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ABSTRACT method in terms of noise attenuation. However, the speech
In this paper, we propose a speech spectral enhancer badstelligibility in a speech segment is not sufficiently good, be-
on the MAP estimation using variable speech probabilitycause the parameters of the PDF are determined, regardless
density function (PDF). The proposed speech enhancemewhether the observed signal is in a speech or a non-speech
algorithm adaptively changes the speech PDF used in tlgegment.
MAP estimation according to the observed spectral power. To solve this problem, we have previously proposed an
In speech segments, the speech spectral density approacheéaptive algorithm for speech enhancement, so that it adap-
a Rayleigh distribution to keep the quality of the enhancedively changes the PDF parameters depending whether the
speech. In non-speech segments, it approaches a delta fumiserved signal is in a speech segment or in a non-speech
tion to reduce noise effectively. The proposed technique isegment. In a speech segment, we adjust the parameters so
effective in suppressing residual noise well. Computer simuthat the speech PDF approaches a Rayleigh distribution un-
lation results show that the proposed speech enhancer is sier the assumption that the speech PDF in speech segment
perior to the conventional methods in the noise reduction caapproaches a Rayleigh distribution [7]. In a non-speech seg-
pability. ment, since the speech signal does not exist, the speech PDF
can be assumed a Delta function. In this case, we adjust
1. INTRODUCTION the PDF parameters so that the speech PDF approaches the
. . . . Ita function to strongly reduce the noise. Unfortunately,
Speech enhancement technique is necessary in a wide ra Iﬁ 7], the one PDF parameter is fixed, while the another

of applications including mobile communication and speec / . . .
o - - ne is adaptively changed. Although the simulation results
recognition systems. Single microphone speech enhanc ovided a good performance of this method, the approx-

ment has been a research topic for decades [1]-[5], and o 'r%ation of the Delta function in non-speech segments was

of the famous methods in the spectral domain is the spectr : . .
subtraction algorithm proposed by Boll [1]. Unfortunately %ghgodu\?vg's ﬁ‘ztasL%?;ghilr;eegg'rsc?szgppress'On effect of this

it provides annoying artifacts called “musical noise” in the . . o
enhanced speech. Ephraim and Malah have thus proposed To obtain more faithful approximation of the Delta func-
ion in non-speech segments, we propose an adaptive algo-

an effective method for removing musical noise, called thd

MMSE-STSA (minimum mean square error short time spectithm that adaptively changes the both of the two PDF pa-

tral amplitude) method [2]. The MMSE-STSA becomes rameters. Since the proposed adapt!ve speech PDF can con-

strong tool of speech enhancement. The improved methodiderably approaches the Delta function, the speech enhancer

are also proposed in [3], and a noise suppressor employirfiN SUPPress alarge amount of noise signal from an observed

the algorithm is implemented in a cellular phone [3]. gnal especially in non-speech segments. Simulation re-
The MMSE-STSA method minimizes the mean squareSUItS show that the noise reduction capability of the proposed

error of the short time spectral amplitude. This method asM€thod is superior to the other conventional methods.

sumes that the discrete Fourier Transform (DFT) coefficient

of speech obeys Gauss probability density function (PDF). 2. CONVENTIONAL SPEECH ENHANCEMENT

The PDF of the speech spectral amplitude then results in SYSTEM

Rayleigh distribution. However, Martin has pointed out that

the DFT coefficient is more likely to fit a Gamma PDF and2.1 Structure of the Speech Enhancer

has shown that the estimator designed under Gamma model .
9-1 shows the structure of the conventional speech en-

decreases the mean square error as compared with the Lo
under Gaussian model [4]. However, neither of the speechancement system based on the MAP estimation [6], where
X(t) denotes the input signal at timie After x(t) is seg-

Is fits th | DFT coeffici f th h suffi’ ; .
g;ggttlay.s 'ts the actua coefficient of the speech su "mented and windowed, the spectral amplit{Xigk)| and the

o phase/ Xy (k) are calculated by using the fast Fourier trans-
Lotter and Vary have proposed an efficient speech en?orm (FFT), wheren andk denote the analysis frame number

hancement method using the joint Maximum a Posterior . X ; .
(MAP) estimation with a parametric PDF of the speech Specz_ind the frequency index, respectively. Using the noise power

tral amplitude [6]. This PDF is modeled by a single set ofSPECrUMAn(k), thea priori SNR én(k) and thea posteriori
parameters estimated from a large amount of actual speeciVR ¥a(K) are calculated as
data. The enhanced speech is obtained by applying the MAP

estimation rule with the derived PDF. The performance of

the MAP estimator is superior to that of the MMSE-STSA (k) = An(k) (1)
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Figure 1: Structure of the speech enhancement system.
Xn(K)[? to the estimated SNR:
Wi = DotOF @ !
n(k) - Xa(K)?
(k) = 10logy, (k). (5)

whereS,(k) denotes the speech spectrum &id is an ex-

pectation operator. Sind&|S,(k)|?] is not directly available, Then,Hn(k) is empirically chosen as
én(k) is calculated by using the following decision-directed

‘ 1 ih(l) <0
method [2]: Hn(K) = { —;hk+1, 0<ihk <6 | (6)
£k = & 1(K)+ (1— @) - maxp(0 - 1,0/, (3) 0, 6 < (k)

whereaq is a forgetting factor satisfyingQ a < 1. The spec- Wherey; is a constant to decide a slope of graph &t a
tral gain functionGn(k) = G(&n(K), ya(K)), which is char- threshold to eliminate an unreliabjg(k).

acterized byén(k) and yn(k), magnifies the speech spectral ) ) )

amplitude. The enhanced speech spectvi(R) is then ex- 2.3 Gain Estimation

pressed as We shall explain the gain estimation method based on the
joint MAP method [6]. We here omit the subscripts, the
Ya(k) = Gn(k)Xn(K) frame numben and the frequency numbérfor simplicity.
Gn(k) [ Xn (k)| exp(j/Xn(K)), (4) Letp(S) andp(/S) denote the PDFs of the speech spectral
amplitude and the phase, respectivglyX) denotes the PDF
wherej = v/—1. The enhanced speegft) is obtained from  of the input DFT coefficient ang(S, Z/S|X) is the conditional
Ya(k) by using the inverse FFT with the overlap-add methodjoint PDF. The joint MAP estimator gives the speech spectral
The speech enhancement system includes two importaamplitudeSthat maximize(S, /9X) as follows:
parts, namely the noise estimation and the spectral gain esti-
mation. If either does not work well, serious distortion or in- Y = argmax P(S £SX)
sufficient residual noise occurs in the enhanced speech. Ac- XIS /S /s
curate noise and speech estimators are indispensable to main- (XS, ())(5’(8” ) .
p

tain good quality of the enhanced speech.

; P We assume thap(X|S, /S) is Gaussian and thai(S) and
2'2. NOIS? ES'FIma-tIOH . ) . p(/S) are statistically independent. Moreovey(S) and
Noise estimation is also an important issue in speech erp(/S) are assumed to be
hancement systems. A weighted noise estimator is propose

(7)

= argmax
gS

[3], and it exhibits a better performance than the methods utt s S
based on minimum statistics [8]. We shall briefly describe pES = F(v+1) gltt p /"*S ’ (8)
the weighted noise estimation method proposed in [3]. This S
method recursively updates the noise power spectrum by p(LS) = 1 9)
21’
2
An(k) = BAn-1(k) + (1= B)Hn(k)[Xn(K)[%,  Hn(k) >0 ., wherel (-) denotes Gamma functiom? is the variance of
An—1(K), Hn(k) =0

the speech spectrum. The PIPES) is characterized by pos-
. . o itive parametergt andv. Substituting Egs.(8) and (9) into
whereg is a forgetting factor satisfying 62[3 < 1 andHn(k) Eq.(?%, and soh?ilng it fofs, we have g Egs.(8) 9

is the weight on the power spectryiy (k) |<. The weight co-

efficient is designed so that it is almost inversely proportional Y =GX (20)
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(a) Conventional speech PDF model in noise segment [7]
Figure 2: Parametric speech PDF. (u=3.2,v=0.0).
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This G is the Lotter’s spectral gain [6].
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3. SPEECH SPECTRAL ESTIMATOR USING - v=0.0,u=50
ADAPTIVE PDF MODEL /
3.1 Derivation of the proposed algorithm o

In the parametric speech PDF derived by Lotter and Vary,

the two parametergt and v are fixed [6]. However, an ° °e 1 " S : o ’ °
actual speech signal involves the both of speech segment b) P d h PDE model i . i
(speech exists) and non-speech segment (speech does not ex- (°) Propose S(FZJGECSO ol 818) elin noise segmen

ists). Clearly, in the non-speech segments, the speech PDF
becomes a Delta function because all speech data are zero.
On the other hand, in the speech segments, the speech PDF
can be approximated as a Rayleigh PDEJAENce, we have
previously proposed the adaptive speech PDF model based
on Eq.(8). Our approach is to adaptively change the PDF  \ye propose the following adaptive parametayand .
with the parametev. Fig. 2 shows some parametric PDFs

made by differentv, where the other parametgris fixed to

Figure 3: Speech PDF models.

3.2. This result supports that the PDF with variablean 0 U, <0
provide the Rayleigh PDF in speech segments and an expo- Vn = { \7r:, otherwise ° (12)
nential PDF in non-speech segments. Unfortunately, in the ~
non-speech segments, the actual speech PDF is not identi- Vn = A-logoRn, (13)
cal to the exponential PDF. So, the more appropriate PDF 0, fh<0
is the Delta function. Since the speech enhancement algo- Hn = { fin, otherwise ° (14)
rithm proposed in [7] cannot use the appropriate speech PDF -
in non-speech segments, it produced residual noises in the fin = B/Ra (15)
enhanced speech. S Xn (k)2

To solve this problem, we adaptively change the both of Rn = W7 (16)

two parametery and u to approximate the Delta function
in non-speech segmentgu is the parameter to adjust the
descent of the PDF, while controls its ascent. Fig. 3.1 (a)
shows the most steep ascent with= 0. It is impossible to
get more steep ascent. To approximate the Delta functio
we have to get more steep decent. A large valug gfves
such effect. Fig. 3.1 (b) shows the parametric speech PD§2 Simulation

with ¢ =50 andv = 0. We see from this result that the =

obtained PDF considerably approaches to the Delta functiowe carried out computer simulation for confirming the effec-

in comparison to the conventional one. Hence, decreasing tiveness of the proposed method. In the simulation, we added
and increasing! in non-speech segments may give a good tunnel noise to a female speech signal to make an observed
performance for noise reduction. signal. We puta = 0.98, 8 = 0.92, A= 0.5, B= 100 for

whereM is the FFT size, and andB are constants for adap-
tation. We see from Eq. (14) and (15) thatchanges recip-
rocal to the SNRR,,. Substitutingv, andp, into Eq.(11), we
"have the speech spectral gain.
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Figure 4: Results of speech enhancement

speech enhancer, afgd= 7 andy, = 10 for noise estimator.
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Figure 5: Trajectories of adaptive parameters

the conventional methods, especially in hon-speech seg-

ments.

(1]

The proposed method compared with Lotter's method [6] and

Tsukamoto’s methods [7] Fig. 4(a)—(d) show the spectro[2

grams of simulation results, where horizontal axis shows the
time and vertical axis shows the frequency. From Fig. 4(b),
Lotter's method gives a good speech enhancement capability
although residual noises arise especially in non-speech sef$]
ments. In Fig. 4(c), the residual noise is more suppressed
than the result of (b). But, the persistent residual noises are
perceptible. We see from Fig. 4(d) that the proposed method
reduces the noise sufficiently small, and it is almost not pergg)

ceptible.

Next, we show the trajectories of the adaptive parameters
vh and U, in Fig. 5(a) and (b). Here, (a) shows the trajec-

tory of v,. Sincevy, is proportional to the SNRy,, becomes

large when the observed signal includes speech signal, a

ol

becomes small in absence of the speech signal. Fig. 5(b)

shows the trajectory ofi,. We see from this results that,
increases when, decreases and vice versa, becgysis re-
ciprocal to the SNR. The pameter: 0.1 andu =~ 50 around

(6]

200 frames that is in non-speech segment. In this case, the
adaptive speech PDF approximates the Delta function like

Fig. 3.1(b).

4. CONCLUSION

We have proposed a speech spectral enhancer using adaptive

speech PDF that are controlled with two parameteend

(7]

. In the proposed method, the speech PDF in non-speedfl

segments approaches to Delta function by decreasiagd

increasingu. Since the non-speech segment is unknown, we
adaptively change the two parameters based on the SNR of
the observed signal. Simulation results show that the pro-
posed method effectively reduced the noise more than that
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