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ABSTRACT Code Pattern

. . . . . . Aperture Dispersive
Compressive sensing (CS) is an emerging field that exploits i N Element
the underlying sparsity of a signal to perform sampling at ’ ,-,"’[
rates below the Nyquist-criterion. This article presents a ',-;’.'
new code aperture design framework for compressive spec- :

tral imaging based on the Coded Aperture Snapshot Spectral ~ Object

Imaging (CASSI) system. Firstly, the methodology allows o T S \ 0

the CASSI system to use multiple snapshots which permits

adjustable spectral and spatial resolution. SecondIyyiee i inyew ! )

surement codeword matrices are generated using a pair of design” R PR fcy

model equations, leading to code aperture patterns that per FPA

mit the recovery of specific spectral bands of a given objectrigure 1. Diagram of the experimental CASSI system set-
The developed methodology is tested using a real data culbg.The fixed aperture is replaced for a DMD in the new de-
and simulations are shown which illustrate that one can resign andr is the focal distance.

cover arbitrary spectral bands with high flexibility and per

Firstly, the single-shot system uses excessive compressio
formance.

represent spectrally rich image cubes, which may result in
poor-quality image reconstructions as well as low spectral
1. INTRODUCTION resolution. Secondly, the reconstruction algorithms ayie r

Compressive sensing has emerged as a promising reseaffihat the entire spectralimage cube is reconstructeda;on
area that can enable the acquisition of signals at samplirfgUs not satisfying the agile spectrum sensing requirésnen
rates below the Nyquist-criterion. In CS traditional saimgl some applications. In this work, a new strategy is pro-
is replaced by measurements of inner products with rando@©Sed in which aperture code designs are used to develop a
vectors. The signals are then reconstructed by solving ajulti-shot CASSI system. This new approach enables the
inverse problem such as a linear program or a greedy pufe_xtractlo.n of specific bands. The mathematical model and
suitin a basis where these admit sparse representatioas. Ti€_details of operation of the CASSI system are described
key idea in CS is the realization that most signals encouri? S€C. 2. A strategy to recover a periodically spaced group
tered in practice are sparse in some sense and the theory@f2ands is shown in Sec. 3. Finally, a general approach to
CS exploits such sparsity to dictate that far few sampling re"cover & more flexible spaced group of spectral bands is de-
sources than traditional approaches are needed [4, 5, 7, %a\./ed in Sec. 4.1. Simulations illustrating the new tecueisy
More formally, given &l sparse signat € %" on some ba- '€ presented in Sec. S.
sisW=[y,.y,,....,y ], such thax can be approximated
by a linear combination of vectors fromW¥ with T < n, 2. CODE?MA:(E:?\IT(;J(RC%ASSNSGZ%HS?EGPECTRAL
the theory of compressive sensing shows thaan be re-
covered fromm random projections with high probability The CASSI system realizes a single shot compressive spec-
whenm~= T logn < n. The projections are given ljy=Px,  tral imaging system [1, 3]. It encodes both 2D spatial and
whereP is anm x n random measurement matrix with its spectral information of objects through an aperture code pr
rows incoherent with the columns &. Commonly used jection that is captured after it propagates through a dispe
random measurement matrices for CS are random Gaussiaive element (Figure 1). An array detector then collects all
matrices Bj € {-#7(0,1/n)}), Rademacher matrice®( e light passing through the aperture and the dispersive eleme
{+1//n}) and partial Fourier matrices. [1]. Figure 1 shows the CASSI system and its principal com-
Recently, the Coded Aperture Snapshot Spectral Imageonents. It is important to emp_ha5|ze that the code aperture
ing (CASSI) architecture has made it possible to implemenpattern remains fix in the sampling process. Suppose that the
CS in spectral imaging [2, 3]. CASSI is indeed a remarkablé&cene or object is represented biA,x,y) whereA is the
imaging architecture that has been studied in [1, 2, 3, 68 Thwavelength ana andy correspond to the spatial position, in
single-shot CASSI architecture, however, suffers from thdliscrete form it is denoted akyk. Suppose that the code

following limitations as it pertains to the goals of this wor pattern isCm then the signal in front of the array detector
can be expressed by [2],
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The sum in (1) captures the single measurement (shot) efheremod is the modulo operation, then each code aperture
the CASSI system taking into count all spectral information modulation pattermnis defined by

Each spectral band is weighted differently ©y,),. The _

term wyy, takes into account all possible noise sourc®g, R = Pé x Br. (5)

is a compressed version &fx modulated byCry,. Sm IS

thus a compressive sensing versionfgfi. A reconstruc- If the it" snap-shot is taken using a different code pattern
tion algorithm is thus necessary to recov¥gi fromSm. A given by (5), therL matrices ofN x (N + L — 1) elements
number of strategies have been developed for CS signal rere needed and these are given by

construction. All of them take into account the sparsityhef t

sourcefk [2, 3, 6]. Accordingly, the spectral data cufygi K-1 i
can be expressed ds= W6 whereW is the inverse wavelet Smi= Y f(mn+kR(mn+kR(mn+k). (6)
transform and is the three dimensional coefficient wavelet k=0

decomposition offmk. Equation (1) can then be rewritten go-h of these matriceSmi represents a compressive and
as, combined version of thé" subsets of. In order to sep-

Sm=HWE + wm, (2)  arate each group a decoding process is hecessary. This pro-
cess consists in reorganizing the measurements of the CASSI
system so that only the information of each group appears in
the Sy matrix

where the linear operatdi represents the system forward
model. The reconstruction df. is attained by solving the
optimization problem,

Smi=Sm if  mod(i,L) =mod(n+k—1,L). (7)

f=w [argng,inHSm—HWG' ;—THGIHJ . 3)

At this point, there aré& matricesSy, i € [0,L — 1] of size
Nx(N+L-1). EachSyi matrix encode#/ spectral bands
The first term minimizes th&, difference between the model that can be recovered using (3). The number of nonzero ele-
and the measureme8Bty,. The variabler > 0 controls the ments of the matri¥®; over its dimensions is called the com-
level of sparsity attained in the reconstruction. The sgrars pression rat&, which is an important parameter that estab-
the sourcdk in W, the better the performance of the recon-lishes the percentage of points taken in each spectral band.
struction algorithm. In this work the 11-Is CS reconstrooti  This parameter will be analyzed in detail in the simulations
algorithm was used to solve (3) [11].The above procedursection. It is important to note that the above coding proce-
tries to recover the overall data cube with only one measuredure depends highly on the value< K used. In general, the
mentand hence it often yields a low SNR output performanctrgerL, the better SNR in the reconstruction; however, the

[10]. trade off is more time consumming snap-shotk axreases.
This paper aims at generalizing the CASSI architecture
allowing multishot measurements such that different stshse 4. SPECTRAL BAND SELECTIVITY

some applications, it is desirable to recover only a spe-
éfic subset of bands within the complete data c@beFor
example, suppose that it is necessary to simultaneously re-
gover two specific bands; andx, of Q. One option is to

use the approach of the previous section. In order to use this

of spectral data cube can be separately recovered withtigh

SNR and lower reconstruction time. The new approach thug-.l
replaces the static code aperture in the CASSI system by
Digital Micromirror Device(DMD) that permits changes in
the code pattern, enabling the design of a multi-shot CAS
system. The multishot system thus requires the design of g '
sequence of code aperture patterns. The contribution ®f thmethod,hhfowever, itis nec_ebslsaré/htj;fllnd afll factorrfca‘nld to
paper is precisely the design of a family of aperture coded>€ €ac actor as a possible v ext, for eacii. value,

that will provide the above mentioned advantages. one must verify if there are any subs&, that contains si-
multaneously the desired banxisandx,. If x; andx, are in

different subsetémi, then it would be necessary to solve (3)
3. RECOVSESEI(’\:'_?RLX\II_' FB%EII\SIS_Y SPACED twice which is computationally expensive. The method of
Sec. 3 can only recover subsets of bands uniformly spaced.

The method developed in [10] derives a set of spectral code’ more general method is thus introduced next.

that allows the simultaneous recoverylofiniformly spaced _ .

bands. Suppose that the spectral informationfgf is %1 Multishot codeaperturedesign

formed by K different bandsk € [1,K]. The spectral data In order to find all allowed values df to be used in the
cube can then be expressed@s- { fo, f1,..., fk_1}, where  method of Sec. 3, a codeword measurement m@atiscre-

fi is an N x N spectral image. In this metho® is di- ated. This matrix contains all possible valid combinatiohs
vided intoL subsets, each one shifted byspectral bands spectral bands that the method of Sec. 3 can recover effec-
of each other a& = {fi, fLyi,..., fm_1)1i }, whereM = tively. First, it is necessary to define a factor that expesss
K/L is the number of spectral sub bands in each group anthe concentration of spectral information of a subset o€spe
i=0,..,L—1. In generalL. CASSI snap-shots are neces- tral bands; this is called the density factor,

sary to extract thé. subsets. Suppose thatis anN x N

random matrix andP is given by, - Ne
9 n=- (8)
P _ 1, mod(n,L)=mod(i,L) @) whereN_ is the number of sub bands recovered simultane-
9710, otherwise ously andK is the number total of bands of the spectral data
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Figure 2: Example ofa) A representative row of matrix
C(j,m), (b) Periodical extensio@ (j,m) (c) Circular shift

of (b): E(j,(m—K)k) (d) C(L(m—k)K/Nj) takes onlyK
values of(c). K =19 andN; = 6.

cubeQ. The lowern, the easier it is to recover tid bands,
in terms of computational complexity. Notice that this act
is bounded byt < n < 1.

The measurement codeword matdixs defined as & x

K matrix, whereT is a selectable parameter. Each column

of C expresses a spectral band@fand each row o€ is

a possible combination of bands to be recovered using the

method of Sec. 3. Furthermore, each ronCois periodic
with periodN; # O that satisfies,

Nj = min{C(j.m) = C(J.m+N;)} ()

wherej € [0,T — 1] andm € [0,K — 1]. Additionally, define
C (j ,(m— k)K/Nj) as having a circular shift of duratidkand

x= || || |
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Figure 3: A typical matrixC. The density facton is shown

for each row as well as the numbkr= N; of snap-shots
necessary to implement each codeword through the method
of Sec. 3.

4.2 Code aperturedesign algorithm

periodN; where onlyK values are taken into account. Thus, The basis of the code aperture design algorithm is to find one

C(j,(m—k)K/Nj) = &(j,(m=K)) wherem=0,....K — 1
and

C(j,m), 0<m<K-1
c:(j,m)_{C(j,m—N,-), K<m< ((}N+1)N;—1.
0, elsewhere
(10)

C(j,m) is called the periodic extension 6f(j,m). To clar-
ify, a typical row of the matriC, C(j,m),m=0,....K—1is

or more rows of matrixC that can recover the desirable bands
simultaneously. Different rows recover unknown bands from
different subsets with different density factor. The highe
density factor, the poorer quality of reconstruction ane th
larger the time of recovery, but less snap-shots are neces-
sary. The lower density factor, the higher quality and the
lower time of recovering process, but more snap-shots are
required. In some applications, the number of snap-shots is
critical due to motion. In other applications, the object or
scene can change extremely fast and there is not sufficiently

illustrated in Fig. 2. Each square represents an element @fne to take several snap-shots. On the other hand, certain
row C(j), if the square is black then this element is 1 and Gapplications require the highest possible SNR.

elsewhere. In this example = 19 andN; = 6. Further, the
correlation between two rowsandj in C obeys

K—-1
i)=Y CiRC(isk=Nyn)  i#4] @D
k=0

fori,j € [0, T —1]andk,| € [0,K —1]. Now, it is defined that
rowi andj are shift-independent if they obey

max(fi; (1))
Tj < min(ni,n;j) (12)

max(ni, nj) # min(ni,nj)  i# ],

for i,j € [0,T—1] and ni and n; are the densities of
C(i) andC(j) calcualted using (8) that are equal fp=
% Yo Cli.k) andn; = ¢ 51C(j k).

Equations (9), (12) are used to generate the m@trikhe
numberT of rows ofC can be limited to a given number or
it can be established or bounded bf. 2Computer simula-

Suppose that is necessary to recover a given nubylr
spectral bands in positiods, p2, ..., P, } inside the spec-
tral data cube. Then a binary vectors derived with each
element representing a spectral band. The elementis a1 if it
is necessary to recover this band or 0 otherwise;

1, if nband is required
X(m) = {O, otherwise (13)
Next, it is necessary to calculate the correlation matrix be
tween matrixC and the vectok. Thus,rj = x®C(j,(-1))
for j =1,...,T — 1, where T is the number of rows &
and ® is the circular convolution of perio&. fj; can
be calculated through a Fast Fourier Transform(FFT) by,
Fii = IFFT {X(f)C*(j,f)}, whereX (f) andC* (j, f) are
the FFT ofx andC(j) respectively. It is then necessary to
calculate the variablgsandd given by,

tions of these model equations are showed in Fig. 3. Next to y (i) = max{fy; } (14)

the C matrix appears the factor of density;j of each row
and the numbek = N; of snap-shots necessary to get this
combination of spectral bands using the method of Sec. 3.

ati={g
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whereLy is the number of nonzero elementskadr the same 1500
the number of spectral bands that it wants to recover. The oo} %, _
variabled is the decision variable, i (j) = 1 then the row a * Reconstruction time(Sec) &
j of matrixC can be used to recover the spectral bands indi-  § | % ©PSNR(dB) A
cated byx. Each selected row @ is a combination of spec-
tral bands that can be effectively recovered using the ntetho
of Sec. 3. At this point, the user can select a rovCafith
periodN;. The method of Sec. 3 then separates the data cube
into subset€); = {fi, fLii,..., fm_1)L+i } whereL =N;. In
order to recover simultaneously the desired bands given by
X, the measurement 2D vector is created e

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

~ ~ ~ ~ 0
S = {Smpy Smpzo--- Sy, | - (e o . : .
R Figure 5: Recovering time and PSNR in function of density

Using equation (3) wittsm = Swx it is possible to recover factor.
the desired band§fp, , fp,, ..., fp } simultaneously. Figure
3 shows an example of this procedure. In the top of this For example in Fig. 4 withy = ‘—11 indicates that. =
figure appears: a typical vectarthe codeword measurement 1 x 24 = 6, thus the spectral bands 1, 7, 13 and 19 are re-
matrix C, respective values afj, numberL = N; of snap- covered at the same time. It is observed that the layer
shots and the decision varialddj). In this example, it is the higher the expecte@SNR.  This method improves on
desirable to recover bands 1, 6 and 16. In the column labeled
with d, all rows or codeword of appears that can be used to
recover the spectral bands indicated.

T PSNR
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Figure 6: Examples of spectral bands 1 and 2 recovered si-
multaneously, (a) and () = 3 PSNR=24.37dB and 33.4dB
respectively b) and ¢ = ‘—11 PSNR=28.88dB and 37.67dB
Figure 4: Examples of the same spectral band recovered ut&&Spectively.

ing diferent density factors and the method of section 3, apther similar works in the area because it can recover the
n =1 PSNR=24.45dB b)) = 1 PSNR=26.6dB c)y} = ;11 same spectral band with different valuesrpfind therefore

PSNR=27.21 d) Original spectral band. with diferent PSNRs. The Fig. 5 depicts the PSNR and time
reconstruction time as a function gf Results indicate that
5. SIMULATIONSAND RESULTS it is possible to recover a specific or subset of spectral ¥and

with different PSNR values and reconstruction time. These
Simulations were performed using a 24 channel real dateesults show the flexibility of the new method developed in
cube of size 256256, the algorithm was implemented in this paper. As expected, high PSNR values and lower recon-
Matlab using a 3GHz Intel processor with 4GB RAM. Otherstruction times are obtained for low density factors. These
parameters were, wavelet baSisnmlet order 8 and maxi- results verify the importance of taking into count the dgnsi
mum number of iterations equal to 2000. Figure 4 shows thé&ctorn in the codeword selection.
implementation of the method of Sec. 3 for different values The Fig. 6 shows the results of the procedure developed
of n and their respective peak signal-to-noise ratios (PSNR)n section 4.1 to recover bands 1, 2 together for diverse val-
In all cases the spectral band number 1 was recovered, howes ofn. It is important to note that the method of Sec. 3
ever, the method of Sec. 3 recovers other spectral bands 4y itself cannot recover these bands together with high SNR
multaneously spaced periodically that are not shown there.because are spaced only one spectral band apart. This figure
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possible to recover arbitrary combinations of bands, siaul
neously. Simulations showed that this method improves the
PSNR and reconstruction time significantly. Furthermdre, i
was discovered that compression rates near to 0.5 appears
to be the optimal value for the CS system. The methodol-

e Of A 2 ogy exposed here can be used to sensing spectral information
T | at high ratios of compression that enables transmissions of
2 247** A — this information through band limited channels. The method
¢ 7*72;1;2 developed shows high flexibility in terms of user options,
21y o n=18 namely the method allows the recovery of a group of bands
20, ] using different density factors.

A
18
0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compression rate, r

Figure 7: PSNR as function of compresion ratg = 3,3,3.
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