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ABSTRACT
In this paper, we consider a quadratic model in the blind
source separation problem, and we propose a method to es-
timate the mixing coefficients using cumulants, by solving a
nonlinear system of equations. This system is derived from
the cumulants of the observations and depends on the mixing
parameters and the source moments. We solve it using op-
timization algorithms, i.e. Levenberg-Marquardt and Gauss-
Newton. The numerical results thus obtained confirm the ef-
fectiveness of our method.

1. PROBLEM STATEMENT

Blind source separation consists in retrieving a vector S of
source signals from an observation vector X which is a mix-
ture of these sources, i.e.

X = F (S), (1)

where F is the mixing function, which is unknown. When
F is an arbitrary nonlinear function, it has been shown that
the hypothesis of statistical independence of the sources is
not sufficient to retrieve them [1], [2]. In order to simplify
the problem we can constrain the mixing model [3], [4], [5],
[6]. In this paper, we consider the ‘quadratic mixture model’
defined in [3], [7]. It is an instantaneous model including
only quadratic terms of sources (auto-terms and cross-terms):{

xi(n) =
[
aiis

′
i(n)

]2
+
[
ai js

′
j(n)

]2
+bis

′
i(n)s

′
j(n),

(i, j) ∈U, U = {(1,2),(2,1)}
(2)

where (s
′
1(n),s

′
2(n)) are the sources, and (x1(n),x2(n)) the

observations.
In this work, we focus on the normalized version of this
model, assuming that aii,i∈{1,2} are non zero:

xi(n) = s2
i (n)−Li js2

j(n)−Qisi(n)s j(n), (i, j) ∈U (3)

where


si(n) = aiis

′
i(n), i ∈ {1,2},

Li j =− a2
i j

a2
j j
, Li j < 0

Qi =− bi
aiia j j

, (i, j) ∈U

(4)

The mixing parameters (L12,L21,Q1,Q2) are supposed un-
known. Our objective in this paper is to estimate them from
the observations. We assume that the mixing parameters and
the normalized sources are real-valued. We propose a direct
estimation of the mixing coefficients in the source separa-
tion problem, using a system of nonlinear equations involv-
ing cumulants. This kind of approach has been already used

in the linear case [8],[9],[10], and we show that its extension
to nonlinear mixtures is more complex. We first derive the
system of equations of the observation cumulants, then solve
it using different optimization algorithms. After estimating
the coefficients, the sources can be retrieved using a separat-
ing structure such as the recurrent one proposed in [7].
The paper is organized as follows: in Section 2 we provide
the details of cumulant calculation from which we derive our
system of equations. Section 3 shows how the observation
cumulants may be estimated and how we propose to solve
the system of nonlinear equations to estimate the mixing co-
efficients. Section 4 presents some simulation results and we
finally conclude in Section 5.

2. PROPOSED APPROACH AND CUMULANT
EXPRESSIONS

The observations considered in (3) are linear combinations
of power functions of the sources. Therefore, by using the
multilinearity properties of cumulants, the cumulants of the
observations may be expressed with respect to cumulants of
power functions of the source signals and to the mixing co-
efficients. We here aim at deriving these expressions for ob-
servation cumulants of order one to four. Moreover, some
of the cumulants associated to the sources are zero, because
the sources are assumed to be statistically independent with
symmetric probability density functions (pdf), and therefore
centered. To determine which of the considered source cu-
mulants are zero we derive their expressions with respect to
the associated moments using the classical formula which
is provided hereafter. This permits us to obtain a nonlinear
equation system depending on the mixing parameters and the
source moments.

2.1 Cumulant properties and Notations
We remind that the r-th order cumulant is related to the mo-
ments of order p, p ≤ r, by the Leonov and Shiryayev for-
mula [11]

C[X1,X2, ...,Xr] =

∑
π
(−1)|π|−1(|π|−1)! ∏

β∈π
E[∏

i∈β
Xi] (5)

where π runs through the list of all partitions of {1, ...,r} , β
runs through the list of all blocks of the partition π and |π|
is the number of parts in the partition. E is the mathematical
expectation. We also remind some properties of cumulants
[12]:
CP1: If λi, i = 1, ...,n are constants, and xi, i = 1, ...,n are
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random variables, then

C(λ1x1, ....,λnxn) =
n

∏
i=1

λiC(x1, ...,xn)

CP2: Cumulants are symmetric in their arguments, i.e.,

C(x1, ....,xn) =C(xi1 , ...,xin)

where (i1, ..., in) is a permutation of (1, ...n).
CP3: Cumulants are additive in their arguments, i.e., cumu-
lants of sums equal sums of cumulants

C(x0 + y0,z1, ....,zn) =C(x0,z1, ...,zn)+C(y0,z1, ...,zn)

CP4: If a subset of k random variables {xi} is independent
of the rest then

C(x1, ..,xk, ..,xn) = 0

The following type of shortened notations is used in this pa-
per:
C[(s2

1)2] = C[s2
1,s

2
1] represents the second-order cumulant of

{s2
1}.

C[(x1)2,x2] = C[x1,x1,x2] is the third-order cross-cumulant
involving {x1} twice and {x2} once.

2.2 First-Order Cumulants
It can be easily derived from (3), (5) and from the indepen-
dence of the sources that the first-order cumulant of the first
observation is

C[x1] = E[x1] (6)

= E[s2
1]−L12E[s2

2]−Q1E[s1]E[s2]. (7)

Using the fact that the sources are centered we have

C[x1] = E[s2
1]−L12E[s2

2]. (8)

By the same way we obtain

C[x2] = E[x2] =−L21E[s2
1]+E[s2

2]. (9)

2.3 Second-Order Cumulants
2.3.1 Observation Cumulants

We detail the calculation for C[(x1)2]. Using (3) and the
above cumulant properties we have

C[(x1)2]=C[x1,x1]

=C[s2
1 −L12s2

2 −Q1s1s2,s2
1

−L12s2
2 −Q1s1s2],

=C[s2
1,s

2
1]−L12C[s2

1,s
2
2]−Q1C[s2

1,s1s2]

−L12C[s2
2,s

2
1]+L2

12C[s2
2,s

2
2]+L12Q1C[s2

2,s1s2]

−Q1C[s1s2,s2
1]+L12Q1C[s1s2,s2

2]+Q2
1C[s1s2,s1s2].

Thanks to the properties of cumulants and by using Equa-
tions (14) mentioned hereafter in Subsection 2.3.2, and cor-
responding to the cancellation of some ”source cumulants”,
we get finally

C[(x1)2] =C[(s2
1)2]+L2

12C[(s2
2)2]+Q2

1C[(s1s2)2],

C[(x2)2] = L2
21C[(s2

1)2]+C[(s2
2)2]+Q2

2C[(s1s2)2],

C[x1,x2] =−L21C[(s2
1)2]−L12C[(s2

2)2]+Q1Q2C[(s1s2)2].
(10)

2.3.2 ”Source Cumulants”

We begin the calculation with C[(s2
1)2]. From (5), we have

two possibilities for the partitions: {s2
1,s

2
1} and {{s2

1},{s2
1}},

which respectively have 1 and 2 elements, so using the for-
mula (5)

C[(s2
1)2] = (−1)(1−1)(1−1)!E[s2

1s2
1]+

(−1)(2−1)(2−1)!E[s2
1]E[s

2
1]

= E[s4
1]−E[s2

1]
2. (11)

We get also
C[(s2

2)2] = E[s4
2]−E[s2

2]
2, (12)

by similar calculations, just replacing s2
1 by s2

2.
For C[(s1s2)2], we also have the two partitions, {s1s2,s1s2}
and {{s1s2},{s1s2}}, so

C[(s1s2)2] = (−1)00!E[s1s2s1s2]+ (−1)11!E[s1s2]E[s1s2]

= E[s2
1]E[s

2
2]−E[s1]

2E[s2]
2

= E[s2
1]E[s

2
2] (13)

where we have first used the property of statistical indepen-
dence and then the fact that the sources are centered. The
other ”source cumulants” are zero

C[s2
1,s

2
2] =C[s2

1,s1s2] =C[s2
2,s1s2] = 0. (14)

This may be shown as follows:

C[s2
1,s

2
2] = E[s2

1s2
2]−E[s2

1]E[s
2
2]

= E[s2
1]E[s

2
2]−E[s2

1]E[s
2
2] = 0, (15)

using the independence property, and

C[s2
1,s1s2] = E[s2

1s1s2]−E[s2
1]E[s1s2]

= E[s3
1]E[s2]−E[s2

1]E[s1]E[s2] = 0, (16)

where we have used the independence property and the fact
that the sources have symmetric pdf. A similar derivation can
be made for C[s2

2,s1s2], and we find C[s2
2,s1s2] = 0.

Due to space limitations, we will not detail the calculations
for the third- and the fourth-order. They are based on the
same approach as above, but they are much more tedious be-
cause they involve higher-order statistics. We keep a similar
scheme hereafter: firstly we give the observation cumulants
with respect to the ”source cumulants” and secondly we give
the latter with respect to the source moments.

2.4 Third-Order Cumulants
The third-order observation cumulants are

C[(x1)3] =C[(s2
1)3]−L3

12C[(s2
2)3]

+3Q2
1C[s2

1,(s1s2)2]−3L12Q2
1C[s2

2,(s1s2)2],

C[(x2)3] =C[(s2
2)3]−L3

21C[(s2
1)3]

−3L21Q2
2C[s2

1,(s1s2)2]+3Q2
2C[s2

2,(s1s2)2],

C[(x1)2,x2] =−L21C[(s2
1)3]+L2

12C[(s2
2)3]

+(2Q1Q2 −L21Q2
1)C[s2

1,(s1s2)2]

+(Q2
1 −2L12Q1Q2)C[s2

2,(s1s2)2],

C[x1,(x2)2] = L2
21C[(s2

1)3]−L12C[(s2
2)3]

+(Q2
2 −2L21Q1Q2)C[s2

1,(s1s2)2]

+(2Q1Q2 −L12Q2
2)C[s2

2,(s1s2)2].

(17)
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and the third-order ”source cumulants” can be expressed as
C[(s2

1)3] = E[s6
1]−3E[s4

1]E[s
2
1]+2E[s2

1]
3,

C[(s2
2)3] = E[s6

2]−3E[s4
2]E[s

2
2]+2E[s2

2]
3,

C[s2
1,(s1s2)2] = E[s2

2]E[s
4
1]−E[s2

2]E[s
2
1]

2

C[s2
2,(s1s2)2] = E[s2

1]E[s
4
2]−E[s2

1]E[s
2
2]

2.

(18)

{
C[(s1s2)3] =C[(s2

1)2,s1s2] =C[(s2
2)2,s1s2] = 0,

C[s2
1,(s

2
2)2] =C[s2

2,(s
2
1)2] =C[s2

1,s
2
2,s1s2] = 0.

(19)

2.5 Fourth-Order Cumulants
The fourth-order observation cumulants are

C[(x1)4] =C[(s2
1)4]+L4

12C[(s2
2)4]+Q4

1C[(s1s2)4]

+6Q2
1C[(s2

1)2,(s1s2)2]+6L2
12Q2

1C[(s2
2)2,(s1s2)2]

−12L12Q2
1C[s2

1,s
2
2,(s1s2)2],

C[(x2)4] = L4
21C[(s2

1)4]+C[(s2
2)4]+Q4

2C[(s1s2)4]

+6L2
21Q2

2C[(s2
1)2,(s1s2)2]+6Q2

2C[(s2
2)2,(s1s2)2]

−12L21Q2
2C[s2

1,s
2
2,(s1s2)2],

C[(x1),(x2)3] =−L3
21C[(s2

1)4]−L12C[(s2
2)4]+Q1Q3

2C[(s1s2)4]

+(−3Q2
2L21 +3Q1Q2L2

21)C[(s2
1)2,(s1s2)2]

+(−3L12Q2
2 +3Q1Q2)C[(s2

2)2,(s1s2)2]

+(3Q2
2 −6L21Q2Q1 +3L12L21Q2

2)C[s2
1,s

2
2,(s1s2)2],

C[(x2),(x1)3] =−L21C[(s2
1)4]−L3

12C[(s2
2)4]+Q2Q3

1C[(s1s2)4]

+(−3L21Q2
1 +3Q2Q1)C[(s2

1)2,(s1s2)2]

+(−3L12Q2
1 +3Q2Q1L2

12)C[(s2
2)2,(s1s2)2]

+(3Q2
1 −6L12Q2Q1 +3L12L21Q2

1)C[s2
1,s

2
2,(s1s2)2],

C[(x1)2,(x2)2] = L2
21C[(s2

1)4]+L2
12C[(s2

2)4]+Q2
2Q2

1C[(s1s2)4]

+(L2
21Q2

1 +Q2
2 −4Q1Q2L21)C[(s2

1)2,(s1s2)2]

+(L2
12Q2

2 +Q2
1 −4L12Q1Q2)C[(s2

2)2,(s1s2)2]

+(4Q1Q2 −2L12Q2
2 −2L21Q2

1
+4Q1Q2L12L21)C[s2

1,s
2
2,(s1s2)2].

(20)
and the fourth-order ”source cumulants” are

C[(s2
1)4] = E[s8

1]−4E[s6
1]E[s

2
1]−6E[s2

1]
4

−3E[s4
1]

2 +12E[s4
1]E[s

2
1]

2,

C[(s2
2)4] = E[s8

2]−4E[s6
2]E[s

2
2]−6E[s2

2]
4

−3E[s4
2]

2 +12E[s4
2]E[s

2
2]

2,

C[(s1s2)4] = E[s4
1]E[s

4
2]−3E[s2

1]
2E[s2

2]
2,

C[(s2
1)2,(s1s2)2] = E[s6

1]E[s
2
2]−E[s2

1]E[s
2
2](3E[s4

1]−2E[s2
1]

2),

C[(s2
2)2,(s1s2)2] = E[s6

2]E[s
2
1]−E[s2

2]E[s
2
1](3E[s4

2]−2E[s2
2]

2),

C[s2
1,s

2
2,(s1s2)2] = E[s4

1]E[s
4
2]−E[s2

1]
2E[s4

2]

−E[s2
2]

2E[s4
1]+E[s2

1]
2E[s2

2]
2.

(21)
C[(s2

1)3,s2
2] =C[(s2

2)3,s2
1] =C[(s1s2)3,s2

1] = 0.
C[(s1s2)3,s2

2] =C[(s2
1)3,s1s2] =C[(s2

2)3,s1s2] = 0.
C[(s2

1),s1s2,(s2
2)2] =C[s2

2,s1s2,(s2
1)2] =C[(s2

1)2,(s2
2)2] = 0.

(22)
The systems (8), (9), (10), (17) and (20) altogether
form the final system of equations to be solved,
which is highly nonlinear. We thus obtain a sys-
tem of 14 equations depending on 12 unknowns
{L12,L21,Q1,Q2,E[s2

1],E[s
4
1],E[s

6
1],E[s

8
1],E[s

2
2],E[s

4
2],E[s

6
2],

E[s8
2],} but we will eventually be interested in the mixing

parameters {L12,L21,Q1,Q2}. If we do not use the fourth-

order cumulants, we obtain a system of 9 equations with 10
unknowns (see Table 1) which cannot be solved in general.
We can also use higher than fourth order cumulants to obtain
more equations and more unknowns. We propose to solve
the above system by using numerical optimization methods
defined hereafter.

Order Observation Cumulants Added
(number) Unknowns

1 C[x1],C[x2] (2) L12,L21,
E[s2

1],E[s
2
2]

2 C[(x1)2],C[(x2)2], Q1,Q2
C[x1,x2] (3) E[s4

1],E[s
4
2]

3 C[(x1)3],C[(x2)3], E[s6
1],E[s

6
2]

C[(x1)2,x2],C[x1,(x2)2] (4)
4 C[(x1)4],C[(x2)4],C[(x1),(x2)3], E[s8

1],E[s
8
2]

C[(x2),(x1)3],C[(x1)2,(x2)2] (5)

Table 1: Numbers of equations and unknowns for our system
depending on the cumulant order.

3. MIXING PARAMETER ESTIMATION

Once the system of equations has been obtained, we use al-
ternative optimization algorithms to solve it. The goal is to
retrieve the mixing parameters (L12,L21,Q1,Q2). We need
first to estimate the cumulants of the observations at the
different orders before solving the system, using numerical
methods.

3.1 Estimation of the Observation Cumulants

There exist several estimators of the auto-cumulants and the
cross-cumulants in the literature [13], [14]. Unfortunately
these estimators consider zero-mean signals, which is not the
case in this paper (see Equations (8) and (9)). We then use
the functions proposed in the HOSA Matlab toolbox [15], i.e.
cumest, to estimate the auto-cumulants and cum2x, cum3x
and cum4x to estimate the cross-cumulants of the observa-
tions.

3.2 System Solving

In this subsection, we present the alternative optimization al-
gorithms used to solve the nonlinear equation system. We
use the fsolve function, provided by the Matlab optimization
toolbox [16], which attempts to solve nonlinear equation sys-
tems of the form

F(x) = 0,

where
{

x = [x1, ...,xm]
T

F(x) = [ f1(x), ..., fn(x)]T ,

xi, i = 1..m are the variables (i.e. the 12 unknowns in our
case) and fi, i = 1..n are nonlinear functions. So to obtain
this form, with a right-hand term of the equations equal to
zero, we rearrange our system by moving all its right-hand
terms to the left-hand side. The fsolve function is used with
two configurations: the first one involves the Levenberg-
Marquardt algorithm and the second one the Gauss-Newton
algorithm.
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Figure 1: Convergence towards ”S” for the parameters
{L12,L21,Q1,Q2}
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Figure 2: Phenomenon of sign inversion for the parameters
Q1 and Q2

4. SIMULATION RESULTS

4.1 First Scenario
In a first scenario we consider the set of parameters
{L12,L21,Q1,Q2} = {−0.2,−0.1,0.8,0.2}, and the sources
of length N = 10000 samples are uniformly distributed over
[−1,1]. The fsolve function returns an EXITFLAG output
that describes if the algorithm converges or not. For each
configuration of the fsolve function, we perform 450 tests.
For each test, we use the EXITFLAG output to reset the vari-
able x of the fsolve function (with a different initialization
generated randomly) if the algorithm does not converge and
this is done 150 times if it is necessary. For the Levenberg-
Marquardt configuration the algorithm converges in 95 per
cent of the tests (otherwise the algorithm diverges), and 33
per cent (161 tests) towards the point of interest, called S,
the rest corresponding to other solution points of our equa-
tion system. We observed a sign inversion phenomenon for
the estimated parameters Q1 and Q2 as illustrated by Figure
1 and Figure 2. This is due to the form in which they appear
in our system, i.e. if (Q1,Q2) is a solution of the system,
then (−Q1,−Q2) is a solution too. For the Gauss-Newton
configuration we obtain 91 per cent of convergence in gen-
eral and 37 per cent (167 tests) of convergence towards S.
Better results of convergence towards S are obtained in this
case because less spurious points are reached in a significant
number of tests (see Table 2). For this configuration we also
observe the phenomenon of sign inversion. Therefore, for
the two configurations in this scenario, the algorithm con-
verges most often towards the point of interest compared to
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Figure 3: Mean Value of the MSE vs Q

the other points of convergence. Table 2 shows that these
spurious points can be eliminated by considering the fact that
L12,L21 < 0 from (4) because they do not meet this condition.

Algo. Convergence Point Nb.
{L12,L21,Q1,Q2}
S −0.1829,−0.0897,−0.7579,−0.1972 161
Pt 1 1.6839,−0.2104,−0.2173,−0.7231 62

L. M. Pt 2 0.1618,0.0992,1.3733,0.0914 53
Pt 3 1.7598,−0.2066,−0.2283,0.7147 47
Pt 4 −0.1918,0.0918,−1.4870,−0.0764 43
S −0.1747,−0.1097,0.7779,0.2086 167
Pt 1 −0.3184,0.4684,0.8806,0.6188 58

G. N. Pt 2 −0.1298,0.0704,−1.5460,−0.0944 49
Pt 3 6.3623,−0.3529,0.1305,1.1516 25

Table 2: Point of interest S and spurious points for the
Levenberg-Marquardt and Gauss-Newton algorithms.

4.2 Second Scenario
For this scenario we consider the set of parameters
{L12,L21,Q1,Q2}= {−0.9,−0.75,0.2,0.1}, and the sources
of length N = 10000 samples are respectively uniformly dis-
tributed over [−1,1] and normally distributed N(0,0.2). For
each configuration of the fsolve function we consider 450
tests with the same conditions as mentioned previously. For
the Levenberg-Marquardt configuration the algorithm con-
verges in 100 per cent of the tests, and 10.5 per cent (43
tests) towards the point of interest, called S

′
, the rest cor-

responding to other solution points of our equation system.
For the Gauss-Newton configuration we obtain 100 per cent
of convergence in general and approximately 21 per cent of
convergence towards S′ (94 tests). In this scenario, we also
observe the phenomenon of sign inversion.

4.3 Third Scenario
We generate Monte Carlo runs using 100 different random
realizations of the sources s1 and s2 of length N=10000 and
uniformly distributed over [−1,1]. The realizations are in-
dependent. The parameters L12,L21, are respectively set to
−0.8 and −0.9 and Q1 = Q2 = Q where Q is varied between
0.1 and 1 with a step size of 0.1. Then, for each realization
of the mixtures corresponding to one value of the parameter
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Figure 4: Mean Value of the MSE vs Q calculated for the
parameters {L12,L21,Q1,Q2}

Q, we carry out the experiments for all sources using the pro-
cedure described in Section 4.1 and the fsolve function only
with the Levenberg-Marquardt algorithm configuration. Due
to the sign inversion phenomenon, the error and the relative
error are calculated as follows:

εi = |Xi|− |Si|, i = 1..12 (23)

εrel,i =
|Xi|− |Si|

|Si|
, i = 1..12 (24)

where i is the index of the variable, X contains the variables
at convergence and S is our point of interest.
The associated MSE and relative MSE are respectively:

MSEn =
1
n

n

∑
i=1

(|Xi|− |Si|)2 =
1
n

n

∑
i=1

ε2
i , (25)

MSErel,n =
1
n

n

∑
i=1

(
|Xi|− |Si|

|Si|
)2 =

1
n

n

∑
i=1

ε2
rel,i, (26)

where the index n is set to 12 and 4 when we calculate these
criteria respectively for the whole set of parameters and only
for the 4 parameters L12,L21,Q1,Q2. We resort to the relative
quantities because they are more appropriate when adding
the different variables. Figures 3 and 4 show the mean val-
ues of MSEn and MSErel,n over all 100 sets of sources for
the different values of the parameter Q. The graph in Figure
4 shows that the mean relative MSE is lower or equal to 4
per cent when we consider only the 4 parameters of interest,
which proves the effectiveness of our method.

5. CONCLUSION AND PERSPECTIVES

In this paper we presented a method for estimating the pa-
rameters of a quadratic mixture for blind source separation.
This method is based on the resolution of a nonlinear equa-
tion system provided by the observation cumulants. Numer-
ical optimization algorithms permit us to estimate the coeffi-
cients of the mixture. Through simulations, we showed the
effectiveness of the method. The use of constrained opti-
mization algorithms which take into account the negativity
of the parameters {L12,L21} and the positivity of the source
moments will be studied in future work. A theoretical analy-
sis is needed to complete this work, i.e. on the one hand, try
to solve analytically the nonlinear equation system, and on
the other hand try to analyze the simulations theoretically by

replacing the source moments by their expressions for given
source pdf.
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