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ABSTRACT

In the information era, databases in companies i@seéarch
centres are getting larger, which makes the qualftdata a
key issue. In this paper, independent componeriysigas
used for data quality monitoring of electric lodohé series.
The independent component analysis was applidteipie-
processing phase, which increased the data qualistem
performance. The extraction of signal sources riaga
relevant information, and narrowed the corridor widused
for data validation.

1 INTRODUCTION

In present days, the global development is dukgrge part,
to wide data dissemination, especially due to h#erin
fact, with the enormous data volume increase, ttemton
has turned to the ability to absorb information aasbond
appropriately [1]. Thus, data quality issues haeedme a
key factor to the transformation from data to ralv
information.

Data quality is the level of correctness, complessn
consistency, interpretability, aggregated inforomati and
other data context dependent characteristics [2¢s& data
quality dimensions must be specified and monitoned
accordance to user specifications. The users defiva is
high or low quality.

In the electric sector, data quality studies arenewore
important due to the recent increase on electriad lo
demands, especially in emerging countries, sucBrasil.

The demand increases have resulted in companiémn fus

(data integration from different systems), and siecis must

be taken to avoid blackout and to manager the radect

system.

In this work, a data quality monitoring system is

developed to analyse electric load time series wisipect to
the peak energy. The methodology uses adjacemisseiih
respect to the peak hour,
temperature series. These data contain fundamgsitizins
that impact significantly a number of decision taki
processes and they should not be corrupted. Thusta

incoming sample included in the database and dofwedt,

if necessary/requested. Here, the corridor is dyitamically
using Independent Component Analysis [3], aiming at
identifying more structured data in the incomingdiseries.
This more structured information may make the dgpiality
monitoring system more efficient. Over the estirdate
independent sources, signal pre-processing is eabgbr
removing seasonality, cycles and tendency [4]. Aleur
network [5] or linear modelling [6] estimates tharget
application from the resulting residual signal. Madidation
corridor centre for data quality evaluation is foeecasted
value for a given sample and its limit is propartbto the
estimation error. This method allows the correctifom
outliers and missing data [7].

The Independent Component Analysis (ICA) is a
statistical technique to find hidden factors in exed
signals. ICA defines a model generator from obskdata,
which are assumed to be mixtures of unknown indaxgren
variables (sources). ICA has been used as anayxitol in
autoregressive processes for time series fore8astt [has
been shown that the estimated sources concerntustedc
data, which can be used for data prospection anakig
processing

The paper is organized as it follows. In the nextisn,

a more detailed explanation of the data quality itbang

system is given. Section 3 presents the methodalsgy in
the case study of data quality monitoring for electoad

time series, which is conducted in Section 4. Qasichs are
derived in Section 5.

2. TIME SERIES DATA QUALITY MONITORING

The aim of the data quality monitoring system igvaluate
the quality of a new sample, which is to be incoaped into
the database, and correct for the incoming samiple,
necessary/requested. The system is built as aot@ystem

the daily peak series arlgl: where past samples are used to build the Sewes

model and produce a validation corridor, within e¥hithe
incoming sample should stay (see Fig. 1).
The validation corridor is defined dynamically, at

quality monitoring system may identify problems andSa@mpling time instant, by the mean absolute errquiefor)

eventually, correct for mistakes and enrich therimfation, in
accordance to user specifications.

between estimatedd, ) and real § ) sample values, and it
is adjusted by a constant to define the missidgifabability

To monitor key data quality dimensions in this time(l)_

series, a validation corridor is proposed for estihg an
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Fig. 1. The validation corridor concept.
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processed. In recent works [4][7], neural estingatbave
been fed from a residue series, which is obtairnetha
output of the pre-processing phase, as from Figur€his
residual information is the result of subtractingni the
incoming raw data the modelled time series comp@nen
(tendency, seasonality, cycles), obtained from tire-
processing block. Therefore, the estimator ainfsratasting
what is unknown from data.

In this work, we proposed to include an ICA blockhe
pre-processing chain (see Fig. 3). The aim is tesg more
structured signals with respect to the originaladand
facilitate the data pre-processing step. In thaisece, the
estimator block (EST) models the pre-processed (Erjue
in the ICA space.

The ICA finds the independent sourcgsderived from
the observed signalg)( estimating the de-mixing matri

The k parameter allows to include the user role anqg] — see (2). If an independent component is assigo

determines a compromise between the context andste

noise, deflation may be applied (ICA block).

specifications. Typicallyk is adjusted to detect theoretical

presence of soft outliers in training set (oneieufior each
150 samples).

The time series model (corridor centres) is deriveth
pre-processed data estimations (see Fig. 2). The
processing stage extracts typical time series cosmis such
as seasonality, cycles, and tendency [4].

Input __[Pre-processing Estimator [ Output

Figure 2. Basic block diagram for determining tbericlor centres of the
monitoring system

The presence of seasonality and cycles are anaigsed

frequency-domain by the Fast Fourier Transform 3pm
spectral information, we remove the identified comgnts
verifying their significance level. Significant ffgency
component, above a threshold, are subtracted frioen
original time series.

Next, the presence of heteroscedasticity is andiysth
Goldfeld-Quandt test [10]. In case of heteroscécigstan
appropriate action, such as the application ofdgarithmic
function, should be considered. With homoscedassites,
the tendency is analysed. For this, a combinatibrihe
Dickey-Fuller (ADF) [11] and Phillips-Perron [12gdts is
used. Such test combination checks for unit root$ime

series. In case of finding unit roots, the trenstighastic and

the first difference is appliedn times (wherem is the
integration order of the process). If the test doesdetect
unit roots, the trend is deterministic, and itasoved from a
polynomial fitting.

y =Bx (2

pr  The estimator design is based on parsimoniousiorite

[13]. From simple models (linear models), the camity is
gradually increased by introducing non-linear nesrcand
evaluated. Thus, from a single hidden neuron, thehber of
hidden neurons is increased until the error deereas
hypothesis can be rejected. Early stop of the hewatavork
training is applied to avoid over training [5].thre non-linear
case, we use feed forward (mult-layer perceptrigiiP [5])
neural networks. In the linear case, the estimiatan auto-
regressive moving average (ARMA [6]) model.

The estimated time series is reconstructed over the
modelled sources (block PP- Fig. 3), resulting in the
estimated sources/f). The ICA process is then reversed
(ICA™ block — Fig. 3) and the estimated values,)( are
L obtained. Fronx.s, the corridor is finally constructed for the

original data space — see (1).

For data quality assessment, the data samplesdshoul
remain within the corridor limits. Thus, the aintdsobtain a
corridor as narrow as possible but emitting onlyrext
alerts, for detecting errors and allowing theirreotion with
good accuracy, if necessary / requested.

3. METHODOLOGY

The data quality monitoring system was analysedhi
framework of the electric load time series fromwwdpean
energy supplier (East-Slovakia Power Distribution
Company), which was used in a competition in 2091he

The estimator block is performed either by a lineaEuropean Network on Intelligent Technologies for &8m

model or a neural network. Neural estimators fmetiseries
forecasting have been widely used [6]. It has tsenvn that
neural systems are most effective when input deggpee-

Adaptive Systems [14]. This database comprisestraec
load series, in MW, collected every thirty minufesm 01
January 1997 to 31 January 1999 and the daily teahpe
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Figure 3. The structure of the Data Quality MonitgrSystem. The estimator block (EST) models tiepracessed (PP)
residuein the ICA space. Finally, bc pre-processing and ICA are reved, and the mod is mapped ontthe original spac
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averaged in °C, covering the same time period. ha t A corridor centre with NMSEsmaller than 1 is better
competition held in 2001, the competition task was than a corridor constructed with the mean of tlee@ss 4y).
develop models to forecast the daily peak load galonThe same occurs when the NMSE& smaller than 1 and the
January 1999. Here, the 1997 period was used fog ti corridor is constructed using the sample from thevipus
series training, the year 1998 for training valiolatand time instant (X1).

January/1999 for testing (generalization). The results with and without the application of AIC

Besides the daily load peak series, groups ofsesar were also compared using three others performantizxeés.
the mean peak time (20:00) were also considereds,Th The R indicator is the rate between correlatioamforiginal
seven adjacent series between 18:30 and 21:30 wgme series and forecasted series delayed from one sampl
for series modelling. The temperature was used ras dlLag.-;) and without any delay &g,-o) — see (6). The MAC
auxiliary series. indicator is the mean absolute corridor width, give MW,

The validation corridor was estimated with the and the MAPE is the mean absolute percentage error
constant defined by fail/missing probability oniniag /  between forecasted and real sample - see (7) and (8
validation set. The constakiwas determined assuming one
outlier for 150 samples.

For finding independent sourceg £ see equation (1) -, r=13%=0 (6)
a specific time series algorithm was employed. fie¢hod LaGn-1
finds a de-mixing matrixg) by diagonalizing the Delayed-
Auto-Cross-Covariance Matrix: ZiN: Wesi ~ Xi‘
MAC = 2k N ()
cX= E{xn)x(n—r)T} 3)
ZN XeSt_ Xl
where,n is the time sequence,is a time delay and the % ®)
MAPE = x100

observed series. N

We use the Second Order Blind Identification aldyoni
with  Robust Orthogonalization (SOBI-RO [15]) for Here, X and Xog are observed and forecasted samples, at
determining the independent components. This mefinstd
whitens data and then diagonalizes a group of Reladyuto-
Cross-Covariance Matrixes. The time series arespted to
the ICA Block in parallel. Analysis and forecastse a
pe_rf_ormed in the ICA space and transformed backhéo 4 ANALISYSAND RESULTS
original space using reversed ICA.

The neural network input layer was constructed from  The better performance could be explained, in fmrt,
sources considering delayed samples. We used elatmn  robust orthogonalization, which minimizes the naifects.
test, typically 95% for threshold, to find relevaimput Besides, the second order algorithm diagonalizesfitist
delays. For hidden layer, the hypothesis testing ofiodel 225 delayed-cross-covariance matrixes —  seg) -,
with n neurons against the hypothesisefl neurons. If the performing more than orthogonalization. In fact;fpening
output error increases when a neuron is included5&  the independence [3].
confidence level, the+1 hypothesis is rejected. The pre-processing extracted frequency components

The results were analysed using two performancgbove 06 standard deviations with respect to theanme
indexes evaluated over the test set: the normalimedn amplitude value. The spectral information from ipeledent
square errors (NMSE). The index NMSEormalizes the sources is clearer than without ICA block, whichilfeates
MSE with respect to the mean of the estimated seree the pre-processing.
(4) -, and NMSE uses the best random walk estimator as the ~ The input network is defined using the spatial-terap

time instani, respectivelyN is the number of samples, akd
is the corridor adjustment constant obtained dutimagtrain
phase.

normalization factor - see (5). correlation function. When ICA block was includetiere
were not significant correlations between the irhelent

MSE E‘(XeSI-X)Z‘ (4) sources, only temporal correlations, which simedifithe

NMSE = o? =W estimation. The data quality monitoring system ubeth

linear (ARMA) and non-linear estimators (MLP) fasidue

E‘(xe _X)z‘ ) source modelling. For non-linear case, the hypdghtest
NMSE, =% defined maximum 02 hidden neurons. The first tis@aces
El(%- - x) ‘ were modelled with non-linear estimators (MLP) atodthe

others sources, linear models (ARMA) proved to haugh.
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Table | shows NMSEand NMSE indexes computed

from the testing series with ICA. It is observedttionly

NMSE, for Series #7 is around 1 and the others are well

below. Then, the data quality monitoring systenfqrerance
increases when compared to the usage of eithenélaa or
the best random walk estimator.

TABLE I. NMSE; and NMSE performance indexes.

Series NMSE; NMSE,
Series #1 (18:30) 0,47 0,54
Series #2 (19h) 0,47 0,66
Series #3 (19:30) 0,39 0,42
Series #4 (20h) 0,41 0,49
Series #5 (20:30) 0,29 0,31
Series #6 (21h) 0,31 0,53
Series #7 (21:30) 0,54 1,02
Series #8 (Peak) 0,29 0,29

Without ICA, for all series, the best model was an
ARMA with maximum 20 delays and no feedback, becami

a Moving Average (MA) model.

Table Il shows the performance indexes for bothgus

or not ICA. The pre-processing was automated usieg
same parameters for both with and without ICA. Dest
results for each case are expressed as boldfadeesvan
general, ICA performed better. For all series miedeWith
ICA, R is above 1. Without ICA, R indicator is beld for
series #1, #6 and #7, indicating worse performaflse, in
general, the validation corridor is narrower angl RBAPE is
smaller, when ICA is used in the pre-processingncha

In Figure 4, due to the similar series shapes, oavs
only the first five series (temperature and setfigsto #4),

and the more structured sources (sources #1 to \#8).

observe that the temperature (first series antl oarce) is
one of the estimated sources. The second sourcesSE

ICA

Figure 4. On the left, the first five series fomggerature (top) and series
from #1to #4. On the right, the more structurecemehdent sources
obtained through ICA block.

Figure 5 shows the real values, the validationidorr
centers and the corridor width for the peak seridg&n ICA
is used in the series pre-processing chain andrlinedel
are used to modeling the sources.
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Figure 5. Actual and forecasted peak series andatli@ation corridor for
Jan/1999.

5. CONCLUSIONS

The data quality monitoring system proposed heses wa
validation corridor to evaluate incoming samplesdarget

semester dependency. The third source is from &nnugme series. The corridor is built around a foréedss/alue

variation and the others suggest a trimester degpenyd The
sources not showed did not allow an easy interjimatan
the context of the application. This ability to rdiéying
original and better structured information proveerehto
facilitate the work of the estimation block.

TABLE Il. MAPE, MAC and R performance indexes wihd without ICA

block
With ICA (SOBI-RO) Without ICA
Series MAPE MAC R MAPE MAC R
%)  (MW) (%) (MW)

Series #1 (18:30) 33 162 181 46 421 0,92
Series #2 (19h) 27 156 151 46 406 11

Series #3 (19:30) 3.3 159 160 29 148 1,04
Series #4 (20h) 2.2 140 161 22 151 1,28
Series #5 (20:30) 2.2 129 128 22 136 1,06
Series #6 (21h) 19 139 1,15 1.9 125 0,97
Series #7 (21:30) 26 130 116 3.1 158 0,94

Series #8 (Peak) 21 157 180 4.0 149 1,1

that is obtained from pre-processed data. The diynam
corridor adapts to the series statistical variaiamd the
system alerts the user when the incoming sampbaitiof
the corridor limits. In case a correction is reqdifrom the
expert user or a missing value is detected, thecésted
sample may be used.

In the proposed system, neural networks and linear
models were applied in combination with Independent
Component Analysis, which was included in the pre-
processing stage. The parsimonious models preseetést
results (linear or non-linear models with few news)o The
impact of ICA was analysed for a particular caselettric
load time series. The ICA algorithm used seconaiord
statistics with time sequence analyses (SOBI-RGxteact
the independent sources. Both neural and linearelmod
operated over pre-processed independent sourcaly<iagy
and removing heteroscedasticity, trends, cycles and
seasonality). Using ICA, the validation corridorsera/
reduced and the forecast performance was impraviith
produced a positive impact on data quality dimersisuch
as correctness, completeness, and interpretability.
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