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ABSTRACT

In this paper our previously proposed TDCNN siniafat
formulation is rewritten in vector-matrix form arttus a
matrix condition for the empirical time constraigiven in
[1] is derived. The sinusoidal simulation results band-
pass filter example are presented.

1 INTRODUCTION

In our previous study, we introduced a new simafatne-
thod for time derivative cellular neural networkEDCNN)

with first derivatives [1]. The method in [1] usésward

Euler approximation for the derivatives on the hefhd side,
and backward Euler approximation for the derivatiga the
right hand side of the TDCNN equation and comptibes
state of each cell by using convolution sums thusides a
great speed advantage.

In this paper, the formulation for the simulatiohT@CNN

used in [1] is given in vector-matrix form whichadtes the
derivation of a matrix condition that formally pes/the time
constraint given empirically in [1]. We show thaturo
TDCNN simulation method in [1] has the same soluiis

the forward Euler method iff the eigenvaluds of A , are

negative. Then we present the numerical simula#salts of
the method given in [1] and forward Euler methaa ahow
that the results are consistent.

2. TIME-DERIVATIVE CELLULAR NEURAL
NETWORKS (TDCNN)

Time-derivative CNN (TDCNN) [2] extends the origina

CNN description in [3] by adding derivative connens
between cells. A time-derivative linear CNN is désed by

dx(ljt) Z A(mr)>(H-mj+n)
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The first two terms on the right hand side of dfg the same
as in the case of original CNN equation, A and 8 faed-
back and feed-forward cloning templates, u is ingotl x
denotes the state and output of the linear netwark.and

By are defined as qth derivative feedback and fewadiat

templates, respectively, and r denotes the neiglolodr of
the CNN. It has been shown that by adding firseodgriva-
tives of the outputs of the neighboring cells te triginal
CNN equation, bandpass spatiotemporal filters camell-
ized [2,4]. For these first derivative TDCNNs (Bcbmes
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3. ANALYSISOF TDCNN SIMULATION
METHODS

Equation (2) can be written in vector-matrix form tsing
one of the several packing schemes. Thus for aanktsize
of MxN cells, MNx1 size vector-matrix differentiefuation
of TDCNN is obtained as

K A s A K
— =Ax+Bu+A,—
dt Lt ®)

Here A,A and B are MNXMN matricesX and U are
MNx1 vectors that includes all the cell outputs amguts
respectively. We can rearrange (3) so that alldéxévative
terms are on the left hand side of the equation

(I —Al)%=Ax+§u_ (4)

where | denotes identity matrix of MNxXMN size, which

yields
&

=(1-Ay) Ax+(1-Ay) B, ()

Let us now apply Euler’s forward approximation 59: (

MM A ) P A+ (1-A) Bu(l) @

S
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Rearranging (6) yields
(kg =x(9+ 1Ay [Ax(+Bu( ]

In [1] we have used forward Euler difference foe theriva-
tive on the left hand side and the backward ELiféerénce
for the derivatives on the right hand side of (8sulting in
the difference equation:

Wﬂ

S

(7)
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Equation (9) can be rearranged as

(ic+1) =x(9+ T(1 =As) [Ax(§+Bu( B )

+{1=A,) (A [x(k+) - 2¢(K) +x(k-1]

If the absolute values of eigenvalues of

~TATY) (T
(13)

1= (A
i-n e e

Which shows that the eigenvalues (df—

are f A, <= then
A Y (14)

Hence fork = oo [(I —Al)_l(—Al)}k = 0.

4, SIMULATION RESULTS

In this section we present the simulation resultslie three
methods given above.

The input image is spatio-temporal, thus we have tvary-

matrixing frames of images.

(l —A 1) (_A 1) are less than 1, the powers of this ma+or the simulations we must first evaluate the MN®&ize

trix approaches zero as the iteration continuesas€guently
the last term in (10) decreases and we obtainaine £qua-
tion as (7). In [1] we pointed out that the inpuiige is held

. . _ example with the templates
constant for at least 3 iterations for our methodjitze the 0 1 G 00 G 00 G
same results as SIMULINK simulation. This conditicor- .
responds to having very small values forA=|1 —4 1],B=/0 1 0 andA,=0 -1 0] Isgiven.
3 0 1 0 0 0 0 0 0 1
[(I —Al) (—Al)} after three iterations, thus obtain-
For this example we have:
ing
~ 1~ A~ -4 1 0 0 1 0 0O O O O O o o o o ¢
X(k+1):X(k)+-|;(|—A1) [AX(I@+BU( @J (12) 1 41 00 1 0 0 00 0 0 0 0 0
o 1 -4 1 0 0 1 0 O O O O O O o0 ¢
o 0 1 -4 0 0 0O 1 0 O O O O O o0 ¢
In other words, the time constraint for the simolatof 1 0 0 0-41 0 0 1 0 0 0 0 0 0 ¢
TDCNN given in [1] must be satisfied to ensure tta 01 0 0 1-41 0 0 1 0 0 0 0 0 (
~ -1 A~ o 0 1 0 0 1-41 0 O 1 0 O O o0
powers of thE(l —Al) (—A 1) decrease. - |o 0o 0 1 00 1-400 010 0 0 ¢
. . A%l 0 0 0 1 00 0-41 1001 0 0
Let wus now examine the eigenvalues of |, o 0 0 0 1 0 0 1-4 1 0 0 1 o
-~ -1 ~ -~ _
(I —Al) (—Al). First we decomposA ; as 8 g 8 3 g 8 (1) 2 g (1, 14_41 OO OO 01 1(
~ 4 o 0 0o o o 0 0 0O 1 O O 0-41 0 (
A =T\ T, (12) 00 000 00 00 1 0 0 1-4 1 (
. o 0o o o o 0o 0o o o o 1 o o0 1-14 1
where /A, =diag(A; ) and A;’s are the eigenvalues of O 0 00 006 066 06066 1 0 0 1-

A

A ;. Now we can write

A,Al and Ié matrices. Since for a 20x20 TDCNN, the
size of the matrices would be 400x400, a 4x4 sRENN
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0-10 0001000000 0O b A
0 0 -1 0 0 0 01 0O O O OOOTFUO 0.05
o 0o 0-1 0 0 O O O O O O O o0 o
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0 0 0o o 0O0O-120 0 0 0 1 0 0O
A= 0 0 0O 0o 0O0OO-20 0 0 0 0 0o
' o 0o 0o oo 00 0-120 0 0 0 1 o0 0, ~8rad/s
o 0o 0o o o 00 0 0-120 0 0 01 03
0O 0 0o o 0O OO O O 0O-20 0 0 01 02
0 0 0O o 0O OO O OO O-10 0 00 0.1
o 0o 0o o o 00 00O 0 O0-10 0 0
o 0 0o o o 0Oo0O0OOO 0O O 0-10 0.1
o 0 0o o o 0o 0O 0OOO O O 0 0-1 0.2
/10 0O 0 00O 0OOO 0O O0OOO0OO0O O0O 0-7¢ 0.3
B=I
0.05
A=A
0
A \-17 ~ 3
The eigenvalues %(I -A 1) (—A 1)} are given by 008
3 -0.1
_)‘i B 3 )
—)| =0.125 Figure 1. Bandpass filter simulation (for the template valge®n in [2])

i of forward Euler method. The passband of the fikearound
W, = 0w, =lrad / pix,Q, = 8rad /' s

We simulated the spatio-temporal bandpass filteCNN

example given in [2]. Bandpass filter outputs aineeiy for

forward Euler method and the method in (8) in Higand

Fig. 2 respectively. As can be seen from the figutbe

simulation results are consistent.

@ =, =0314rad/ pix Q =8radls @, =, =0.628rad ! pix Q =8radls
0.1

5. CONCLUSION

General 3D continuous-time discrete-space mixedailom
spatio-temporal filters can be realized by TDCNNisthis
paper it is proven that the method given in [1] &mavard
Euler method has the same solution under the dondhat

A \=1/ =~
the absolute value of eigenvalues (df—Al) (—Al)

are less than 1. The necessary and sufficient tondor this
outcome is that the eigenvaluds of A ; should be nega-

tive. The sinusoidal simulation results of forwdtdler me-
thod and proposed method in [1] are consistent eébh
other.
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