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ABSTRACT introduced estimator outperforms High Order Moments state
In this paper we address the problem of scale parameter estif the art technique for gain estimation, as in [2], approach-
mation, introducing a reduced complexity Maximum Likeli- ing the Cranet-Rao Lower Bound (CRLB) for a wide range
hood (ML) estimation procedure. The estimator stems fronof SNR. We also carried out theoretical performance analy-
the observation that, when tlestimandum acts as a shift pa- sis, whose results are confirmed by numerical simulations.
rameter on a multinomially distributed statistic, direct max-  This paper is organized as follows. In Sect.2 we intro-
imization of the likelihood function can be conducted by anduce the concept of scale parameter and determine the form
efficient DFT based procedure. A suitable exponential warpef the ML estimation for scale parameters under multino-
ing of the observation’s domain is known to transform a scalemially distributed observations. In Sect.3 we explicitate the
parameter problem into a shift estimation problem, thus alrelation between a scale and a location parameter, and we
lowing the afore mentioned reduced complexity ML estima-show how this allows to devise a reduced complexity ML es-
tion for shift parameter to be applied also in scale paramtimator. In Sect.4 we analyze the case of gain estimation for
eter estimation problems. As a case study, we analyze general QAM constellations. Finally Sect.5 reports simula-
gain estimator for general QAM constellations. Simulationtion results and the related discussion.
results and theoretical performance analysis show that the
herein presented estimator outperforms selected state of the 2. ON THE ML ESTIMATION OF A SCALE
art high order moments estimator, approaching the @ram’ PARAMETER

Rao Lower Bound (CRLB) for a wide range of SNR. In this Section we will briefly define the concepts of scale

parameter for a pdf family and we will determine the form
1. INTRODUCTION o_f t_he ML.paralmeter_es.timator when the observation statis-
tic is multinomially distributed. Let us consider a param-
Given a parametric family of probability density functions eter gl to be estimated after a finite numbhr of real-
(pdf), a parameter is said to be a scale parameter if its valugations of a related-dimensional random variable i.e.
determines the scale or, equivalently, the statistical dispei e K", gathered in the vector= [Xo,...,%y_1]" is observed.
;ionl of the pdf itself along one %fl more of it?t components.Tgen, a is said to be a scale parameter for the pdf family
cale parameter estimation problems are often encounter 1 ne1) o(n .
in lots of applications. To give few examples, the Gamma%x“’ (X( L XX )|a) when this latter depends an
distribution, and most of its related pdfs, are parameterize@nly through the scale relatiod” /a:
by a scale parameter. Of particular relevance is the Nakagami (x(l) (1) x(“)|or)
distribution, often used to model attenuation in multipath en- Px|a A ’

vironme_nt. . o . 1 (" (1)
In this paper we propose a Maximum Likelihood esti- = — Pxla X, x-D 21
mation technique for scale parameters. We will first derive laf a

the ML estimator for the case in which the observed statis- i

tic is a multinomial distributed random variable. Then, we L€t Us now suppose that we observe the histogram of the
will show how, thanks to a link established between scalenarginal variablex™ on a set ofK uniform intervals of
and location parameters, the direct maximization of the logwidth A centered around the poingk, k =0,...,K — 1.
likelihood function is straightforwardly achieved via a com- In other words, the observations are given by the number
putational efficient DFT based approach. Namely, a logarithVk, K= 0,...,K — 1 of occurrences of the eved, being

mic transformation of the observed random variable modifiegk = {X(“) € [&k—D0/2,&+A/2)}, in N statistically inde-

the pdf so that the scale parameter relation is mapped intogendent trials. Th& random variablesy, ..., vk_1 are then
location parameter problem, that can be efficiently solved irmultinomially distributed:

the DFT domain.

As a case study, here we apply the ML estimation crite- P(v v NI .Kfl Vi
rion to the problem of blind estimation of the gain factor for (Vo, ..., Vk-1) = K—1 k[L T
a general Quadrature Amplitude Modulated (QAM) signal. erk! B
Gain estimation is often required, for instance, to drive blind k=

e.Stlmatlon t.eChmque.S for phase and freq".Je.nCy qffset eStIm.a_ 1From now on we will always assume, without loss of generality, the
tion, as for instance in [1], as well as decision directed estiparameter to be monodimensional. Extension to multidimensional pa-
mations procedures. Simulation results show that the hereirameters is straightforward.
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being 1, the probability of the eventy. The multinomial following property:
model applies in several frameworks in which histograms

are evaluated for measurement, calibration, characterization Px(ar (x(l), B .,X(nfl),x(n)w)
purposes (see for instance [3]). The probabilitigof the (5)
rv. v, k=0,...,K—1 are nothing else that the area of the = Pya (x(l), XD ) alO)
marginal conditional probabilityy|q (x(”)|or) over an inter-
val of width A centered iry: Properties of location parameters have been exploited by
the authors in [4] to devise a gain control free near efficient
&tD)2 phase offset estimator for QAM constellations.
_ (Ek) _ ™ Now let us consider a transformatic# : K" — K" and
&= al) A the corresponding transformed random variable % (X).
&—0/2 (2)  When the transformatior®” (-) assumes the following re-
markable form:
A dx@ ...dx"-D
' /;;,' | Pya (Xla) dx'---dX 2V (D) = ¥ ... A=D1y _ (-1
(6)
Let us introduce for notation purposes the following vectors, Z" (x(”)) = logx"
. éx ~ def , . . . .
collecting the values of (g) and fi=vi/N: it can be easily proved that relation (5) holds, with the care
of substitutinga with a, =loga. Thus, whenever a scale
K1 parameter estimation problem is encountered, it is always
fla)=|f (i) possible to map it into a location parameter one, by means
a/lo of a preliminary transformation of the observation as the one
Forfet appearing in (6). The estimandum scale parameter for the
- [ k] k=0 r.vx, has then correctly the meaning of a location parameter

for the transformed r.vz, in the form ofa, =loga.
3.2 Reduced Complexity ML Estimation for Location
. K-1 3 Parameter
| (f;£(a)) =S+N Z) fiIn (f (Ek>> In analogy to the case of scale parameters, the maximum
k=
K-1

The log-likelihood off can be written as:

3) likelihood estimate ofx; is attained by maximizing

S=InN!—In rL(ka)! G, = argmaxf™-f (o) (7)
K= az

The maximum likelihood estimate af is then attained by With respect toa; where we have compactly denoted

maximizing (3) with respect ta. Neglecting all the terms in - £ (ar,) ©Inf (a) , with £ (a) = [f (g — a2)]-&, and where
(3) that do not explicitly depend oa, we come up with the

following estimation rule L G+b/2
. o F(Ge— ) =~ / dz
a =argmaxf’-f (a 4 A
gm (a) 4) a2 ®)
= o . def : e (1) (n-1)
where we have compactly denoté@a) =Inf (a). In this : /7/7 Pzla, (Z0z) dZ7---dz

form, the above relation is highly nonlinear and must be

solved by exhaustive-search or suitably initialized gradien'gvsinceo{Z is a location parameter for the statisfi¢Zy — az)

search techniques. A reduced complexity ML procedure i§ o .an expand the inner product in (7) having:
presented in the following Section. '
d, = argmaxs (az)
3. REDUCED COMPLEXITY ML ESTIMATION az
FOR SCALE PARAMETER K-1 9

. ) . . C(a) =Y funf(&—a
In this Section, we explicitate the relation between a scale (0t kZO ( 2

parameter and a location one, and we show how this allows
to devise a fast, FFT based, computational procedure thathere we have discarded all the terms that do not explicitly
obtainsd in a two-stage, coarse-to-fine, estimation steps. depend or,. We recognize that in (9) we have the cross

31 OntheReation between Scaleand Location Param-  correlation between the sequences collected in the véctor
eter andf (0). .
Let us now briefly recall the concept of location parameterI Therefore, the relation between a scale parameter and a

. b ; ocation one allows to devise a fast, FFT based, computa-
for a pdf family and prove how a suitable exponential warp-. ool procedure that obtains, in a two-stage coarse-t%-

Itinogncoa?rsat:;bgﬁasr a :gngrb g;W: (Iaon Cgt;socr?leafgrrﬁé? eert?; 222011?1%& estimation steps. Specifically, first the lag of the maxi-
P o A A P ) um of the cross correlation obtains a coarse estimate. The
the pdf family py 4 (X( )X ),x(“)|a) must satisfy the  resolution in this step is limited by the values & The
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employment of an interpolation technique, as for instance inowing remarkable form, for equiprobable constellation sym-
[8], obtains a finer estimate. The overall computational combols:
plexity is significantly reduced by choosing the valuekof

according to selected FFT algorithms. f (B) _

After the estimation off; has been performed, the esti- G 13
mate of the original parameter is simply obtained by in- M-1l2np P> p (13)
verting the transformatior¥” (-), having thus: . MGG PNl a2 +Pm) |lo (me"l 5)

m=
G =e (10) wherel(-) is then-th order modified Bessel function of the

] . o first kind andpn, is the magnitude of therth constellation
Elaborating over the above described estimation procedure, dymbols,.
one component of the observed variable (the remaining beingy|culated by evaluating the histogram of the magnitpde

saturated while performing the nonlinear momentin (2)), anchf the received signal samples kintervals of widthA =
then by a DFT based cross-correlation between the warp /K2

versions of the moment in (2) and its unbiased estimate.

Interestingly enough, the cascade of an exponential warp- 1 N-1 (2k+1)A
ing and a DFT is in turn implicitly realized by the discrete f=— Z)re(;h <|Xn| — 7>
Mellin Transform [5]-[6]. Hence, the estimation procedure, N & 2
can be implemented by means of the discrete Mellin trans- A
form, which can be efficiently implemented as described inNe remark that the valuek in (14), being histogram esti-
[7]. mates, are multinomially distributed. According to the

estimation criterion exposed in Sect.2, the ML estimat& of
4. A CASE STUDY: GAIN ESTIMATION FOR QAM is given by: A
CONSTELLATIONS G=arg rrg;ax%g (G)

(14)

15
In this Section, as a case study, we apply the scale parame- %4 (G) = £T. ?(G) (15)

ter estimation technique described in the previous sections,

to the problem of gain factor estimation for general QAM The maximization problem in (15) is non-convex, and its
constellations. solution would require the employment of computationally
Let us consider a digital transmission system where the inenerous numerical algorithms, like exhaustive-search or suit-
formation is carried on by-ary QAM symbols drawn from  ably initialized gradient-search techniques.

a, power normalized, constellatiedd ={<o, .., su—_1}. Atthe A reduced complexity solution is obtained, following the
receiver side, a complex low-pass version of the received sigyuidelines in Sect.3.2, by applying the transformati#i-)

nal is extracted by means of front-end processing. Xset as in (6) to the observations in (11), and then performing the
be the samples of the complex low-pass received signal exestimation of the location paramet& = logG.

tracted at symbol rate. We assume the following analytical The employment of the Mellin transform allows to im-

model of the observations: plicitly perform the cascade of the exponential warping and
_ of the DFT to solve the maximization problem in (15).
% = Gsnelf +wy (11) Hence, being# {-} and.#~{-} respectively the dis-

crete Mellin transform and its inverse we can write:
wheres, is the n-th transmitted symbol( is the unknown

overall gain, 8 is the unknown phase-offset, ant, is G=arg maxzy (G)
a realization of a circularly complex Gaussian stationary G (16)
noise process, statistically independent saf with vari- %y (G) :(///fl{///{f}f///{f(e)}*}

2 def

ance oz = E{|wn|?}. The signal-to-noise ratio (SNR) is . o

n d:efGZ/av%. Here we address the estimation of the unknownWh?rrE the supersgg{tt)-} dzalpo.teséc;omﬁlex lconggaﬂgn.

gain factorG after the observation dfl consecutive received | N€ accuracy o5 being limited by the value ok, afiner

signal samplesy,n=0,---N— 1. estimate is obtallned by means of parabolical interpolation
Let us then repre_sgnt the received samples in polar Cé_echmque [8], being

ordinatesi.e. Xy = rpe! ®n with rp = x|, $n = argx, . We A A

recognize thatG is a scale parameter for the pdf family — &(f) _ g _ A igg (G+A) _?g (G—A) 17)

Pro (fn, pn|G). More specifically let us consider the non- 2 64(G+D)—2%4(G) +%4 (G—A)

linear moment as in (2):

The theoretical performance analysis can be conducted re-
p+b/2 - sorting to the parabolical interpolation formulas as in [8],
f(P) = 1 dr- r.ole)d 12) Where the objective function is approximated around its max-
r-| [Pro(r,¢|G)de 12y . : ;
G A - imum with the second order Taylor expansion. Following the
p-8/2 guidelines of [8] the asymptotic variance of the fine estimate

where we dropped the subscripfor the sake of simplicity. 2Albeit in principle the value of the magnitude is unbounded, we can
The nonlinear moment in (12) is proved to exhibit the fol- approximate its maximum value to g ax = Maxn{ |sm|} + 40w.
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is written in terms of the first and second order moment of  Finally, we show in Fig.3 the Symbol Error Rate (SER)

the objective function. Let us set:

def def

X=6g(G+D), XZE{x,
yE%(G-0), YEE{},
2%, (), z¥E(z

c=X-Y, d=X—-2Z+Y.

reduction achieved in correspondence of the gain estimation
error variance reduction. We plot the SER obtained after
2000 Montecarlo runs over a sample sizelNbf 512 sam-
ples by the herein presented estimator and by the estimator in
[2] for 256 and 512 QAM constellations. For the sake of ref-
erence we also report the corresponding SER for an AWGN
channel. Resultin 3 show that the herein presented estimator
tightly approaches the AWGN performance, outperforming

Then, within a first-order approximation of (17), the variancethe M2M4 estimator.

of G(Y) is given by:
R A7 /d—c\?
2 | (1=
Var{G'"} = 5 [( 7 > Var {x}
d+c\? 2c\?
+<?> Var{y}+<@> Var{z}
d?—¢? 2dc+2¢?
_ ( 7 >Cov{x,y} + (T) Cov{zy}

+ <2dcd;4202> Cov{x, z}}

(18)

The mean valueX,Y, Z and the covariances afy, z of the
objective function are reported in Appendix I.

5. NUMERICAL EXPERIMENTS

Appendix |. FIRST AND SECOND ORDER
MOMENTSOF THE OBJECTIVE FUNCTION

As far as the first order moments are concerned, sifiép-E
f (G) we have:

E{%4(G)} =£(G)"-f(G)
The variances-covariances are evaluated as follows:

N-Cov{%y(G1),%4(G2) }

=N-f(G1)"-Cov{f,fT} - £(Gy) (-1

For what the (kI)-entry of the covariance matrix
Cov{f,fT}, we have:

. e kA kA A
In this Section we report simulation results concerning the N-Cov{ii, fi} = (E) =t (E) ' (6) (-2)

analytical and numerical performance of the reduced com-

plexity ML (RCML) gain factor estimator introduced in the wheredy is the Kronecker delta.
previous Section. The simulations settings are fixed as fol-

lows. The signal samples are generated according to the REFERENCES
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Figure 3:SER vs. SN\R for 256-QAM and 512-QAM constellations RCML estimator (circles gray), and M2M4 estimator

(triangles). The black squares represents the AWGN channel .
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