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ABSTRACT 

In the information era, databases in companies and research 
centres are getting larger, which makes the quality of data a 
key issue. In this paper, independent component analysis is 
used for data quality monitoring of electric load time series. 
The independent component analysis was applied in the pre-
processing phase, which increased the data quality system 
performance. The extraction of signal sources revealed 
relevant information, and narrowed the corridor width used 
for data validation.  

1. INTRODUCTION 

In present days, the global development is due, in large part, 
to wide data dissemination, especially due to Internet. In 
fact, with the enormous data volume increase, the attention 
has turned to the ability to absorb information and respond 
appropriately [1]. Thus, data quality issues have become a 
key factor to the transformation from data to relevant 
information.  

Data quality is the level of correctness, completeness, 
consistency, interpretability, aggregated information and 
other data context dependent characteristics [2]. These data 
quality dimensions must be specified and monitored in 
accordance to user specifications. The users define what is 
high or low quality. 

In the electric sector, data quality studies are even more 
important due to the recent increase on electric load 
demands, especially in emerging countries, such as Brazil. 
The demand increases have resulted in companies fusion 
(data integration from different systems), and decisions must 
be taken to avoid blackout and to manager the electric 
system.  

In this work, a data quality monitoring system is 
developed to analyse electric load time series with respect to 
the peak energy. The methodology uses adjacent series with 
respect to the peak hour, the daily peak series and 
temperature series. These data contain fundamental patterns 
that impact significantly a number of decision taking 
processes and they should not be corrupted. Thus, a data 
quality monitoring system may identify problems and, 
eventually, correct for mistakes and enrich the information, in 
accordance to user specifications.  

To monitor key data quality dimensions in this time 
series, a validation corridor is proposed for evaluating an 

incoming sample included in the database and correct for it, 
if necessary/requested. Here, the corridor is built dynamically 
using Independent Component Analysis [3], aiming at 
identifying more structured data in the incoming time series. 
This more structured information may make the data quality 
monitoring system more efficient. Over the estimated 
independent sources, signal pre-processing is applied for 
removing seasonality, cycles and tendency [4]. Neural 
network [5] or linear modelling [6] estimates the target 
application from the resulting residual signal. The validation 
corridor centre for data quality evaluation is the forecasted 
value for a given sample and its limit is proportional to the 
estimation error. This method allows the correction for 
outliers and missing data [7].  

The Independent Component Analysis (ICA) is a 
statistical technique to find hidden factors in observed 
signals. ICA defines a model generator from observed data, 
which are assumed to be mixtures of unknown independent 
variables (sources). ICA has been used as an auxiliary tool in 
autoregressive processes for time series forecast [8]. It has 
been shown that the estimated sources concern structured 
data, which can be used for data prospection or signal 
processing 

The paper is organized as it follows. In the next section, 
a more detailed explanation of the data quality monitoring 
system is given. Section 3 presents the methodology used in 
the case study of data quality monitoring for electric load 
time series, which is conducted in Section 4. Conclusions are 
derived in Section 5. 

2. TIME SERIES DATA QUALITY MONITORING 

The aim of the data quality monitoring system is to evaluate 
the quality of a new sample, which is to be incorporated into 
the database, and correct for the incoming sample, if 
necessary/requested. The system is built as a control system 
[7], where past samples are used to build the time series 
model and produce a validation corridor, within which the 
incoming sample should stay (see Fig. 1). 

The validation corridor is defined dynamically, at 
sampling time instant n, by the mean absolute error (µ|error|) 

between estimated (
iestx ) and real ( ix ) sample values, and it 

is adjusted by a constant to define the missing/fail probability 
(1). 
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Fig. 1. The validation corridor concept. 
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The k parameter allows to include the user role and 
determines a compromise between the context and the user 
specifications. Typically, k is adjusted to detect theoretical 
presence of soft outliers in training set (one outlier for each 
150 samples).  

The time series model (corridor centres) is derived from 
pre-processed data estimations (see Fig. 2). The pre-
processing stage extracts typical time series components such 
as seasonality, cycles, and tendency [4]. 
 

 
Figure 2. Basic block diagram for determining the corridor centres of the 

monitoring system 
 

The presence of seasonality and cycles are analysed in 
frequency-domain by the Fast Fourier Transform [9]. From 
spectral information, we remove the identified components 
verifying their significance level. Significant frequency 
component, above a threshold, are subtracted from the 
original time series. 

Next, the presence of heteroscedasticity is analysed with 
Goldfeld-Quandt test [10]. In case of heteroscedasticity, an 
appropriate action, such as the application of the logarithmic 
function, should be considered. With homoscedastic series, 
the tendency is analysed. For this, a combination of the 
Dickey-Fuller (ADF) [11] and Phillips-Perron [12] tests is 
used. Such test combination checks for unit roots in time 
series. In case of finding unit roots, the trend is stochastic and 
the first difference is applied m times (where m is the 
integration order of the process). If the test does not detect 
unit roots, the trend is deterministic, and it is removed from a 
polynomial fitting.  

The estimator block is performed either by a linear 
model or a neural network. Neural estimators for time series 
forecasting have been widely used [6]. It has been shown that 
neural systems are most effective when input data are pre-

processed. In recent works [4][7], neural estimators have 
been fed from a residue series, which is obtained at the 
output of the pre-processing phase, as from Figure 2. This 
residual information is the result of subtracting from the 
incoming raw data the modelled time series components 
(tendency, seasonality, cycles), obtained from the pre-
processing block. Therefore, the estimator aims at forecasting 
what is unknown from data.  

In this work, we proposed to include an ICA block to the 
pre-processing chain (see Fig. 3). The aim is to access more 
structured signals with respect to the original data and 
facilitate the data pre-processing step. In the sequence, the 
estimator block (EST) models the pre-processed (PP) residue 
in the ICA space. 

The ICA finds the independent sources (y) derived from 
the observed signals (x), estimating the de-mixing matrix B 
[3] – see (2). If an independent component is assigned to 
noise, deflation may be applied (ICA block).   

 

Bxy =    (2) 

The estimator design is based on parsimonious criterion 
[13]. From simple models (linear models), the complexity is 
gradually increased by introducing non-linear neurons, and 
evaluated. Thus, from a single hidden neuron, the number of 
hidden neurons is increased until the error decrease 
hypothesis can be rejected. Early stop of the neural network 
training is applied to avoid over training [5]. In the non-linear 
case, we use feed forward (mult-layer perceptron - MLP [5]) 
neural networks. In the linear case, the estimator is an auto-
regressive moving average (ARMA [6]) model.   

The estimated time series is reconstructed over the 
modelled sources (block PP-1 - Fig. 3), resulting in the 
estimated sources (yest). The ICA process is then reversed 
(ICA-1 block – Fig. 3) and the estimated values (xest) are 
obtained. From xest, the corridor is finally constructed for the 
original data space – see (1).  

For data quality assessment, the data samples should 
remain within the corridor limits. Thus, the aim is to obtain a 
corridor as narrow as possible but emitting only correct 
alerts, for detecting errors and allowing their correction with 
good accuracy, if necessary / requested.  

3. METHODOLOGY 

The data quality monitoring system was analysed in the 
framework of the electric load time series from a European 
energy supplier (East-Slovakia Power Distribution 
Company), which was used in a competition in 2001 by the 
European Network on Intelligent Technologies for Smart 
Adaptive Systems [14]. This database comprises electric 
load series, in MW, collected every thirty minutes from 01 
January 1997 to 31 January 1999 and the daily temperature 

Series 
Values 

Time 

Pre-processing Estimator Input  Output  

  

    

Figure 3. The structure of the Data Quality Monitoring System. The estimator block (EST) models the preprocessed (PP) 
residue in the ICA space. Finally, both pre-processing and ICA are reversed, and the model is mapped onto the original space. 
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averaged in °C, covering the same time period. In the 
competition held in 2001, the competition task was to 
develop models to forecast the daily peak load along 
January 1999. Here, the 1997 period was used for time 
series training, the year 1998 for training validation and 
January/1999 for testing (generalization). 

Besides the daily load peak series, groups of series near 
the mean peak time (20:00) were also considered. Thus, 
seven adjacent series between 18:30 and 21:30 were used 
for series modelling. The temperature was used as an 
auxiliary series.  

The validation corridor was estimated with the k 
constant defined by fail/missing probability on training / 
validation set. The constant k was determined assuming one 
outlier for 150 samples.  

For finding independent sources (y) – see equation (1) -, 
a specific time series algorithm was employed. The method 
finds a de-mixing matrix (B) by diagonalizing the Delayed-
Auto-Cross-Covariance Matrix: 

{ }TnxnxExC )()( ττ −=    (3) 

where, n is the time sequence, τ is a time delay and x the 
observed series. 

 
We use the Second Order Blind Identification algorithm 

with Robust Orthogonalization (SOBI-RO [15]) for 
determining the independent components. This method first 
whitens data and then diagonalizes a group of Delayed-Auto-
Cross-Covariance Matrixes. The time series are presented to 
the ICA Block in parallel. Analysis and forecasts are 
performed in the ICA space and transformed back to the 
original space using reversed ICA. 

The neural network input layer was constructed from 
sources considering delayed samples. We used a correlation 
test, typically 95% for threshold, to find relevant input 
delays. For hidden layer, the hypothesis testing of a model 
with n neurons against the hypothesis of n+1 neurons. If the 
output error increases when a neuron is included, at 95% 
confidence level, the n+1 hypothesis is rejected. 

The results were analysed using two performance 
indexes evaluated over the test set: the normalized mean 
square errors (NMSE). The index NMSE1 normalizes the 
MSE with respect to the mean of the estimated series - see 
(4) -, and NMSE2 uses the best random walk estimator as the 
normalization factor - see (5). 
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A corridor centre with NMSE1 smaller than 1 is better 
than a corridor constructed with the mean of the process (µx). 
The same occurs when the NMSE2 is smaller than 1 and the 
corridor is constructed using the sample from the previous 
time instant (xn-1).  

The results with and without the application of  ICA 
were also compared using three others performance indexes. 
The R indicator is the rate between correlations from original 
series and forecasted series delayed from one sample 
(Lagn=1) and without any delay (Lagn=0) – see (6).  The MAC 
indicator is the mean absolute corridor width, given in MW, 
and the MAPE is the mean absolute percentage error 
between forecasted and real sample - see (7) and (8). 
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Here, ix   and 
iestx   are observed and forecasted samples, at 

time instant i, respectively, N is the number of samples, and k 
is the corridor adjustment constant obtained during the train 
phase. 

4. ANALISYS AND RESULTS 

The better performance could be explained, in part, by 
robust orthogonalization, which minimizes the noise effects. 
Besides, the second order algorithm diagonalizes the first 
225 delayed-cross-covariance matrixes –  see τ (3) -, 
performing more than orthogonalization. In fact, performing 
the independence [3]. 

The pre-processing extracted frequency components 
above 06 standard deviations with respect to the mean 
amplitude value. The spectral information from independent 
sources is clearer than without ICA block, which facilitates 
the pre-processing.  

The input network is defined using the spatial-temporal 
correlation function. When ICA block was included, there 
were not significant correlations between the independent 
sources, only temporal correlations, which simplified the 
estimation. The data quality monitoring system used both 
linear (ARMA) and non-linear estimators (MLP) for residue 
source modelling. For non-linear case, the hypothesis test 
defined maximum 02 hidden neurons. The first three sources 
were modelled with non-linear estimators (MLP) and, to the 
others sources, linear models (ARMA) proved to be enough. 
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Table I shows NMSE1 and NMSE2 indexes computed 
from the testing series with ICA. It is observed that only 
NMSE2 for Series #7 is around 1 and the others are well 
below. Then, the data quality monitoring system performance 
increases when compared to the usage of either the mean or 
the best random walk estimator. 

 
 

TABLE I. NMSE1 and NMSE2 performance indexes. 
 
 
 
 
 
 
 
 
 
 

 
Without ICA, for all series, the best model was an 

ARMA with maximum 20 delays and no feedback, becoming 
a Moving Average (MA) model.  

 Table II shows the performance indexes for both using 
or not ICA. The pre-processing was automated using the 
same parameters for both with and without ICA. The best 
results for each case are expressed as boldfaced values. In 
general, ICA performed better. For all series modelled with 
ICA, R is above 1. Without ICA, R indicator is below 1 for 
series #1, #6 and #7, indicating worse performance. Also, in 
general, the validation corridor is narrower and the MAPE is 
smaller, when ICA is used in the pre-processing chain.  

In Figure 4, due to the similar series shapes, we show 
only the first five series (temperature and series #1 to #4), 
and the more structured sources (sources #1 to #5). We 
observe that the temperature (first series and first source) is 
one of the estimated sources. The second source suggests a 
semester dependency. The third source is from annual 
variation and the others suggest a trimester dependency. The 
sources not showed did not allow an easy interpretation in 
the context of the application. This ability to identifying 
original and better structured information proved here to 
facilitate the work of the estimation block. 

 
 
 

TABLE II. MAPE, MAC and R performance indexes with and without ICA 
block 

 
 

 

Figure 4. On the left, the first five series for temperature (top) and series 
from #1to #4. On the right, the more structured independent sources 

obtained through ICA block. 
 
Figure 5 shows the real values, the validation corridor 

centers and the corridor width for the peak series, when ICA 
is used in the series pre-processing chain and linear model 
are used to modeling the sources. 

Figure 5. Actual and forecasted peak series and the validation corridor for 
Jan/1999. 

 

5. CONCLUSIONS 

 The data quality monitoring system proposed here uses a 
validation corridor to evaluate incoming samples of a target 
time series. The corridor is built around a forecasted value 
that is obtained from pre-processed data. The dynamic 
corridor adapts to the series statistical variations and the 
system alerts the user when the incoming sample is out of 
the corridor limits. In case a correction is required from the 
expert user or a missing value is detected, the forecasted 
sample may be used.  

In the proposed system, neural networks and linear 
models were applied in combination with Independent 
Component Analysis, which was included in the pre-
processing stage. The parsimonious models presented better 
results (linear or non-linear models with few neurons). The 
impact of ICA was analysed for a particular case of electric 
load time series. The ICA algorithm used second-order 
statistics with time sequence analyses (SOBI-RO) to extract 
the independent sources. Both neural and linear models 
operated over pre-processed independent sources (analysing 
and removing heteroscedasticity, trends, cycles and 
seasonality). Using ICA, the validation corridors were 
reduced and the forecast performance was improved, which 
produced a positive impact on data quality dimensions such 
as correctness, completeness, and interpretability. 

Series NMSE1 NMSE2 

Series #1 (18:30) 0,47 0,54 
Series #2 (19h) 0,47 0,66 
Series #3 (19:30) 0,39 0,42 
Series #4 (20h) 0,41 0,49 
Series #5 (20:30) 0,29 0,31 
Series #6  (21h) 0,31 0,53 
Series #7 (21:30) 0,54 1,02 
   
Series #8  (Peak) 0,29 0,29 

With ICA (SOBI-RO)  Without ICA   
Series MAPE 

(%) 
MAC 
(MW) 

R MAPE 
(%) 

MAC 
(MW) 

R 

Series #1 (18:30) 3.3 162 1,81 4.6 421 0,92 

Series #2 (19h) 2.7 156 1,51 4.6 406 1,1 

Series #3 (19:30) 3.3 159 1,60 2.9 148 1,04 
Series #4 (20h) 2.2 140 1,61 2.2 151 1,28 

Series #5 (20:30) 2.2 129 1,28 2.2 136 1,06 

Series #6  (21h) 1.9 139 1,15 1.9 125 0,97 
Series #7 (21:30) 2.6 130 1,16 3.1 158 0,94 

       

Series #8  (Peak) 2.1 157 1,80 4.0 149 1,1 
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