coefficients) for each
subject, we fixed these parameters and re-trained the system
with the whole training dataset. Note that the test (evaluate)
datasets were kept hidden from the training, cross-validation
and optimization steps.

In evaluation phase, we first setup the BCI system with
the computational parameters obtained in training phase; and
started to extract time-varying signed distance (TSD) sig-
nal from evaluation dataset. We assessed this output signal
with the actual labels provided in http://www.bbci.
de/competition/iv/results/#labels. The as-
sessment program we used was developed by TUG BCI team
provided in Biosig toolbox (an open source software) and the
program also follows the same formulas as in the section 2.3.

The results of this experiment were obtained in two ways:
(a) evaluation of bispectrum (BSP) based feature extraction
in the BCI system; and (b) its performance over the results by
a power spectral density (PSD) based technique. In design-
ing a PSD in a BCI system, the EEG power was computed
by AR-Yule method. The PSD based feature extraction tech-
nique with LDA classifier was adopted from [4]. We fol-
lowed the same procedure for training and evaluation phase
as we did for BSP based BCI system.

Table 1 shows the training and evaluation results obtained
by BSP and PSD based feature extraction methods. The re-
sults of training phase reflects the performance of feature ex-
traction method and the used optimal classifier. Note, the
feature extraction parameters were fixed for all subjects; but
each subject used different classifier which were fixed at their
training and evaluation phases.

In order to observe the performance of task classification
accuracy (CA), kappa and mutual information over each time
point of the MI paradigm, we have plotted these measures in
Fig. 2 and Fig. 3 from two subjects B04 and B06 respec-
tively. Each plot illustrates a comparative performance ob-
tained by BSP and PSD based feature extraction techniques.
In addition, each of these plots also displays the measures for
training and evaluation phases which uses same classifier.

4. DISCUSSION AND CONCLUSION

As we see in Table 1, the training phase accuracies by the
BSP technique for the left and right MI are often close to
each other, i.e., the LDA finds suitable discriminant hyper-
plane in the feature space and hence, classifies in a balanced
way. But the same measurements are mostly imbalanced
with PSD technique: e.g., subjects B03, B05, B07 and B09.
The average overall-accuracy in BSP based training phase is
82% which is 8% higher than that of the PSD based training
phase. Again, the average mutual information and the kappa
values are found higher in BSP based training phase. It is also
observed that the training phase kappas by BSP technique
for subject B01, B05, B06, B07 and B09 are remarkably
higher than corresponding kappas by the PSD based tech-
nique. These observations conclude that the technique BSP
provides consistent and distinct features to the classifier.

Further, considering the training phase kappas by BSP it
can be concluded that the quality of features from subjects
B01, B05 and B06 are moderate as the kappas for these sub-
jects are around 0.60; whereas the features from subject B04
are very much compatible to our BCI system as the kappa
is close to 1; and the signals from subjects B02 and B03 are
not good for our BCI system as the kappa is less than 0.4 (its
mutual information is also close to 0). In fact, the classifier
does not find distinct features from the EEG of subjects B02
and B03.

The results of evaluation phase show that both BSP and
PSD based techniques are found highly session sensitive,
since they fail to provide balanced left and right accuracies
(< 10%) in the evaluation session (see subjects B01, B02,
B05, B06, B07 and B09 for PSD based technique; and sub-
jects B01, B05, B06, B07 and B09 for BSP based technique).
But with moderate or good quality signal the kappas by BSP
technique in evaluation session are found more than 60%
and similar to its corresponding training phase kappas. The
evaluation kappas by PSD based technique are mostly below
40%. It is evident that the PSD based approach has much
higher extent of uncertainty than the BPS based technique.

A similar comparative observation can be made from Fig.
2 and Fig. 3: with BSP, the whole distribution of kappa and
mutual information along the time course of paradigm is al-
ways higher than that of PSD based technique. For good sig-
nal (e.g., B04), the kappa and mutual information are quite
similar in both techniques - the maximum performance is ob-
tained after 5s of the paradigm course and it stays high till the
end of the time course. But with moderate signal (from B06)
the distribution of accuracies, kappa and mutual information
by the BSP based technique remain reasonably higher after
its maximum value - this behavior was not observed in the
distributions by PSD based technique. Therefor, the signal
quality independent consistent feature distribution empow-
ered the robustness of BSP technique.

To see how much distinct the features are by BSP and
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Table 1: Training and evaluation results (maximum measurements of accuracy, mutual information and kappa) of 9 subjects
analyzed by BSP and PSD methods respectively. This result is achieved with the optimum classifiers’ parameters: frequency
bands 8-14Hz (µ-band) and 14-27Hz (β -band); optimal LDA coefficient obtained in the training phase for each subject.

Table 1   Comparison of training and evaluation results of 9 subjects analyzed by bispectrum and PSD methods, respectively. This result is achieved with the optimum 
classifiers’ parameters: frequency bands 8-14Hz (µ-band) and 14-27Hz (β-band); optimal LDA coefficient obtain at training stage.  

Subject 

Bispectrum Power spectrum density 

Training Stage Evaluation Stage Training Stage Evaluation Stage 

Overall Accuracy  
(Left  -   Right) 

 Max (in %) 

Max.  
Mutual 

Info 

Max.  
Kappa 

Overall Accuracy  
(Left  -   Right) 

 Max (in %) 

Max.  
Mutual 

Info 

Max.  
Kappa 

Overall Accuracy  
(Left  -   Right) 

 Max (in %) 

Max.  
Mutual 

Info 

Max.  
Kappa 

Overall Accuracy  
(Left  -   Right) 

 Max (in %) 

Max.  
Mutual 

Info 

Max.  
Kappa 

B01 80  (81  -  79) 0.34 0.60 71  (96 -  46) 0.20 0.43 64 (61 - 68) 0.08 0.27 57 (42 - 72) 0.00 0.15 

B02 66  (66  -  65) 0.07 0.31 68  (65  -  71) 0.05 0.36 65 (66 - 64) 0.02 0.19 59 (67 - 52) 0.01 0.18 

B03 65  (65  -  61) 0.04 0.30 59  (59  -  60) 0.03 0.19 63 (56 - 70) 0.03 0.27 56 (53 - 59) 0.02 0.11 

B04 99  (99  -  99) 1.22 0.98 97  (97  -  97) 1.04 0.95 96 (96 - 96) 0.87 0.93 93 (91 - 95) 0.77 0.86 

B05 83  (82  -  84) 0.40 0.66 81  (86  -  76) 0.30 0.63 72 (60 - 84) 0.06 0.44 88 (94 - 81) 0.56 0.75 

B06 81  (82  -  79) 0.36 0.61 83  (90  -  76) 0.47 0.66 71 (70 - 72) 0.15 0.43 69 (86 - 51) 0.10 0.38 

B07 88  (93  -  84) 0.46 0.75 79  (72  -  86) 0.31 0.59 78 (82 - 72) 0.23 0.55 68 (81 - 54) 0.05 0.35 

B08 90  (93  -  88) 0.62 0.80 95  (97  -  93) 0.92 0.90 85 (84 - 86) 0.50 0.71 90 (81 - 99) 0.67 0.80 

B09 88  (86  -  90) 0.58 0.76 88  (82  -  94) 0.63 0.76 68 (72  - 63) 0.07 0.34 59 (49  - 70) 0.01 0.19 

Average 82  (83  -  81) 0.454 0.641 80  (83  -  76) 0.439 0.607 74 (72  - 75) 0. 223 0.459 71 (71  - 70) 0.243 0.418 
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Figure 2: The values of accuracy (left), Cohens kappa (middle) and mutual information (right) along the time course of the
paradigm for the subject B04. These were observed with PSD (top) and BSP (bottom) features extraction techniques.
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Figure 3: The values of accuracy (left), Cohens kappa (middle) and mutual information (right) along the time course of the
paradigm for the subject B06. These were observed with PSD (top) and BSP (bottom) features extraction techniques.
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Figure 4: Point to point distribution of Separability in subject
B04. The separability factor is computed from PSD and BSP.

PSD, we computed separabilities for the subject B04 using
Eq. (4) The separability plots (Fig. 4) demonstrate that the
features by BSP based technique are more distinct than that
of PSD based technique and the distinctness of features are
observable till the end of paradigm. Due to its inherent prop-
erties with non-Gaussian and nonlinear signals, the BSP thus
can extract more separable and distinct features for the BCI.

The same datasets were also processed and classified by
the different renowned researchers (as competitors of the BCI
Competition IV 2b-dataset). We have compared the perfor-
mance of our proposed BSP based BCI with their achieve-
ments. The average result just crosses the winners achieve-
ments: our average kappa in the evaluation phase is 0.607,
while it was 0.60 by the competition winner. Note, there is
a major difference in feature extraction procedure between
competitors and us: we have chosen common optimal pa-
rameters for feature extraction for all subjects but the com-
petitors used subject specific parameters. In order to cope
with the fixed frequency bands for all subjects, we had to
sacrifice some good feature extraction results, which would
increase the average performance of BSP based technique;
e.g., with a pair of band-pass filters (21-25Hz and 25 -29Hz)
to subject B05, it was possible to get higher accuracy (91%);
kappa (0.82) and mutual information (0.66) in the evaluation
phase. However, this optimal parameter is not good for all
other subjects.

The novelty of this paper is the development of a new
feature extraction method and its implementation to the BCI
system. The feature extraction technique estimates the bis-
pectral power from MI related EEG which deals with the
measurements due to non-Gaussian and nonlinear behavior
of EEG whereas the traditional technique assumes the EEG
as the output of a linear system. Further, the proposed BCI
system uses two band-pass filters by which LDA gets the bis-
pectral information of ERD and ERS oscillation in the EEG.
Finally, we advise to use the BSP technique with real-time
MI based EEG signal: a PC with 3.33GHz Core2Duo CPU,
it takes about 0.05s to extract features from 1s EEG signal.
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