
ROBUST COHERENCE ANALYSIS IN THE FREQUENCY DOMAIN

Ta-Hsin Li

Department of Mathematical Sciences
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598-0218

thl@us.ibm.com

ABSTRACT

In this paper, a new cross periodogram, called Laplace
cross periodogram, is introduced for robust coher-
ence analysis of multiple time series in the fre-
quency domain. It is derived by replacing the ordi-
nary Fourier transform that defines the ordinary cross
periodogram with what we call the Laplace-Fourier
transform obtained from trigonometric least-absolute-
deviations (LAD) regression. Under certain stationarity
assumptions, the Laplace cross periodogram is found
through an asymptotic analysis to be associated with
what we call the Laplace cross spectrum, a function pro-
portional to the Fourier transform of cross zero-crossing
rates. Robustness of the Laplace cross periodogram and
the corresponding coherency estimator is demonstrated
by numerical examples.

1. INTRODUCTION

The objective of coherence analysis is to discover and
quantify the mutual dependence of multiple time series.
Coherence analysis in the frequency domain is tradi-
tionally done through the cross periodogram that can be
regarded as an estimate of the cross spectrum defined as
the Fourier transform of the lagged covariances for sta-
tionary multiple random processes [1]. Although effec-
tive and powerful under regular conditions, the cross pe-
riodogram lacks robustness for analyzing signals con-
taminated by outliers or time series with heavy-tailed
distributions. Recently, a new periodogram, called
Laplace periodogram, is introduced in [2] as a robust al-
ternative to the ordinary periodogram for analyzing sin-
gle time series. In this paper, we extend this methodol-
ogy to multiple time series and introduce a robust cross
periodogram called Laplace cross periodogram and a
robust coherency called Laplace coherency.

For eachk = 1, . . . , p, let {Ytk} (t = 1, . . . ,n) be a
real-valued time series of lengthn and let

Znk(ω) := n−1/2
n

∑
t=1

Ytk exp(−itω)

be the Fourier transform of{Ytk}. The p-by-p matrix
of periodogram and cross periodogram for these time

series is defined as [3]

Gn(ω) := [Gn jk(ω)]p
j,k=1 = Zn(ω)ZH

n (ω), (1)

whereZn(ω) := [Zn1(ω), . . . ,Znp(ω)]T andGn jk(ω) :=
Zn j(ω)Z∗

nk(ω). Under the assumption that{Yt j} and
{Ytk} are jointly stationary in second moments with
mean zero and cross covariancesr jk(τ) := E{Yt+τ, jYtk},
a smoothed cross periodogram, denoted asG̃n jk(ω), can
be used to estimate the cross spectrum defined by

g jk(ω) :=
∞

∑
τ=−∞

r jk(τ)exp(−iτω).

Moreover, for any j 6= k, the coherency between
{Yn j} and{Ynk} at frequencyω , defined asc jk(ω) :=
g jk(ω)/

√

g j j(ω)gkk(ω), can be estimated by [3]

Cn jk(ω) :=
G̃n jk(ω)

√

G̃n j j(ω)G̃nkk(ω)
. (2)

The coherencyc jk(ω) is an ensemble measure of corre-
lation between the trigonometric components of{Yn j}
and{Ynk} at frequencyω .

The cross periodogram defined by (1) and the co-
herency estimator defined by (2) lack sufficient robust-
ness against outliers because the Fourier transform is a
linear function of the data points. To improve the ro-
bustness, we introduce in the next section an alternative
transformation motivated by a relationship between the
ordinary cross periodogram and the least-squares (LS)
trigonometric regression.

2. LAPLACE CROSS PERIODOGRAM

Let β̃ββ nk(ω) := [β̃nk1(ω), β̃nk2(ω)]T denote the LS solu-
tion of the following trigonometric regression problem:

β̃ββ nk(ω) := arg min
βββ∈R2

n

∑
t=1

|Ytk − cT
t (ω)βββ |2, (3)

wherect(ω) := [cos(ωt),sin(ωt)]T . If ω is a Fourier
frequency, i.e., an integer multiple of 2π/n, then it is
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easy to show that∑n
t=1 ct(ω)cT

t (ω) = n/2. In this case,
β̃ββ nk(ω) = 2n−1 ∑n

t=1Ytkct(ω) and hence

Znk(ω) = 1
2

√
n{β̃nk1(ω)− iβ̃nk2(ω)}. (4)

For improved robustness, we replace the LS solution in
(3) by the least-absolute-deviations (LAD) solution

βββ nk(ω) := [βnk1(ω),βnk2(ω)]T

:= arg min
βββ∈R2

n

∑
t=1

|Ytk − cT
t (ω)βββ | (5)

and define a new transform in the same way as (4):

Unk(ω) := 1
2

√
n{βnk1(ω)− iβnk2(ω)}. (6)

We callUnk(ω) theLaplace-Fourier transform of {Ytk}.
The LAD method is known to produce more robust
solutions for linear regression problems than the LS
method [4]. The Laplace-Fourier transformUnk(ω) is
expected to have the same benefit.

With the Laplace-Fourier transform in place of the
ordinary Fourier transform in (1), we obtain a new ma-
trix of periodogram and cross periodogram

Ln(ω) := [Ln jk(ω)]p
j,k=1 = Un(ω)UH

n (ω), (7)

whereUn(ω) := [Un1(ω), . . . ,Unp(ω)]T . We call

Ln jk(ω) := Un j(ω)U∗
nk(ω)

theLaplace cross periodogram of {Yt j} and{Ytk}. It is
easy to see that in the special case ofj = k, we have

Lnkk(ω) = |Unk(ω)|2 = 1
4n‖βββ nk(ω)‖2.

This is nothing but the Laplace periodogram of{Ytk}
discussed in [2]. Therefore, the Laplace cross peri-
odogram is an extension of the Laplace periodogram
for multiple time series.

Unlike the ordinary cross periodogram which is re-
lated to the ordinary cross spectrumg jk(ω), the Laplace
cross periodogram is associated with what we call the
Laplace cross spectrum. This relationship is revealed
through an asymptotic analysis in the next section.

3. ASYMPTOTIC DISTRIBUTION

Assume that for eachk the random process{Ytk} has
zero median and is stationary in zero-crossings [2].
Then, it can be shown [2] that asn → ∞,

Unk(ω) = (1/Ḟk(0))ξnk(ω)+oP(1), (8)

whereḞk(0) denotes the density of{Ytk} at zero and

ξnk(ω) := n−1/2
n

∑
t=1

ψ(Ytk)exp(−itω)

with ψ(u) := 1/2− I(u < 0) = (1/2)sgn(u).
For j 6= k, assume that{Yt j} and{Ytk} are jointly

stationary in zero-crossings in the sense that there exists
a functionγ jk(τ) such that for allt andτ,

P{Yt+τ, jYtk < 0} = γ jk(τ).

We call γ jk(τ) the lag-τ cross zero-crossing rate be-
tween{Yt j} and{Ytk}. We refer to the Fourier transform
of the cross zero-crossing rates, defined by

f jk(ω) :=
∞

∑
τ=−∞

{1−2γ jk(τ)}exp(−iτω),

as thecross zero-crossing spectrum. Note thatγkk(τ)
and fkk(ω) are nothing but the zero-crossing rates and
the zero-crossing spectrum of{Ytk} discussed in [2].

Considerξξξ n(ω) := [ξn1(ω), . . . ,ξnp(ω)]T . Because
E{ψ(Yt+τ, j)ψ(Ytk)} = 1

4{1−2γ jk(τ)}, it follows that

lim
n→∞

E{ξξξ n(ω)ξξξ H
n (ω)} = 1

4ΛΛΛ(ω),

whereΛΛΛ(ω) := [ f jk(ω)]p
j,k=1. This, together with a cen-

tral limit theorem [2], yields

ξξξ n(ω) D→ Nc(0, 1
4ΛΛΛ(ω)), (9)

whereNc(µµµ,ΣΣΣ) denotes a complex Gaussian distribu-
tion with meanµµµ and covariance matrixΣΣΣ. Moreover,
let ηk := 1/{2Ḟk(0)} and S(ω) := [η jηk f jk(ω)]p

j,k=1.
Then, by combining (9) with (8), we obtain

Un(ω) D→ Nc(0,S(ω)). (10)

As can be seen from this result, the asymptotic distribu-
tion of Un(ω) is determined completely by

ℓ jk(ω) := η jηk f jk(ω). (11)

We callℓ jk(ω) theLaplace cross spectrum. By defini-
tion, the Laplace cross spectrum is proportional to the
cross zero-crossing spectrum, where the proportionality
is determined by the densities of the zero-median time
series at zero. With this notation,S(ω) = [ℓ jk(ω)]p

j,k=1
is simply the Laplace spectral matrix.

According to (10), the Laplace periodogram matrix
Ln(ω) is asymptotically distributed asX(ω)XH(ω),
which we denote as

Ln(ω) A∼ X(ω)XH(ω), (12)

where X(ω) := [X1(ω), . . . ,Xp(ω)]T is a complex
Gaussian random vector with distributionNc(0,S(ω)).
This result is the counterpart of a classical assertion for
the ordinary periodogram matrix [3, Theorem 11.7.1].
Note that (12) holds even if the time series do not have
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finite moments. This is a manifestation of robustness to
heavy-tailed distributions.

BecauseE{X j(ω)X∗
k (ω)}= ℓ jk(ω), it follows from

(12) that the asymptotic mean ofLn jk(ω) is equal to
ℓ jk(ω). This observation suggests that the Laplace
cross spectrum can be estimated by smoothing the raw
Laplace cross periodogram across the frequency:

L̃n jk(ωl) :=
m

∑
l′=−m

wl′ Ln jk(ωl−l′),

where theωl := 2πl/n are Fourier frequencies and the
wl are nonnegative weights that sum up to unity. As
usual, the bias-variance tradeoff applies when choosing
the smoothing parameters such asm [3].

By inserting the smoothed Laplace periodogram
and cross periodogram in (2), we obtain

Rn jk(ω) :=
L̃n jk(ω)

√

L̃n j j(ω)L̃nkk(ω)
. (13)

This function can be regarded as an estimate of what we
call theLaplace coherency between{Yn j} and{Ynk} at
frequencyω , defined as

ρ jk(ω) :=
ℓ jk(ω)

√

ℓ j j(ω)ℓkk(ω)

=
f jk(ω)

√

f j j(ω) fkk(ω)
.

Because it does not require the existence of finite mo-
ments, the Laplace coherencyρ jk(ω) serves as a robust
alternative to the ordinary coherencyc jk(ω).

4. NUMERICAL EXAMPLES

In this section, we provide two numerical examples.
The first example demonstrates the robustness of the
Laplace cross periodogram against outliers.
Example 1. Consider the time series shown in Figure 1.
The first two series are real EEG recordings of a subject
when performing the task of identifying the alternative
image in an ambiguous figure. Highly coherent activi-
ties during such tasks have been found and reported in
[5] as evidence of cognitive binding.

Figure 2 depicts the amplitude of the ordinary
and Laplace cross periodograms together with their
smoothed versions, where smoothing is done by using
the Parzen windowwl ∝ {sin(1

2⌊n/m⌋ωl)/sin(1
2ωl)}4

with m = 26 (n = 256). As can be seen, both peri-
odograms portray a similar lowpass spectral pattern.

The solid line in Figure 3 depicts the estimated ab-
solute coherency, showing the existence of very high
coherence between the two time series in the low fre-
quency region and the decay of the coherence as the

T
IM

E
 S

E
R

IE
S

 1

0 20 40 60 80 100 120 140 160 180 200 220 240 260

−30

−20

−10

0

10

20

30

T
IM

E
 S

E
R

IE
S

 2

0 20 40 60 80 100 120 140 160 180 200 220 240 260

−30

−20

−10

0

10

20

30

T
IM

E
 S

E
R

IE
S

 3

0 20 40 60 80 100 120 140 160 180 200 220 240 260

−150

−100

−50

0

50

100

150

Figure 1:Series 1 and 2 are real EEG recordings; Series 3
is the same as series 2 except for the outlier contamination.
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Figure 2: Amplitude plot of raw and smoothed cross peri-
odograms for series 1 and 2: left, ordinary; right, Laplace.

frequency increases. In addition, the dashed line in Fig-
ure 3 depicts the estimated absolute coherency when the
second series is contaminated by a patch of outliers as
shown in Figure 1 (series 3). The ordinary coherency
changes dramatically because of the outliers, whereas
the Laplace coherency remains nearly intact.

The next example demonstrates the superior perfor-
mance of the Laplace cross periodogram over the ordi-
nary cross periodogram in detecting hidden coherence
from noisy data with heavy-tailed distributions.
Example 2. Let {Xt} be a unit-variance narrow-band
AR(2) process satisfying

Xt +φ1Xt−1 +φ2Xt−1 = ζt ,

whereφ1 = −1.375,φ2 = 0.7225, and{ζt} is Gaussian
white noise. Consider the following time series:

Yt1 := c1(Xt + εt1),

Yt2 := c2(aXt−5 + εt2),
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Figure 3:Amplitude plot of estimated coherency for series
1 and 2 (solid line) and for series 1 and 3 (dashed line): left,
ordinary; right, Laplace.

where{εt1} and{εt2} are mutually independent i.i.d.
white noise with varianceσ2 = 3.162 and independent
of the unobservable process{Xt}. The scale parame-
tersc1 andc2 are chosen to make the variance of{Yt1}
and{Yt2} equal to unity. The problem under consider-
ation is to detect the presence of the common compo-
nent in these series through coherence analysis. This
can be done by testing the hypothesesH0 : a = 0 ver-
susH1 : a 6= 0 using the maximum absolute value of the
estimated ordinary or Laplace coherency at Fourier fre-
quencies. The tests rejectH0 in favor ofH1 if the maxi-
mum absolute coherency is higher than a threshold. We
call these tests the ordinary and Laplace maximum ab-
solute coherency tests, respectively.

Figure 4 depicts the ROC curves of the tests un-
der four noise distributions: Gaussian (a = 1), double
exponential (or Laplace;a = 0.6), Student’sT distri-
bution with 2.1 degrees of freedom (orT2.1; a = 0.2),
and Cauchy with scale parameter 0.25 (c1 = c2 = 1;
a = 0.3). Note that all three non-Gaussian distributions
have heavier tails than the Gaussian distribution.

As can be seen, the Laplace maximum absolute co-
herency test has greater detection power in all but the
Gaussian case. The performance in the Cauchy case is
particularly impressive: the ordinary coherency is es-
sentially useless in this case, whereas the Laplace co-
herency is able to detect the coherence with high prob-
ability. As with any robust method, the efficiency loss
in the Gaussian case is the unavoidable tradeoff for the
robustness gain in the case of heavy-tailed noise.

5. CONCLUDING REMARKS

We have introduced a robust cross periodogram, called
the Laplace cross periodogram, for coherence analysis
of multiple time series in the frequency domain. We
have derived the asymptotic distribution of the Laplace
cross periodogram and discovered the important rela-
tionship with the cross zero-crossing spectrum through
the mean of the asymptotic distribution. We have also
demonstrated via two examples the robustness of the
Laplace cross periodogram for coherence estimation
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Figure 4:ROC curves of the maximum absolute coherency
test based on the Laplace cross periodogram (solid line) and
the ordinary cross periodogram (dashed line) under different
noise distributions: top left, Gaussian; top right, doubleex-
ponential; bottom left, Student’sT2.1; bottom right, Cauchy.
Results are based on 1,000 Monte Carlo runs.

detection under the condition of outliers and heavy-
tailed noise. The robustness advantage of the Laplace
cross periodogram over the ordinary cross periodogram
is confirmed in these examples.

The methodology described in this paper can be
generalized, for more flexibility in the efficiency-
robustness tradeoff, by replacing the LAD criterion
with theLp-norm criterion for anyp ∈ (1,2) along the
lines of [6], or with any convex criterion function com-
monly used in robust estimation [7].
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