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ABSTRACT
In this paper, we propose a speech spectral enhancer based
on the MAP estimation using variable speech probability
density function (PDF). The proposed speech enhancement
algorithm adaptively changes the speech PDF used in the
MAP estimation according to the observed spectral power.
In speech segments, the speech spectral density approaches
a Rayleigh distribution to keep the quality of the enhanced
speech. In non-speech segments, it approaches a delta func-
tion to reduce noise effectively. The proposed technique is
effective in suppressing residual noise well. Computer simu-
lation results show that the proposed speech enhancer is su-
perior to the conventional methods in the noise reduction ca-
pability.

1. INTRODUCTION

Speech enhancement technique is necessary in a wide range
of applications including mobile communication and speech
recognition systems. Single microphone speech enhance-
ment has been a research topic for decades [1]-[5], and one
of the famous methods in the spectral domain is the spectral
subtraction algorithm proposed by Boll [1]. Unfortunately
it provides annoying artifacts called “musical noise” in the
enhanced speech. Ephraim and Malah have thus proposed
an effective method for removing musical noise, called the
MMSE-STSA (minimum mean square error short time spec-
tral amplitude) method [2]. The MMSE-STSA becomes a
strong tool of speech enhancement. The improved methods
are also proposed in [3], and a noise suppressor employing
the algorithm is implemented in a cellular phone [3].

The MMSE-STSA method minimizes the mean square
error of the short time spectral amplitude. This method as-
sumes that the discrete Fourier Transform (DFT) coefficient
of speech obeys Gauss probability density function (PDF).
The PDF of the speech spectral amplitude then results in
Rayleigh distribution. However, Martin has pointed out that
the DFT coefficient is more likely to fit a Gamma PDF and
has shown that the estimator designed under Gamma model
decreases the mean square error as compared with the one
under Gaussian model [4]. However, neither of the speech
models fits the actual DFT coefficient of the speech suffi-
ciently.

Lotter and Vary have proposed an efficient speech en-
hancement method using the joint Maximum a Posteriori
(MAP) estimation with a parametric PDF of the speech spec-
tral amplitude [6]. This PDF is modeled by a single set of
parameters estimated from a large amount of actual speech
data. The enhanced speech is obtained by applying the MAP
estimation rule with the derived PDF. The performance of
the MAP estimator is superior to that of the MMSE-STSA

method in terms of noise attenuation. However, the speech
intelligibility in a speech segment is not sufficiently good, be-
cause the parameters of the PDF are determined, regardless
whether the observed signal is in a speech or a non-speech
segment.

To solve this problem, we have previously proposed an
adaptive algorithm for speech enhancement, so that it adap-
tively changes the PDF parameters depending whether the
observed signal is in a speech segment or in a non-speech
segment. In a speech segment, we adjust the parameters so
that the speech PDF approaches a Rayleigh distribution un-
der the assumption that the speech PDF in speech segment
approaches a Rayleigh distribution [7]. In a non-speech seg-
ment, since the speech signal does not exist, the speech PDF
can be assumed a Delta function. In this case, we adjust
the PDF parameters so that the speech PDF approaches the
Delta function to strongly reduce the noise. Unfortunately,
in [7], the one PDF parameter is fixed, while the another
one is adaptively changed. Although the simulation results
provided a good performance of this method, the approx-
imation of the Delta function in non-speech segments was
very rough. As a result, the noise suppression effect of this
method was not sufficiently exercised.

To obtain more faithful approximation of the Delta func-
tion in non-speech segments, we propose an adaptive algo-
rithm that adaptively changes the both of the two PDF pa-
rameters. Since the proposed adaptive speech PDF can con-
siderably approaches the Delta function, the speech enhancer
can suppress a large amount of noise signal from an observed
signal especially in non-speech segments. Simulation re-
sults show that the noise reduction capability of the proposed
method is superior to the other conventional methods.

2. CONVENTIONAL SPEECH ENHANCEMENT
SYSTEM

2.1 Structure of the Speech Enhancer

Fig.1 shows the structure of the conventional speech en-
hancement system based on the MAP estimation [6], where
x(t) denotes the input signal at timet. After x(t) is seg-
mented and windowed, the spectral amplitude|Xn(k)| and the
phase̸ Xn(k) are calculated by using the fast Fourier trans-
form (FFT), wheren andk denote the analysis frame number
and the frequency index, respectively. Using the noise power
spectrumλn(k), thea priori SNRξn(k) and thea posteriori
SNRγn(k) are calculated as

ξn(k) =
E[|Sn(k)|2]

λn(k)
, (1)

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 1549



)(knλ

)(knξ

)(kX n∠

)(kX n

W
in

d
o

w
in

g
F

F
T

Noise estimation

a posteriori SNR 

estimation

a priori SNR

estimation

  Speech spectral gain estimation

IF
F

T

O
ve

rl
a

p
-a

d
d

In
p

u
t

O
u

tp
u

t 

)(kn
γ

)(),( kkG nn
γξ

)(tx )(ty)(kYn

Figure 1: Structure of the speech enhancement system.

γn(k) =
|Xn(k)|2

λn(k)
, (2)

whereSn(k) denotes the speech spectrum andE[·] is an ex-
pectation operator. SinceE[|Sn(k)|2] is not directly available,
ξn(k) is calculated by using the following decision-directed
method [2]:

ξn(k) = αξn−1(k)+(1−α) ·max[γn(k)−1,0] , (3)

whereα is a forgetting factor satisfying 0<α < 1. The spec-
tral gain functionGn(k) = G(ξn(k),γn(k)), which is char-
acterized byξn(k) andγn(k), magnifies the speech spectral
amplitude. The enhanced speech spectrumYn(k) is then ex-
pressed as

Yn(k) = Gn(k)Xn(k)

= Gn(k)|Xn(k)|exp( j ̸ Xn(k)) , (4)

where j =
√
−1. The enhanced speechy(t) is obtained from

Yn(k) by using the inverse FFT with the overlap-add method.
The speech enhancement system includes two important

parts, namely the noise estimation and the spectral gain esti-
mation. If either does not work well, serious distortion or in-
sufficient residual noise occurs in the enhanced speech. Ac-
curate noise and speech estimators are indispensable to main-
tain good quality of the enhanced speech.

2.2 Noise Estimation

Noise estimation is also an important issue in speech en-
hancement systems. A weighted noise estimator is proposed
[3], and it exhibits a better performance than the methods
based on minimum statistics [8]. We shall briefly describe
the weighted noise estimation method proposed in [3]. This
method recursively updates the noise power spectrum by

λn(k) =

{
βλn−1(k)+(1−β )Hn(k)|Xn(k)|2, Hn(k)> 0

λn−1(k), Hn(k) = 0 ,

whereβ is a forgetting factor satisfying 0< β < 1 andHn(k)
is the weight on the power spectrum|Xn(k)|2. The weight co-
efficient is designed so that it is almost inversely proportional

to the estimated SNR:

γ̃n(k) = 10log10

(
|Xn(k)|2
λn−1(k)

)
. (5)

Then,Hn(k) is empirically chosen as

Hn(k) =


1, γ̃n(k)≤ 0

− 1
γz

γ̃n(k)+1, 0< γ̃n(k)≤ θz

0, θz < γ̃n(k)
, (6)

whereγz is a constant to decide a slope of graph andθz is a
threshold to eliminate an unreliableγ̃n(k).

2.3 Gain Estimation

We shall explain the gain estimation method based on the
joint MAP method [6]. We here omit the subscripts, the
frame numbern and the frequency numberk for simplicity.
Let p(S) and p(̸ S) denote the PDFs of the speech spectral
amplitude and the phase, respectively.p(X) denotes the PDF
of the input DFT coefficient andp(S, ̸ S|X) is the conditional
joint PDF. The joint MAP estimator gives the speech spectral
amplitudeŜ that maximizesp(S, ̸ S|X) as follows:

Y = argmax
S

p(S, ̸ S|X)

= argmax
S

p(X|S, ̸ S)p(S, ̸ S)
p(X)

. (7)

We assume thatp(X|S, ̸ S) is Gaussian and thatp(S) and
p(̸ S) are statistically independent. Moreover,p(S) and
p(̸ S) are assumed to be

p(S) =
µν+1

Γ(ν +1)
Sν

σν+1
S

exp

(
−µ

S
σs

)
, (8)

p(̸ S) =
1

2π
, (9)

whereΓ(·) denotes Gamma function,σ2
S is the variance of

the speech spectrum. The PDFp(S) is characterized by pos-
itive parametersµ andν . Substituting Eqs.(8) and (9) into
Eq.(7), and solving it forS, we have

Y = GX (10)
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Figure 2: Parametric speech PDF.

with

G = u+
√

u2+ ν
2γ , u= 1

2 −
µ

4
√

γξ
. (11)

ThisG is the Lotter’s spectral gain [6].

3. SPEECH SPECTRAL ESTIMATOR USING
ADAPTIVE PDF MODEL

3.1 Derivation of the proposed algorithm

In the parametric speech PDF derived by Lotter and Vary,
the two parametersµ and ν are fixed [6]. However, an
actual speech signal involves the both of speech segment
(speech exists) and non-speech segment (speech does not ex-
ists). Clearly, in the non-speech segments, the speech PDF
becomes a Delta function because all speech data are zero.
On the other hand, in the speech segments, the speech PDF
can be approximated as a Rayleigh PDF [7]．Hence, we have
previously proposed the adaptive speech PDF model based
on Eq.(8). Our approach is to adaptively change the PDF
with the parameterν . Fig. 2 shows some parametric PDFs
made by differentν , where the other parameterµ is fixed to
3.2. This result supports that the PDF with variableν can
provide the Rayleigh PDF in speech segments and an expo-
nential PDF in non-speech segments. Unfortunately, in the
non-speech segments, the actual speech PDF is not identi-
cal to the exponential PDF. So, the more appropriate PDF
is the Delta function. Since the speech enhancement algo-
rithm proposed in [7] cannot use the appropriate speech PDF
in non-speech segments, it produced residual noises in the
enhanced speech.

To solve this problem, we adaptively change the both of
two parametersν and µ to approximate the Delta function
in non-speech segments.µ is the parameter to adjust the
descent of the PDF, whileν controls its ascent. Fig. 3.1 (a)
shows the most steep ascent withν = 0. It is impossible to
get more steep ascent. To approximate the Delta function,
we have to get more steep decent. A large value ofµ gives
such effect. Fig. 3.1 (b) shows the parametric speech PDF
with µ = 50 andν = 0. We see from this result that the
obtained PDF considerably approaches to the Delta function
in comparison to the conventional one. Hence, decreasingν
and increasingµ in non-speech segments may give a good
performance for noise reduction.

(a) Conventional speech PDF model in noise segment [7]
(µ = 3.2, ν = 0.0).

(b) Proposed speech PDF model in noise segment
(µ = 50,ν = 0.0).

Figure 3: Speech PDF models.

We propose the following adaptive parametersνn andµn.

νn =

{
0, ν̃n ≤ 0
ν̃n, otherwise , (12)

ν̃n = A· log10Rn, (13)

µn =

{
0, µ̃n ≤ 0
µ̃n, otherwise , (14)

µ̃n = B/Rn (15)

Rn =
∑M−1

k=0 |Xn(k)|2

∑M−1
k=0 λn(k)

, (16)

whereM is the FFT size, andA andB are constants for adap-
tation. We see from Eq. (14) and (15) thatµn changes recip-
rocal to the SNR,Rn. Substitutingνn andµn into Eq.(11), we
have the speech spectral gain.

3.2 Simulation

We carried out computer simulation for confirming the effec-
tiveness of the proposed method. In the simulation, we added
a tunnel noise to a female speech signal to make an observed
signal. We putα = 0.98, β = 0.92, A = 0.5, B = 100 for
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(a) Observed signal

(b) Lotter’s method [6]

(c) Tsukamoto’s method [7]

(d) Proposed method

Figure 4: Results of speech enhancement

speech enhancer, andθz = 7 andγz = 10 for noise estimator.
The proposed method compared with Lotter’s method [6] and
Tsukamoto’s methods [7] Fig. 4(a)–(d) show the spectro-
grams of simulation results, where horizontal axis shows the
time and vertical axis shows the frequency. From Fig. 4(b),
Lotter’s method gives a good speech enhancement capability
although residual noises arise especially in non-speech seg-
ments. In Fig. 4(c), the residual noise is more suppressed
than the result of (b). But, the persistent residual noises are
perceptible. We see from Fig. 4(d) that the proposed method
reduces the noise sufficiently small, and it is almost not per-
ceptible.

Next, we show the trajectories of the adaptive parameters
νn andµn in Fig. 5(a) and (b). Here, (a) shows the trajec-
tory of νn. Sinceνn is proportional to the SNR,νn becomes
large when the observed signal includes speech signal, and
becomes small in absence of the speech signal. Fig. 5(b)
shows the trajectory ofµn. We see from this results thatµn
increases whenνn decreases and vice versa, becauseµn is re-
ciprocal to the SNR. The pameterν ≈ 0.1 andµ ≈ 50 around
200 frames that is in non-speech segment. In this case, the
adaptive speech PDF approximates the Delta function like
Fig. 3.1(b).

4. CONCLUSION

We have proposed a speech spectral enhancer using adaptive
speech PDF that are controlled with two parametersν and
µ. In the proposed method, the speech PDF in non-speech
segments approaches to Delta function by decreasingν and
increasingµ . Since the non-speech segment is unknown, we
adaptively change the two parameters based on the SNR of
the observed signal. Simulation results show that the pro-
posed method effectively reduced the noise more than that

(a) Trajectory ofνn

(b) Trajectory ofµn

Figure 5: Trajectories of adaptive parameters

of the conventional methods, especially in non-speech seg-
ments.
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