18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

ROBUST COHERENCE ANALYSISIN THE FREQUENCY DOMAIN

Ta-Hsin Li

Department of Mathematical Sciences
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598-0218

thi@us.ibm.com

ABSTRACT series is defined as [3]

In this paper, a new cross periodogram, called Laplace
cross periodogram, is introduced for robust coher-
ence analysis of multiple time series in the fre- T
quency domain. It is derived by replacing the ordi-WhereZn() := [Zn(w), ..., Znp(w)]" andGpjk(w) :=
nary Fourier transform that defines the ordinary croséni(@)Zg(w). Under the assumption that;} and
periodogram with what we call the Laplace-Fourier{Ytk} are jointly stationary in second moments with
transform obtained from trigonometric least-absoluteMean zero and cross covariancg$t) := E{Yi,r,j i},
deviations (LAD) regression. Under certain stationarity2 Smoothed cross periodogram, denote@gg(w), can
assumptions, the Laplace cross periodogram is fouriee used to estimate the cross spectrum defined by
through an asymptotic analysis to be associated with -

what we call the Laplace cross spectrum, a function pro- _ . _ s

portional to the Fourier transform of cross zero-crossing Gik(0) = T:Z_mr,k(r) SXp—ITw).

rates. Robustness of the Laplace cross periodogram and

the corresponding coherency estimator is demonstratédoreover, for anyj # k, the coherency between
by numerical examples. {Ynj} and {Yn} at frequencyw, defined agj(w) :=

9jk(w)/+/9jj(w) 9k (w), can be estimated by [3]
1. INTRODUCTION

The objective of coherence analysis is to discover and Chjk(w) = Gnik(€0)
quantify the mutual dependence of multiple time series. \/én“. ()G (w)
Coherence analysis in the frequency domain is tradi-

tionally done through the cross periodogram that can b‘?he coherency;y(w) is an ensemble measure of corre-

regarded as an estimate of the cross spectrum definedlgﬁon between the trigonometric components{¥f; }
the Fourier transform of the lagged covariances for Staénd{Y < at frequencyw J
n .

tionary multiple random processes [1]. Although effec- The cross periodogram defined by (1) and the co-

trli\cl)((ajgn?a?r?\?;e(:rlgl :Jonbduesrt:]eegsil?(r)f%rr]](irlz?ns’ tgie ﬁ;?ssscgerjerency estimator defined by (2) lack sufficient robust-
9 yzing sig iess against outliers because the Fourier transform is a

Gn(w) == [ank(w)]F,k:1 = Zn(@)Z} (w), 1)

. )

taminated by outliers or time series with heavy-taile inear function of the data points. To improve the ro-

ﬁ:tzfgg'ogzb dcl)??;(ranntilg’in?ror:jivge?jeirrwl?g]oagsrzr?(’)bzﬂ?al- ustness, we introduce in the next section an alternative
P P gram, transformation motivated by a relationship between the

ternative to the ordinary periodogram for analyzing sin-_ . : :
gle time series. In this paper, we extend this methodo ordinary cross periodogram and the least-squares (LS)

. . X . rigonometric regression.
ogy to multiple time series and introduce a robust cross
periodogram called Laplace cross periodogram and a
robust coherency called Laplace coherency. 2. LAPLACE CROSSPERIODOGRAM

For eachk=1,...,p, let {Yx} (t=1,...,n) be a LetBnk(w) = [Bur (@), Bre()]T denote the LS solu-

real-valued time series of lengthand let tion of the following trigonometric regression problem:
12§ 7 d T 2
Zy(w) :=n" Yikexp(—itw w):=argminy [Yixk—¢ (w 3
k(@) t; tkexp(—itw) Brk(w) gﬁeth;! t—Ct (w)BI*, @)

be the Fourier transform dfY}. The p-by-p matrix ~ wherec(w) := [cog wt),sin(wt)]". If w is a Fourier
of periodogram and cross periodogram for these tim&equency, i.e., an integer multiple of2n, then it is
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easy to show thay ! ; ¢ (w)c! (w) =n/2. Inthis case, with Y(u) :=1/2—1(u< 0) = (1/2)sgnu).

Br(w) =2n"t 31 Ve (w) and hence For j # k, assume thaf¥;} and {¥y} are jointly
~ . stationary in zero-crossings in the sense that there exists
Zok(@) = 33v/N{Bria(w) — i Brica(w) }. (4)  afunctionyjx(t) such that for alt andr,
For improved robustness, we replace the LS solution in P{¥+1,jYik < 0} = yjk(T).

(3) by the least-absolute-deviations (LAD) solution _
We call yj(1) the lag-T cross zero-crossing rate be-

Brk(w) = [Bnkl(w),Bnkz(w)]T tween{Y;; } and{Yi«}. We refer to the Fourier transform
n . of the cross zero-crossing rates, defined by
= argminy |Yik—¢ (w 5
gmin Mc—cl (@B (5)

o0}

fi(w) = % {1-2y(1)} exp(—iTw),

and define a new transform in the same way as (4): <=0

Unk(@) := 33/N{Bria(w) — iBrica(w) }. (6) as thecross zero-crossing spectrum. Note thatyy(T)
) and f(w) are nothing but the zero-crossing rates and
We callUnk(w) theLaplace-Fourier transformof {Yi}.  the zero-crossing spectrum Py} discussed in [2].
The LAD method is known to produce more robust  Considef ,(w) := [gnl(w),,,,,gnp(w)]? Because
solutions for linear regression problems than the L%{W(YHT,j)W(Ytk)} — 1{1—2y(1)}, it follows that
method [4]. The Laplace-Fourier transfokdp(w) is
expected to have the same benefit. lim E W EH (o = A (w
With the Laplace-Fourier transform in place of the N—oo {En(@)én (@)} = 2A(w),

ordinary Fourier transform in (1), we obtain a new ma- ) D . .
trix of periodogram and cross periodogram whereA(w) := [fjx(w)]j ;- This, together with a cen-

tral limit theorem [2], yields
Ln(®) = [Lajk(@)]F)y = Un(@)UF (@),  (7)

whereUp(w) = [Un1 (), ...,Unp(w)]T. We call S
whereN:(u,Z) denotes a complex Gaussian distribu-
Lnjk(@) := Unj(w)Up(w) tion with meanu and covariance matriX. Morepover,
_ ~ let ng = 1/{2K(0)} and S(w) := [NjNkfik(W)]} -
the Laplace cross periodogramof {Y;j } and{Yy}. Itis  Then by combining (9) with (8), we obtain 3
easy to see that in the special casg sfk, we have

Lo(@) = [Un(@)[* = 0] Bric(w) |-
. . . As can be seen from this result, the asymptotic distribu-
This is nothing but the Laplace periodogram{ofy} tion of Un(c) is determined completelyybyp

discussed in [2]. Therefore, the Laplace cross peri-
k(@) = njnkfix(w). (11)

odogram is an extension of the Laplace periodogram
for multiple time series.

Unlike the ordinary cross periodogram which is re-yyg call jx(w) the Laplace cross spectrum. By defini-
lated to the ordinary cross spectrgq(w), the Laplace tion, the Laplace cross spectrum is proportional to the
cross periodogram is associated with what we call theyoss zero-crossing spectrum, where the proportionality

Laplace cross spectrum. This relationship is revealef determined by the densities of the zero-median time
through an asymptotic analysis in the next section.  ggries at zero. With this notatioB{w) = [Ejk(w)]?.kzl

is simply the Laplace spectral matrix.
3. ASYMPTOTIC DISTRIBUTION According to (10), the Laplace periodogram matrix

Assume that for eack the random proces¥y} has Ln(w) is asymptotically distributed aX (w)X"(w),
zero median and is stationary in zero-crossings [2)which we denote as
Then, it can be shown [2] that &as— o,

Un(w) 2 Nc(0,S(w)). (10)

. Ln(@) 2 X(@)X"(w), (12)
Unk(w) = (1/F(0)) &k (w) +0p(1), 8 _
_n< ) = (1/Rd0)dnd ) +0o(1) ®) where X(w) = [X1(w),...,Xp(w)]T is a complex
whereR(0) denotes the density di;x} at zero and Gaussian random vector with distributidly(0, S(w)).
. This result is the counterpart of a classical assertion for
o n1/2 s the ordinary periodogram matrix [3, Theorem 11.7.1].
En(@) :=n t;l’U(Y“‘) exp(—itw) Note that (12) holds even if the time series do not have
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finite moments. This is a manifestation of robustness to . |
heavy-tailed distributions.

Becausd{X;(w)X}(w)} = {jk(w), it follows from e
(12) that the asymptotic mean &fjx(w) is equal to 20
lik(w). This observation suggests that the Laplace -+~~~ = = =
cross spectrum can be estimated by smoothing the raw 0 2 40 60 8 100 120 140 160 180 200 220 240 260
Laplace cross periodogram across the frequency: 2 -
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where thew := 271 /n are Fourier frequencies and the A R S A AR A

w; are nonnegative weights that sum up to unity. As

usual, the bias-variance tradeoff applies when choosing ™ |

the smoothing parameters suchmap3]. 2 s
By inserting the smoothed Laplace periodogrami e-

and cross periodogram in (2), we obtain el
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= = (13)
Lnjj (o) Lnkk(w) Figure 1:Series 1 and 2 are real EEG recordings; Series 3

is the same as series 2 except for the outlier contamination.

This function can be regarded as an estimate of what we
call theLaplace coherency between{Y,;} and{Yn} at .. |
frequencyw, defined as

Rnjk(w) =

S 2000 |
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ORDINARY CROSS PERIODOGRAM: AMPLI

LAPLA

Because it does not require the existence of finite mo-
ments, the Laplace coherengy.(w) serves as a robust Figure 2: Amplitude plot of raw and smoothed cross peri-
alternative to the ordinary coherency(w). odograms for series 1 and 2: left, ordinary; right, Laplace.

4. NUMERICAL EXAMPLES . . T
frequency increases. In addition, the dashed line in Fig-
In this section, we provide two numerical examplesure 3 depicts the estimated absolute coherency when the
The first example demonstrates the robustness of theecond series is contaminated by a patch of outliers as
Laplace cross periodogram against outliers. shown in Figure 1 (series 3). The ordinary coherency

Example 1. Consider the time series shown in Figure 1.changes dramatically because of the outliers, whereas
The first two series are real EEG recordings of a subje¢he Laplace coherency remains nearly intact. [
when performing the task of identifying the alternative = The next example demonstrates the superior perfor-
image in an ambiguous figure. Highly coherent activi-mance of the Laplace cross periodogram over the ordi-
ties during such tasks have been found and reported imary cross periodogram in detecting hidden coherence
[5] as evidence of cognitive binding. from noisy data with heavy-tailed distributions.
Figure 2 depicts the amplitude of the ordinarygxanple 2. Let {X} be a unit-variance narrow-band
and Laplace cross periodograms together with theiir(2) process satisfying
smoothed versions, where smoothing is done by using
the Parzen windowy O {sin(3[n/m|c)/sin(3w)}* X+ O X1+ @X1 = &,
with m = 26 (n = 256). As can be seen, both peri-
odograms portray a similar lowpass spectral pattern. where@ = —1.375,¢ = 0.7225, and{{; } is Gaussian
The solid line in Figure 3 depicts the estimated abwhite noise. Consider the following time series:
solute coherency, showing the existence of very high
coherence between the two time series in the low fre- Yo = Ci(X+&ua),
guency region and the decay of the coherence as the Yo = Cy(@X-_5+ &2),
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Where{etl} and {&2} are mutua”y |ndependent |_|,d, ‘ FPROBAB\UTVOFFALSEALARM ‘ FPROEAB\L‘\TYOFFFALSEALARM

white noise with variance? = 3.162 and independent

_ Figure 4:ROC curves of the maximum absolute coherency
of the unobservable proce¢X}. The scale parame test based on the Laplace cross periodogram (solid line) and

tersc, andc; are chosen to make the variance{¥fi} ordinary cross periodogram (dashed line) under diftere
and{Y;2} equal to unity. The problem under consider-gjse distributions: top left, Gaussian; top right, doudke
ation is to detect the presence of the common compgronential; bottom left, Student® 1; bottom right, Cauchy.
nent in these series through coherence analysis. Thigesults are based on 1,000 Monte Carlo runs.
can be done by testing the hypothesks a = 0 ver-
susHj : a# 0 using the maximum absolute value of the ] o )
estimated ordinary or Laplace coherency at Fourier fredetection under the condition of outliers and heavy-
quencies. The tests rejadg in favor of Hy if the maxi- tailed noise. The robustness a_dvantage of th_e Laplace
mum absolute coherency is higher than a threshold. WSS periodogram over the ordinary cross periodogram
call these tests the ordinary and Laplace maximum ab® confirmed in these examples.
solute coherency tests, respectively. The_methodology descrl_bc_a_d in this paper can be
Figure 4 depicts the ROC curves of the tests ungeneralized, for more erX|b|I|f[y in the efflcu_anc_y-
der four noise distributions: Gaussiam 1), double ~'obustness tradeoff, by replacing the LAD criterion
exponential (or Laplacea = 0.6), Student'sT distri-  With the Lg-norm criterion for anyp € (1,2) along the
bution with 2.1 degrees of freedom (1; a = 0.2) lines of [6], or with any convex criterion function com-
and Cauchy with scale paramete® (c; = ¢, — 1; Menly used in robust estimation [7].
a = 0.3). Note that all three non-Gaussian distributions
have heavier tails than the Gaussian distribution. REFERENCES
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