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ABSTRACT
In this paper we address the problem of scale parameter esti-
mation, introducing a reduced complexity Maximum Likeli-
hood (ML) estimation procedure. The estimator stems from
the observation that, when theestimandum acts as a shift pa-
rameter on a multinomially distributed statistic, direct max-
imization of the likelihood function can be conducted by an
efficient DFT based procedure. A suitable exponential warp-
ing of the observation’s domain is known to transform a scale
parameter problem into a shift estimation problem, thus al-
lowing the afore mentioned reduced complexity ML estima-
tion for shift parameter to be applied also in scale param-
eter estimation problems. As a case study, we analyze a
gain estimator for general QAM constellations. Simulation
results and theoretical performance analysis show that the
herein presented estimator outperforms selected state of the
art high order moments estimator, approaching the Cram´er-
Rao Lower Bound (CRLB) for a wide range of SNR.

1. INTRODUCTION

Given a parametric family of probability density functions
(pdf), a parameter is said to be a scale parameter if its value
determines the scale or, equivalently, the statistical disper-
sion of the pdf itself along one or more of its components.
Scale parameter estimation problems are often encountered
in lots of applications. To give few examples, the Gamma
distribution, and most of its related pdfs, are parameterized
by a scale parameter. Of particular relevance is the Nakagami
distribution, often used to model attenuation in multipath en-
vironment.

In this paper we propose a Maximum Likelihood esti-
mation technique for scale parameters. We will first derive
the ML estimator for the case in which the observed statis-
tic is a multinomial distributed random variable. Then, we
will show how, thanks to a link established between scale
and location parameters, the direct maximization of the log-
likelihood function is straightforwardly achieved via a com-
putational efficient DFT based approach. Namely, a logarith-
mic transformation of the observed random variable modifies
the pdf so that the scale parameter relation is mapped into a
location parameter problem, that can be efficiently solved in
the DFT domain.

As a case study, here we apply the ML estimation crite-
rion to the problem of blind estimation of the gain factor for
a general Quadrature Amplitude Modulated (QAM) signal.
Gain estimation is often required, for instance, to drive blind
estimation techniques for phase and frequency offset estima-
tion, as for instance in [1], as well as decision directed esti-
mations procedures. Simulation results show that the herein

introduced estimator outperforms High Order Moments state
of the art technique for gain estimation, as in [2], approach-
ing the Cramér-Rao Lower Bound (CRLB) for a wide range
of SNR. We also carried out theoretical performance analy-
sis, whose results are confirmed by numerical simulations.

This paper is organized as follows. In Sect.2 we intro-
duce the concept of scale parameter and determine the form
of the ML estimation for scale parameters under multino-
mially distributed observations. In Sect.3 we explicitate the
relation between a scale and a location parameter, and we
show how this allows to devise a reduced complexity ML es-
timator. In Sect.4 we analyze the case of gain estimation for
general QAM constellations. Finally Sect.5 reports simula-
tion results and the related discussion.

2. ON THE ML ESTIMATION OF A SCALE
PARAMETER

In this Section we will briefly define the concepts of scale
parameter for a pdf family and we will determine the form
of the ML parameter estimator when the observation statis-
tic is multinomially distributed. Let us consider a param-
eter α1 to be estimated after a finite numberN of real-
izations of a relatedn-dimensional random variablex, i.e.
x∈Kn, gathered in the vectorx= [x0, . . .,xN−1]T is observed.
Then, α is said to be a scale parameter for the pdf family

px|α

(
x(1), . . .,x(n−1),x(n)|α

)
when this latter depends onα

only through the scale relationx(n)/α :

px|α

(
x(1), . . .,x(n−1),x(n)|α

)

=
1
|α |

px|α

(
x(1), . . .,x(n−1),

x(n)

α
|1

)
(1)

Let us now suppose that we observe the histogram of the
marginal variablex(n) on a set ofK uniform intervals of
width ∆ centered around the pointsξk, k = 0, . . .,K − 1.
In other words, the observations are given by the number
νk, k = 0, . . .,K − 1 of occurrences of the eventEk, being
Ek = {x(n) ∈ [ξk − ∆/2,ξk + ∆/2)}, in N statistically inde-
pendent trials. TheK random variablesν0, . . .,νK−1 are then
multinomially distributed:

P(ν0, . . .,νK−1) =
N!

K−1

∏
k=0

νk!

·
K−1

∏
k=0

πνk
k

1From now on we will always assume, without loss of generality, the
parameterα to be monodimensional. Extension to multidimensional pa-
rameters is straightforward.
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beingπk the probability of the eventEk. The multinomial
model applies in several frameworks in which histograms
are evaluated for measurement, calibration, characterization
purposes (see for instance [3]). The probabilitiesπk of the
r.v. νk, k = 0, . . .,K−1 are nothing else that the area of the

marginal conditional probabilitypx|α

(
x(n)|α

)
over an inter-

val of width ∆ centered inξk:

πk = f

(
ξk

α

)
=

1
∆

ξk+∆/2∫

ξk−∆/2

dx(n)

·
[∫ +∞

−∞
· · ·

∫ +∞

−∞
px|α (x|α ) dx(1) · · ·dx(n−1)

]
(2)

Let us introduce for notation purposes the following vectors,

collecting the values off

(
ξk

α

)
and f̂k

def=νk/N:

f (α ) =
[

f

(
ξk

α

)]K−1

k=0

f̂ =
[

f̂k
]K−1

k=0

The log-likelihood off̂ can be written as:

l
(
f̂ ; f (α )

)
= S +N

K−1

∑
k=0

f̂k ln

(
f

(
ξk

α

))

S = lnN!− ln
K−1

∏
k=0

(
N f̂k
)
!

(3)

The maximum likelihood estimate ofα is then attained by
maximizing (3) with respect toα . Neglecting all the terms in
(3) that do not explicitly depend onα , we come up with the
following estimation rule

α̂ = argmax
α

f̂ T · f̃ (α ) (4)

where we have compactly denotedf̃ (α )def= ln f (α ). In this
form, the above relation is highly nonlinear and must be
solved by exhaustive-search or suitably initialized gradient-
search techniques. A reduced complexity ML procedure is
presented in the following Section.

3. REDUCED COMPLEXITY ML ESTIMATION
FOR SCALE PARAMETER

In this Section, we explicitate the relation between a scale
parameter and a location one, and we show how this allows
to devise a fast, FFT based, computational procedure that
obtainsα̂ in a two-stage, coarse-to-fine, estimation steps.

3.1 On the Relation between Scale and Location Param-
eter
Let us now briefly recall the concept of location parameter
for a pdf family and prove how a suitable exponential warp-
ing constitutes a bind between a scale parameter and a loca-
tion parameter. As far as a location parameter is concerned

the pdf family px|α

(
x(1), . . .,x(n−1),x(n)|α

)
must satisfy the

following property:

px|α

(
x(1), . . .,x(n−1),x(n)|α

)

= px|α

(
x(1), . . .,x(n−1),x(n) −α |0

) (5)

Properties of location parameters have been exploited by
the authors in [4] to devise a gain control free near efficient
phase offset estimator for QAM constellations.

Now let us consider a transformationZ : Kn → Kn and
the corresponding transformed random variablez = Z (x).
When the transformationZ (·) assumes the following re-
markable form:

z(1)(x(1)) = x(1), · · · , z(n−1)(x(n−1)) = x(n−1)

z(n)(x(n)) = logx(n)
(6)

it can be easily proved that relation (5) holds, with the care
of substitutingα with αz = logα . Thus, whenever a scale
parameter estimation problem is encountered, it is always
possible to map it into a location parameter one, by means
of a preliminary transformation of the observation as the one
appearing in (6). The estimandumα , scale parameter for the
r.v x, has then correctly the meaning of a location parameter
for the transformed r.v.z, in the form ofαz = logα .
3.2 Reduced Complexity ML Estimation for Location
Parameter
In analogy to the case of scale parameters, the maximum
likelihood estimate ofαz is attained by maximizing

α̂z = argmax
αz

f̂ T · f̃ (αz) (7)

with respect to αz where we have compactly denoted

f̃ (αz)
def= ln f (αz) , with f (α ) = [ f (ζk −αz)]

K−1
k=0 , and where

f (ζk −αz) =
1
∆

ζk+∆/2∫

ζk−∆/2

dz(n)

·
[∫ +∞

−∞
· · ·

∫ +∞

−∞
pz|αz

(z|αz) dz(1) · · ·dz(n−1)
] (8)

Sinceαz is a location parameter for the statisticf (ζk −αz),
we can expand the inner product in (7) having:

α̂z = argmax
αz

C (αz)

C (αz) =
K−1

∑
k=0

f̂k ln f (ζk −αz)
(9)

where we have discarded all the terms that do not explicitly
depend onαz. We recognize that in (9) we have the cross
correlation between the sequences collected in the vectorf̂
andf (0).

Therefore, the relation between a scale parameter and a
location one allows to devise a fast, FFT based, computa-
tional procedure that obtainŝαz in a two-stage, coarse-to-
fine, estimation steps. Specifically, first the lag of the maxi-
mum of the cross correlation obtains a coarse estimate. The
resolution in this step is limited by the values ofK. The
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employment of an interpolation technique, as for instance in
[8], obtains a finer estimate. The overall computational com-
plexity is significantly reduced by choosing the value ofK
according to selected FFT algorithms.

After the estimation ofα̂z has been performed, the esti-
mate of the original parameterα is simply obtained by in-
verting the transformationZ (·), having thus:

α̂ = eα̂z (10)

Elaborating over the above described estimation procedure, it
turns out that it is constituted by an exponential warping over
one component of the observed variable (the remaining being
saturated while performing the nonlinear moment in (2)), and
then by a DFT based cross-correlation between the warped
versions of the moment in (2) and its unbiased estimate.

Interestingly enough, the cascade of an exponential warp-
ing and a DFT is in turn implicitly realized by the discrete
Mellin Transform [5]-[6]. Hence, the estimation procedure,
can be implemented by means of the discrete Mellin trans-
form, which can be efficiently implemented as described in
[7].

4. A CASE STUDY: GAIN ESTIMATION FOR QAM
CONSTELLATIONS

In this Section, as a case study, we apply the scale parame-
ter estimation technique described in the previous sections,
to the problem of gain factor estimation for general QAM
constellations.
Let us consider a digital transmission system where the in-
formation is carried on byM-ary QAM symbols drawn from
a, power normalized, constellationA ={s0, .., sM−1}. At the
receiver side, a complex low-pass version of the received sig-
nal is extracted by means of front-end processing. Letxn
be the samples of the complex low-pass received signal ex-
tracted at symbol rate. We assume the following analytical
model of the observations:

xn = Gsn e jθ +wn (11)

wheresn is then-th transmitted symbol,G is the unknown
overall gain, θ is the unknown phase-offset, andwn is
a realization of a circularly complex Gaussian stationary
noise process, statistically independent ofsn, with vari-

anceσ2
W

def= E
{
|wn|2

}
. The signal-to-noise ratio (SNR) is

η def= G2/σ2
W . Here we address the estimation of the unknown

gain factorG after the observation ofN consecutive received
signal samplesxn,n = 0, · · ·N −1.

Let us then represent the received samples in polar co-
ordinatesi.e. xn = rne j ·ϕn with rn = |xn|, ϕn = argxn . We
recognize thatG is a scale parameter for the pdf family
pR,Φ(rn,ϕn|G). More specifically let us consider the non-
linear moment as in (2):

f
(ρ

G

)
=

1
∆

ρ+∆/2∫

ρ−∆/2

dr ·
[∫ π

−π
pR,Φ(r,ϕ |G)dϕ

]
(12)

where we dropped the subscriptn for the sake of simplicity.
The nonlinear moment in (12) is proved to exhibit the fol-

lowing remarkable form, for equiprobable constellation sym-
bols:

f
(ρ

G

)
=

M−1

∑
m=0

2η
MG

ρ
G
·exp

(
−η
(

ρ2

G2 +ρ2
m

))
I0
(

2ρmη
ρ
G

) (13)

whereIn(·) is then-th order modified Bessel function of the
first kind andρm is the magnitude of them-th constellation
symbolsm.

A sample estimate of the nonlinear moment in (13) is
calculated by evaluating the histogram of the magnitudeρ
of the received signal samples inK intervals of width∆ =
ρmax/K:2

f̂k =
1
N

N−1

∑
n=0

rect∆

(
|xn|−

(2k+1)∆
2

)
(14)

We remark that the valueŝfk in (14), being histogram esti-
mates, are multinomially distributed. According to the
estimation criterion exposed in Sect.2, the ML estimate ofG
is given by:

Ĝ = argmax
G

Cg (G)

Cg (G) = f̂ T · f̃ (G)
(15)

The maximization problem in (15) is non-convex, and its
solution would require the employment of computationally
onerous numerical algorithms, like exhaustive-search or suit-
ably initialized gradient-search techniques.

A reduced complexity solution is obtained, following the
guidelines in Sect.3.2, by applying the transformationZ (·)
as in (6) to the observations in (11), and then performing the
estimation of the location parameterGz = logG.

The employment of the Mellin transform allows to im-
plicitly perform the cascade of the exponential warping and
of the DFT to solve the maximization problem in (15).

Hence, beingM {·} andM −1{·} respectively the dis-
crete Mellin transform and its inverse we can write:

Ĝ = argmax
G

Cg (G)

Cg (G) = M −1
{

M
{
f̂
}T ·M

{
f̃ (G)

}∗} (16)

where the superscript{·}∗ denotes complex conjugation.
The accuracy of̂G being limited by the value ofK, a finer

estimate is obtained by means of parabolical interpolation
technique [8], being

Ĝ( f ) = Ĝ− ∆
2
·

Cg
(
Ĝ+∆

)
−Cg

(
Ĝ−∆

)

Cg
(
Ĝ+∆

)
−2Cg

(
Ĝ
)
+Cg

(
Ĝ−∆

) (17)

The theoretical performance analysis can be conducted re-
sorting to the parabolical interpolation formulas as in [8],
where the objective function is approximated around its max-
imum with the second order Taylor expansion. Following the
guidelines of [8] the asymptotic variance of the fine estimate

2Albeit in principle the value of the magnitude is unbounded, we can
approximate its maximum value to beρmax = maxm{|sm|}+4σW.
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is written in terms of the first and second order moment of
the objective function. Let us set:

x
def= Cg

(
Ĝ+∆

)
, X

def= E{x} ,

y
def= Cg

(
Ĝ−∆

)
, Y

def= E{y} ,

z
def= Cg

(
Ĝ
)
, Z

def= E{z}
c = X −Y, d = X −2Z +Y.

Then, within a first-order approximation of (17), the variance
of Ĝ( f ) is given by:

Var{Ĝ( f )} =
∆2

2

[(d− c
d2

)2

Var{x}

+
(

d + c
d2

)2

Var{y}+
(

2c
d2

)2

Var{z}

−
(

d2− c2

d4

)
Cov{x,y}+

(
2dc+2c2

d4

)
Cov{z,y}

+
(

2dc−2c2

d4

)
Cov{x, z}

]

(18)

The mean valuesX ,Y,Z and the covariances ofx,y, z of the
objective function are reported in Appendix I.

5. NUMERICAL EXPERIMENTS

In this Section we report simulation results concerning the
analytical and numerical performance of the reduced com-
plexity ML (RCML) gain factor estimator introduced in the
previous Section. The simulations settings are fixed as fol-
lows. The signal samples are generated according to the
model in (11); the sample size is set toN = 512 samples and
the phase offsetθ is chosen randomly with an uniform dis-
tribution in (−π,π]. The value ofK has been set toK = 512.
The value ofG to be estimated has been set to 1dB. Each
numerical experiment consist of 1000 Monte Carlo runs. For
the sake of comparison we also reported the accuracy of a
classical state of the art fourth order estimator [2] (M2M4).
The performance are illustrated by plotting the results of the
theoretical analysis in terms of the normalized standard devi-
ation (

√
N ·StdDev) of the estimation error and the results of

the numerical simulation are reported in terms of the normal-
ized Root Mean Square Error (

√
N ·RMSE). For reference

sake, we also report the Cram´er-Rao lower bound, derived
following the guidelines in [9]. Fig.1 shows both the theoret-
ical and numerical performance of the herein presented esti-
mator for 16 and 32 QAM constellations. We observe a good
matching between the theoretical performance and numeri-
cal results; for both of the constellations, at medium to high
SNR, the herein described estimator approaches the CRLB,
outperforming the estimator in [2]. Since the evaluation of
the nonlinear moment in (13) requires the knowledge of the
SNR, that is, in turn, to be estimated from the received sam-
ples, we tested the performance of the estimator in presence
of a SNR estimation mismatch. Fig.2 reports the degradation
performance for 16 and 32 QAM constellations in presence
of a ±2 dB SNR estimation mismatch. The curves report
also the worst measured performance. We observe that the
accuracy preserves the CRLB slope, although the mismatch
slightly affects the estimator performance.

Finally, we show in Fig.3 the Symbol Error Rate (SER)
reduction achieved in correspondence of the gain estimation
error variance reduction. We plot the SER obtained after
2000 Montecarlo runs over a sample size ofN = 512 sam-
ples by the herein presented estimator and by the estimator in
[2] for 256 and 512 QAM constellations. For the sake of ref-
erence we also report the corresponding SER for an AWGN
channel. Result in 3 show that the herein presented estimator
tightly approaches the AWGN performance, outperforming
the M2M4 estimator.

Appendix I. FIRST AND SECOND ORDER
MOMENTS OF THE OBJECTIVE FUNCTION

As far as the first order moments are concerned, since E{f̂}=
f (G) we have:

E
{
Cg (G)

}
= f (G)T · f̃ (G)

The variances-covariances are evaluated as follows:

N ·Cov
{
Cg (G1) ,Cg (G2)

}

= N · f̃ (G1)
T ·Cov

{
f̂ , f̂ T

}
· f̃ (G2)

(I.1)

For what the (k, l)-entry of the covariance matrix
Cov

{
f̂ , f̂ T

}
, we have:

N ·Cov
{

f̂k, f̂l
}

= f

(
k∆
G

)
δk,l − f

(
k∆
G

)
· f

(
l∆
G

)
(I.2)

whereδk,l is the Kronecker delta.
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Figure 1:Normalized standard deviation of the gain estimation error
√

N ·StdDev{Ĝ( f )} vs. SNR for 16-QAM and 32-QAM
constellations: RCML estimator (numerical: circles, theoretical: dashed line) and M2M4 estimator (triangles). The solid line
represents the CRB .

Figure 2:Normalized standard deviation of the gain estimation error
√

N ·StdDev{Ĝ( f )} vs. SNR for 16-QAM and 32-QAM
constellations: in presence of ±2 dB SNR estimation mismatch. No mismatch (dashed line) 2dB mismatch (circles), −2dB
mismatch (triangles), worst case performance (solid line) .

Figure 3:SER vs. SNR for 256-QAM and 512-QAM constellations RCML estimator (circles gray), and M2M4 estimator
(triangles). The black squares represents the AWGN channel .
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