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ABSTRACT

Compressive sensing (CS) is an emerging field that exploits
the underlying sparsity of a signal to perform sampling at
rates below the Nyquist-criterion. This article presents a
new code aperture design framework for compressive spec-
tral imaging based on the Coded Aperture Snapshot Spectral
Imaging (CASSI) system. Firstly, the methodology allows
the CASSI system to use multiple snapshots which permits
adjustable spectral and spatial resolution. Secondly, themea-
surement codeword matrices are generated using a pair of
model equations, leading to code aperture patterns that per-
mit the recovery of specific spectral bands of a given object.
The developed methodology is tested using a real data cube
and simulations are shown which illustrate that one can re-
cover arbitrary spectral bands with high flexibility and per-
formance.

1. INTRODUCTION

Compressive sensing has emerged as a promising research
area that can enable the acquisition of signals at sampling
rates below the Nyquist-criterion. In CS traditional sampling
is replaced by measurements of inner products with random
vectors. The signals are then reconstructed by solving an
inverse problem such as a linear program or a greedy pur-
suit in a basis where these admit sparse representations. The
key idea in CS is the realization that most signals encoun-
tered in practice are sparse in some sense and the theory of
CS exploits such sparsity to dictate that far few sampling re-
sources than traditional approaches are needed [4, 5, 7, 8].
More formally, given aT sparse signalx ∈ Rn on some ba-
sis Ψ = [ψ

1
,ψ

2
, . . . ,ψ

n
], such thatx can be approximated

by a linear combination ofT vectors fromΨ with T ≪ n,
the theory of compressive sensing shows thatx can be re-
covered fromm random projections with high probability
whenm ≈ T logn ≪ n. The projections are given byy = Px,
whereP is an m × n random measurement matrix with its
rows incoherent with the columns ofΨ. Commonly used
random measurement matrices for CS are random Gaussian
matrices (Pi j ∈ {N (0,1/n)}), Rademacher matrices (Pi j ∈
{±1/

√
n}) and partial Fourier matrices.

Recently, the Coded Aperture Snapshot Spectral Imag-
ing (CASSI) architecture has made it possible to implement
CS in spectral imaging [2, 3]. CASSI is indeed a remarkable
imaging architecture that has been studied in [1, 2, 3, 6]. The
single-shot CASSI architecture, however, suffers from the
following limitations as it pertains to the goals of this work.
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Figure 1: Diagram of the experimental CASSI system set-
up.The fixed aperture is replaced for a DMD in the new de-
sign andF is the focal distance.

Firstly, the single-shot system uses excessive compression to
represent spectrally rich image cubes, which may result in
poor-quality image reconstructions as well as low spectral
resolution. Secondly, the reconstruction algorithms are rigid
in that the entire spectral image cube is reconstructed at once;
thus, not satisfying the agile spectrum sensing requirements
of some applications. In this work, a new strategy is pro-
posed in which aperture code designs are used to develop a
multi-shot CASSI system. This new approach enables the
extraction of specific bands. The mathematical model and
the details of operation of the CASSI system are described
in Sec. 2. A strategy to recover a periodically spaced group
of bands is shown in Sec. 3. Finally, a general approach to
recover a more flexible spaced group of spectral bands is de-
rived in Sec. 4.1. Simulations illustrating the new techniques
are presented in Sec. 5.

2. CODED APERTURE SNAPSHOT SPECTRAL
IMAGING (CASSI) SYSTEM

The CASSI system realizes a single shot compressive spec-
tral imaging system [1, 3]. It encodes both 2D spatial and
spectral information of objects through an aperture code pro-
jection that is captured after it propagates through a disper-
sive element (Figure 1). An array detector then collects all
light passing through the aperture and the dispersive element
[1]. Figure 1 shows the CASSI system and its principal com-
ponents. It is important to emphasize that the code aperture
pattern remains fix in the sampling process. Suppose that the
scene or object is represented byf (λ ,x,y) whereλ is the
wavelength andx andy correspond to the spatial position, in
discrete form it is denoted asfmnk. Suppose that the code
pattern isCmn then the signal in front of the array detector
can be expressed by [2],

Smn = ∑
k

f(m+k)nkC(m+k)n +ωmn. (1)
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The sum in (1) captures the single measurement (shot) of
the CASSI system taking into count all spectral information.
Each spectral band is weighted differently byC(m+k)n. The
termωmn takes into account all possible noise sources.Smn
is a compressed version offmnk modulated byCmn. Smn is
thus a compressive sensing version offmnk. A reconstruc-
tion algorithm is thus necessary to recoverfmnk from Smn. A
number of strategies have been developed for CS signal re-
construction. All of them take into account the sparsity of the
sourcefmnk [2, 3, 6]. Accordingly, the spectral data cubefmnk
can be expressed asf = Wθ whereW is the inverse wavelet
transform andθ is the three dimensional coefficient wavelet
decomposition offmnk. Equation (1) can then be rewritten
as,

Smn = HWθ +ωmn, (2)

where the linear operatorH represents the system forward
model. The reconstruction offmnk is attained by solving the
optimization problem,

f̂ = W
[

argmin
θ ′

∥

∥

∥
Smn −HWθ

′
∥

∥

∥

2

2
+ τ

∥

∥

∥
θ

′
∥

∥

∥

1

]

. (3)

The first term minimizes theℓ2 difference between the model
and the measurementSmn. The variableτ > 0 controls the
level of sparsity attained in the reconstruction. The sparser
the sourcefmnk in W, the better the performance of the recon-
struction algorithm. In this work the l1-ls CS reconstruction
algorithm was used to solve (3) [11].The above procedure
tries to recover the overall data cube with only one measure-
ment and hence it often yields a low SNR output performance
[10].

This paper aims at generalizing the CASSI architecture
allowing multishot measurements such that different subsets
of spectral data cube can be separately recovered with higher
SNR and lower reconstruction time. The new approach thus
replaces the static code aperture in the CASSI system by a
Digital Micromirror Device(DMD) that permits changes in
the code pattern, enabling the design of a multi-shot CASSI
system. The multishot system thus requires the design of a
sequence of code aperture patterns. The contribution of this
paper is precisely the design of a family of aperture codes
that will provide the above mentioned advantages.

3. RECOVERING UNIFORMLY SPACED
SPECTRAL BANDS

The method developed in [10] derives a set of spectral codes
that allows the simultaneous recovery ofL uniformly spaced
bands. Suppose that the spectral information offmnk is
formed by K different bands,k ∈ [1,K]. The spectral data
cube can then be expressed asΩ = { f0, f1, ..., fK−1}, where
fi is an N × N spectral image. In this method,Ω is di-
vided intoL subsets, each one shifted byL spectral bands
of each other asΩi =

{

fi, fL+i, ..., f(M−1)L+i

}

, whereM =
K/L is the number of spectral sub bands in each group and
i = 0, ...,L−1. In general,L CASSI snap-shots are neces-
sary to extract theL subsets. Suppose thatPr is anN ×N
random matrix andPi

g is given by,

Pi
g =

{

1, mod (n,L) = mod (i,L)
0, otherwise

(4)

wheremod is the modulo operation, then each code aperture
modulation patterni is defined by

Pi = Pi
g ×Pr. (5)

If the ith snap-shot is taken using a different code pattern
given by (5), thenL matrices ofN × (N + L− 1) elements
are needed and these are given by

Smni =
K−1

∑
k=0

fk(m,n+ k)Pr(m,n+ k)Pi
g(m,n+ k). (6)

Each of these matricesSmni represents a compressive and
combined version of theith subsets ofΩ. In order to sep-
arate each group a decoding process is necessary. This pro-
cess consists in reorganizing the measurements of the CASSI
system so that only the information of each group appears in
theŜmni matrix

Ŝmni = Smni i f mod(i,L) = mod(n+ k−1,L). (7)

At this point, there areL matricesŜmni, i ∈ [0,L−1] of size
N × (N +L−1). EachŜmni matrix encodesM spectral bands
that can be recovered using (3). The number of nonzero ele-
ments of the matrixPr over its dimensions is called the com-
pression rater, which is an important parameter that estab-
lishes the percentage of points taken in each spectral band.
This parameter will be analyzed in detail in the simulations
section. It is important to note that the above coding proce-
dure depends highly on the valueL ≤ K used. In general, the
largerL, the better SNR in the reconstruction; however, the
trade off is more time consumming snap-shots asL increases.

4. SPECTRAL BAND SELECTIVITY

In some applications, it is desirable to recover only a spe-
cific subset of bands within the complete data cubeΩ. For
example, suppose that it is necessary to simultaneously re-
cover two specific bandsx1 andx2 of Ω. One option is to
use the approach of the previous section. In order to use this
method, however, it is necessary to find all factors ofK and to
use each factor as a possible valueL. Next, for eachL value,
one must verify if there are any subsetsŜmni that contains si-
multaneously the desired bandsx1 andx2. If x1 andx2 are in
different subsetŝSmni, then it would be necessary to solve (3)
twice which is computationally expensive. The method of
Sec. 3 can only recover subsets of bands uniformly spaced.
A more general method is thus introduced next.

4.1 Multishot code aperture design

In order to find all allowed values ofL to be used in the
method of Sec. 3, a codeword measurement matrixC is cre-
ated. This matrix contains all possible valid combinationsof
spectral bands that the method of Sec. 3 can recover effec-
tively. First, it is necessary to define a factor that expresses
the concentration of spectral information of a subset of spec-
tral bands; this is called the density factor,

η =
NL

K
, (8)

whereNL is the number of sub bands recovered simultane-
ously andK is the number total of bands of the spectral data
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Figure 2: Example of(a) A representative row of matrix
C ( j,m), (b) Periodical extension̂C ( j,m) (c) Circular shift

of (b): Ĉ ( j,(m− k)K) (d) C
(

j,(m− k)K/N j

)

takes onlyK

values of(c). K = 19 andN j = 6.

cubeΩ. The lowerη , the easier it is to recover theNL bands,
in terms of computational complexity. Notice that this factor
is bounded by1

K ≤ η ≤ 1.
The measurement codeword matrixC is defined as aT ×

K matrix, whereT is a selectable parameter. Each column
of C expresses a spectral band ofΩ and each row ofC is
a possible combination of bands to be recovered using the
method of Sec. 3. Furthermore, each row ofC is periodic
with periodN j 6= 0 that satisfies,

N j = min
N j

{

C ( j,m) =C ( j,m+N j)
}

, (9)

where j ∈ [0,T −1] andm ∈ [0,K −1]. Additionally, define

C
(

j,(m− k)K/N j

)

as having a circular shift of durationk and

periodN j where onlyK values are taken into account. Thus,

C
(

j,(m− k)K/N j

)

= Ĉ ( j,(m− k)K) wherem = 0, ...,K −1

and

Ĉ ( j,m) =







C ( j,m) , 0≤ m ≤ K −1
C ( j,m−N j) , K ≤ m ≤ (([x]+1))N j −1
0, elsewhere

.

(10)
Ĉ ( j,m) is called the periodic extension ofC ( j,m). To clar-
ify, a typical row of the matrixC, C( j,m),m = 0, ...,K −1 is
illustrated in Fig. 2. Each square represents an element of
row C ( j), if the square is black then this element is 1 and 0
elsewhere. In this exampleK = 19 andN j = 6. Further, the
correlation between two rowsi and j in C obeys

r̂i j (l) =
K−1

∑
k=0

C (i,k)C
(

j,(k− l)K/N j

)

i 6= j, (11)

for i, j ∈ [0,T −1] andk, l ∈ [0,K −1]. Now, it is defined that
row i and j are shift-independent if they obey

max(r̂i j (l))
K

< min(ηi,η j)

max(ηi,η j) 6= min(ηi,η j) i 6= j,
(12)

for i, j ∈ [0,T −1] and ηi and η j are the densities of
C (i) andC ( j) calcualted using (8) that are equal toηi =
1
K ∑K−1

k=0 C (i,k) andη j =
1
K ∑K−1

k=0 C ( j,k).
Equations (9), (12) are used to generate the matrixC. The

numberT of rows ofC can be limited to a given number or
it can be established or bounded by 2K . Computer simula-
tions of these model equations are showed in Fig. 3. Next to
theC matrix appears the factor of density (η j) of each row
and the numberL = N j of snap-shots necessary to get this
combination of spectral bands using the method of Sec. 3.

Figure 3: A typical matrixC. The density factorη is shown
for each row as well as the numberL = N j of snap-shots
necessary to implement each codeword through the method
of Sec. 3.

4.2 Code aperture design algorithm

The basis of the code aperture design algorithm is to find one
or more rows of matrixC that can recover the desirable bands
simultaneously. Different rows recover unknown bands from
different subsets with different density factor. The higher
density factor, the poorer quality of reconstruction and the
larger the time of recovery, but less snap-shots are neces-
sary. The lower density factor, the higher quality and the
lower time of recovering process, but more snap-shots are
required. In some applications, the number of snap-shots is
critical due to motion. In other applications, the object or
scene can change extremely fast and there is not sufficiently
time to take several snap-shots. On the other hand, certain
applications require the highest possible SNR.

Suppose that is necessary to recover a given numberLx of
spectral bands in positions{p1, p2, ..., pLx} inside the spec-
tral data cube. Then a binary vectorx is derived with each
element representing a spectral band. The element is a 1 if it
is necessary to recover this band or 0 otherwise;

x(n) =

{

1, if n band is required
0, otherwise

(13)

Next, it is necessary to calculate the correlation matrix be-
tween matrixC and the vectorx. Thus, ˆr jl = x K©Ĉ ( j,(−l))
for j = 1, ...,T − 1, where T is the number of rows ofC
and K© is the circular convolution of periodK. r̂ jl can
be calculated through a Fast Fourier Transform(FFT) by,
r̂ jl = IFFT

{

X ( f )Ĉ∗ ( j, f )
}

, whereX ( f ) andĈ∗ ( j, f ) are
the FFT ofx andC ( j) respectively. It is then necessary to
calculate the variablesy andd given by,

y( j) = max
{

r̂x j
}

(14)

d ( j) =

{

1, i f y( j) = Lx

0, otherwise,
(15)
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whereLx is the number of nonzero elements ofx or the same
the number of spectral bands that it wants to recover. The
variabled is the decision variable, ifd ( j) = 1 then the row
j of matrixC can be used to recover the spectral bands indi-
cated byx. Each selected row ofC is a combination of spec-
tral bands that can be effectively recovered using the method
of Sec. 3. At this point, the user can select a row ofC with
periodN j. The method of Sec. 3 then separates the data cube
into subsetsΩi =

{

fi, fL+i, ..., f(M−1)L+i

}

whereL = N j. In
order to recover simultaneously the desired bands given by
x, the measurement 2D vector is created

Ŝmnx =
{

Ŝmnp1, Ŝmnp2,...,ŜmnpLx

}

. (16)

Using equation (3) withSmn = Ŝmnx it is possible to recover
the desired bands

{

fp1, fp2, ..., fpLx

}

simultaneously. Figure
3 shows an example of this procedure. In the top of this
figure appears: a typical vectorx, the codeword measurement
matrix C, respective values ofη j, numberL = N j of snap-
shots and the decision variabled ( j). In this example, it is
desirable to recover bands 1, 6 and 16. In the column labeled
with d, all rows or codeword ofC appears that can be used to
recover the spectral bands indicated.

(a) (b)

(c) (d)

Figure 4: Examples of the same spectral band recovered us-
ing diferent density factors and the method of section 3, a)
η = 1 PSNR=24.45dB b)η = 1

2 PSNR=26.6dB c)η = 1
4

PSNR=27.21 d) Original spectral band.

5. SIMULATIONS AND RESULTS

Simulations were performed using a 24 channel real data
cube of size 256×256, the algorithm was implemented in
Matlab using a 3GHz Intel processor with 4GB RAM. Other
parameters were, wavelet basisSymmlet order 8 and maxi-
mum number of iterations equal to 2000. Figure 4 shows the
implementation of the method of Sec. 3 for different values
of η and their respective peak signal-to-noise ratios (PSNR).
In all cases the spectral band number 1 was recovered, how-
ever, the method of Sec. 3 recovers other spectral bands si-
multaneously spaced periodically that are not shown there.
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Figure 5: Recovering time and PSNR in function of density
factor.

For example in Fig. 4 withη = 1
4 indicates thatL =

η × 24= 6, thus the spectral bands 1, 7, 13 and 19 are re-
covered at the same time. It is observed that the lowerη ,
the higher the expectedPSNR. This method improves on

Figure 6: Examples of spectral bands 1 and 2 recovered si-
multaneously, (a) and (b)η = 1

2 PSNR=24.37dB and 33.4dB
respectively b) and c)η = 1

4 PSNR=28.88dB and 37.67dB
respectively.

other similar works in the area because it can recover the
same spectral band with different values ofη and therefore
with diferent PSNRs. The Fig. 5 depicts the PSNR and time
reconstruction time as a function ofη . Results indicate that
it is possible to recover a specific or subset of spectral bands
with different PSNR values and reconstruction time. These
results show the flexibility of the new method developed in
this paper. As expected, high PSNR values and lower recon-
struction times are obtained for low density factors. These
results verify the importance of taking into count the density
factorη in the codeword selection.

The Fig. 6 shows the results of the procedure developed
in section 4.1 to recover bands 1, 2 together for diverse val-
ues ofη . It is important to note that the method of Sec. 3
by itself cannot recover these bands together with high SNR
because are spaced only one spectral band apart. This figure
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shows that applying code aperture design algorithm is possi-
ble to recover whatever subsets of bands with high flexibility
and high PSNR. Additionally, it is important to analyze the
compression performance of this method, namely the num-
ber the bits used to save the information. The compression
rater used in Fig. 4 was 0.5 then the total number of pixels
of information wasN × (N +L−1)× r and the real infor-
mation contained was 24×η ×N ×N pixels. This provide
a compression factor of 44, 22 and 11 times for Fig. 4 (a),
(b) and (c), respectively. Notice that the compression factor
is important in applications where the spectral information is
needed to be sent through a band limited channel. The Fig. 7
shows the PSNR for diverse values of compression rate. No-
tice that for lower compression rates, near to 0.2, low PSNR
is obtained. Surprisingly, simulations showed that for com-
pression rates near to 1 there are no good performances. The
higher performance is attained setting the compression rates
to values near to 0.5. This result is consistent for diverse val-
ues ofη . On the other hand, Fig. 8 shows the reconstruction
time for diverse values ofη as a function of compression rate.
At lower compression rates more computationally efforts are
necessary to recover the original signal, for this reason Fig.
8 shows that at lower compression rates more reconstruction
time is required.

6. CONCLUSIONS AND FUTURE WORK

A method to recover spectral bands selectively from a scene
was developed. A code aperture design method was pre-
sented to recover a group of bands uniformly spaced. Us-
ing this method and a measurement codeword matrix, it is

possible to recover arbitrary combinations of bands, simulta-
neously. Simulations showed that this method improves the
PSNR and reconstruction time significantly. Furthermore, it
was discovered that compression rates near to 0.5 appears
to be the optimal value for the CS system. The methodol-
ogy exposed here can be used to sensing spectral information
at high ratios of compression that enables transmissions of
this information through band limited channels. The method
developed shows high flexibility in terms of user options,
namely the method allows the recovery of a group of bands
using different density factors.
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