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ABSTRACT

In this paper a frequency domain multichannel Wiener filter al-
gorithm is proposed for noise reduction in hearing aids. It is
shown that a robust and efficient QR Decomposition Recursive
Least Squares (QRD-RLS) based updating scheme can be derived, if
a single target speech source is assumed. Moreover, the scheme also
allows to include a trade-off between speech distortion and noise
reduction, as with the Speech Distortion Weighted Multichannel
Wiener Filter (SDW-MWF). The QRD-RLS based algorithm is com-
pared with an adaptive SDW-MWF algorithm, for a binaural hear-
ing aid setup with 4 microphones. Besides the fact that the QRD-
RLS based algorithm achieves a further improvement in speech in-
telligibility weighted SNR, the computational efficiency and numer-
ical robustness are also increased.

1. INTRODUCTION

Modern hearing aids make use of noise reduction algorithms to
improve speech intelligibility in background noise. Hearing aids
are usually fitted with multiple microphones, which generally leads
to an improvement in noise reduction performance because spatial
sound information can then be exploited in addition to spectral in-
formation. In the future, binaural hearing aids will emerge, which
exchange microphone signals over a wireless radio link. As signals
from both sides of the head are then available, an additional noise
reduction performance increase will then be achieved.

An interesting approach to multichannel noise reduction, is
based on multichannel Wiener filtering (for example, [1–3]). A
Wiener filtering based approach eliminates the need for a fixed
beamformer preprocessor, hence offers a very promising alternative
to the Generalized Sidelobe Canceller (GSC) structure [4].

In [1], a class of adaptive noise reduction algorithms is intro-
duced, which are frequency domain implementations of the Speech
Distortion Weighted Multichannel Wiener Filter (SDW-MWF). A
Recursive Least Squares (RLS)-type update procedure is adopted,
where a weighted sum of a speech and a noise correlation matrix
has to be inverted at every filter update. Moreover, an eigenvalue
decomposition is calculated to ensure a positive definite speech cor-
relation matrix, so that the algorithm is guaranteed not to diverge.
When the number of input microphone signals is large (e.g. in bin-
aural hearing aids), the complexity of these operations increases
dramatically. Therefore, some simplifications were also proposed
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in [1], based on (block) diagonal approximations of the correlation
matrices, which however decreases the performance.

In [2], a QR Decomposition Recursive Least Squares (QRD-
RLS) based time domain implementation of the Wiener filter was
introduced. Instead of the speech and noise correlation matrices,
their Cholesky (square root) factors are stored and updated by a nu-
merically robust procedure based on Givens transformations. As
the Cholesky factors have half the dynamic range of the correlation
matrices, the wordlength can be reduced in fixed point processing
without loss of numerical accuracy. A problem with the QRD-RLS
scheme of [2] is that it does not allow to include a trade-off be-
tween speech distortion and noise reduction, as in the SDW-MWF.
This explicit trade-off is beneficial, as it allows increasing the global
(broadband) output SNR [3]. Additionally, as the algorithm oper-
ates in the time domain, the computational complexity is prohibitive
for a hearing aid application.

In this paper, it will be shown that, by assuming a single tar-
get speech source, an alternative SDW-MWF formula can be used
which enables a frequency domain implementation of the SDW-
MWF algorithm based on QRD-RLS. In section 2, the SDW-MWF
and related filters are first reviewed. In section 3, the frequency do-
main implementation based on QRD-RLS is derived. In section 4,
the QRD-RLS algorithm is compared with the adaptive SDW-MWF
algorithm of [1]. It will be shown that the QRD-RLS algorithm
obtains a higher speech intelligibility weighted SNR improvement
than the algorithm in [1]. Additionally, in contrast to the algorithm
in [2], a trade-off can be included between speech distortion and
noise reduction. Also, as all processing is performed in the fre-
quency domain (as is usually done in hearing aids), the computa-
tional efficiency is increased. Finally, it is demonstrated that the
QRD-RLS algorithm indeed improves the numerical robustness so
that the wordlength can be reduced.

2. MULTICHANNELWIENER FILTER REVIEW

2.1 Notation and correlation matrix estimation

We consider a microphone array consisting of N microphones. The
nth microphone signal Yn(ω) can be specified in the frequency do-
main as

Yn(ω) = Xn(ω)+Vn(ω), n= 1 . . .N, (1)

where Xn(ω) represents the speech component and Vn(ω) repre-
sents the noise component in the nth microphone. For conciseness,
we omit the frequency variable ω from now on. The signals Yn,Xn
and Vn are stacked in the N-dimensional vectorsY,X andV, with
Y=X+V. The correlation matrixRy, the speech correlation ma-
trixRx and the noise correlation matrixRv are then defined as

Ry = E {YYH}, Rx = E {XXH}, Rv = E {VVH} , (2)

where E denotes the expected value operator. It will be assumed
that a voice activity detection (VAD) algorithm is available so that
a distinction can be made between speech + noise and noise-only
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frames. The correlation matrix estimates Resty and Restv are then

recursively updated (per frequency bin) as

Resty [m+1] = λyR
est
y [m]+(1−λy)Y[m+1]YH [m+1] (3)

Restv [m+1] = λvR
est
v [m]+(1−λv)V[m+1]VH [m+1] (4)

in speech + noise frames and noise-only frames respectively. λy
and λv are forgetting factors (usually chosen close to 1), and m is
the frame-index. Assuming that the speech and the noise compo-
nents are uncorrelated, the speech correlation matrix can be found
asRestx = Resty −Restv .

The noise reduction algorithms considered here are based on a
linear filtering of the microphone signals by a filterW so that an

output signal Z is obtained as Z=WHY. The goal of the noise
reduction procedure is to minimize the distance between this output
signal and the speech component in one of the microphone signals
(unknown reference signal Xref, e.g. Xref = X1).

2.2 SDW-MWF and related filters

In [3], it is shown that by minimizing a residual noise MSE cost
function, while keeping the speech distortion below a certain thres-
hold, the following filter is found:

WSDW−MWF = (Rx+ µRv)
−1

Rxu , (5)

where u is a vector with one entry equal to one and all other en-

tries equal to zero, so that uHX=Xref. This filter was introduced as
the Speech-Distortion Weighted Multichannel Wiener Filter (SDW-
MWF) [1]. The parameter µ allows a trade-off between speech dis-
tortion and noise reduction.
If a single target speech source is assumed, the speech correlation
matrixRx is a rank one matrix. In [3], it is shown that an alternative
(but theoretically equivalent in the single target speech source case)
SDW-MWF formula can then be derived (denoted here as rank one
MWF or R1-MWF), which still only depends on the speech and
noise second order statistics, i.e.

WR1−MWF = R−1
v Rxu .

1

µ + tr{R−1
v Rx}

(6)

where tr{.} is the trace operator. The fact that only Rv is inverted
in this expression (in contrast to the general formula (5)) will be
utilized in this paper to derive a robust QRD-RLS based algorithm.
In [5], a related filter formula is analyzed, namely the spatial pre-
diction MWF (SP-MWF). By first estimating a spatial prediction
vector, the speech distortion can be forced to zero (corresponding
to the case µ=0 in (6)), which results in:

WSP−MWF = R−1
v Rxu .

uHRxu

tr{R−1
v RxuuHRx}

. (7)

It is also possible to incorporate a speech distortion parameter µ into
the SP-MWF filter, thereby relaxing the minimum distortion hard
constraint. By enforcing that the postfilters of the SP-MWF and
R1-MWF are equal for a single target source, the speech distortion
weighted SP-MWF becomes equal to:

WSP−MWF = R−1
v Rxu .

uHRxu

µ uHRxu + tr{R−1
v RxuuHRx}

(8)

Here also, only Rv is inverted so that again a robust QRD-RLS
based algorithm can be derived. When comparing (8) to (6), it
can be seen that both filters can be decomposed into a spatial fil-

terR−1
v Rxu, which is the same for both filters, and a single chan-

nel postfilter, which is different for both filters. As the postfilter
in (8) does not require the full speech correlation matrix (only the
reference column), in contrast to the postfilter in (6), the SP-MWF
allows for a simpler QRD-RLS scheme.

3. FREQUENCY DOMAIN QRD-RLS NOISE REDUCTION

3.1 QRD-RLS implementation of R1-MWF

In [2], a QRD-RLS implementation based on the general filter for-
mula (5) with µ = 1 was proposed. Instead of the speech and noise
correlation matrices, their Cholesky factors are stored and updated
by a numerically robust procedure based on Givens transformations.
A review of QRD updating and QRD-RLS can be found in [2]. As
already mentioned, the problem with this approach is that it is de-
rived for the particular case µ = 1, such that effectively Ry is in-
verted. For µ 6= 1, large circular noise buffers have to be used,
which is not feasible in a hearing aid application. To work around
this problem, we propose to use the R1-MWF formula (6) as a star-
ting point. As only Rv is inverted, a QRD updating scheme is then
possible even for µ 6= 1.
By plugging Rx = Ry−Rv into (6), and by definingMvy =

R−1
v Ry, the following expression is obtained:

WR1−MWF = (Mvy−IN )u .
1

µ + tr{Mvy}−N
, (9)

where IN is the N×N identity matrix. The R1-MWF formula can
thus be split into a spatial beamformer (Mvy− IN)u followed by a
(single channel) spectral postfilter, and both parts only depend on

the unknown matrix Mvy. By defining Rv = RHv∆Rv∆ (i.e. Rv∆

is the upper triangular Cholesky factor of Rv) and B = R−H
v∆ Ry,

matrixMvy is found by solving the following system of equations:

Rv∆ Mvy = B (10)

As Rv∆ is triangular, this can be done by backsubstitution. In the
next section, it will be shown that Rv∆ and B can be efficiently
updated together by applying sequences of Givens rotations. As
in other Wiener filtering based procedures, there are two modes of
operation (noise-only and speech + noise), which will be described
separately.

3.2 Noise-only mode

In noise-only mode, the noise correlation matrix is updated as in
(4). First, a standard QRD updating procedure [2] can be used to
update the Cholesky factor of the noise correlation matrix estimate
(4), i.e.

„

01×N
Rv∆[m+1]

«

= QH [m+1]

 p

1−λv V
H [m+1]

p

λv Rv∆[m]

!

(11)

where 01×N is an all-zero N-dimensional row vector, and where
QH [m+ 1] can be constructed as a series of N Givens transfor-
mations [2]. As the processing is performed in the frequency do-
main, complex Givens transformations have to be calculated, for
example as in [6]. The transformation matrixQ is then unitary, i.e.

QHQ = QQH = IN+1.
The matrix B[m] can then be updated to B[m+ 1] using the same
matrix QH [m+ 1] as in (11), which is explained as follows. As
QH [m+1] is unitary, the following expression holds [7]:

“

0N×1 1√
λv

R−1
v∆ [m]

”

Q[m+1] QH [m+1]

×
 p

1−λv V
H [m+1]

p

λv Rv∆[m]

!

= IN . (12)

By plugging (11) into (12), we find that:

“

0N×1 1√
λv

R−1
v∆ [m]

”

Q[m+1] =
`

∗ R−1
v∆ [m+1]

´

,

(13)
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where ∗ indicates ’don’t care’ entries, i.e. values which will not be
used. By taking the Hermitian transpose of expression (13), and by
multiplying withRy[m+1], we obtain the following expression:

 

∗
R−H
v∆ [m+1]

!

Ry[m+1] =

QH [m+1]

 

01×N
1√
λv

R−H
v∆ [m]

!

Ry[m+1] . (14)

As in noise-only mode Ry[m+1] = Ry[m], we thus find an update

formula forB = R−H
v∆ Ry, i.e.

„ ∗
B[m+1]

«

= QH [m+1]

 

01×N
1√
λv

B[m]

!

. (15)

In conclusion, we see thatRv∆ andB can be updated together using
a series of N complex Givens rotations, i.e.

„

01×N ∗
Rv∆[m+1] B[m+1]

«

(16)

= QH [m+1]

0

@

p

1−λv V
H [m+1] 01×N

p

λv Rv∆[m] 1√
λv

B[m]

1

A .

With the updated Rv∆ and B, equation (10) can then be solved for
Mvy, so that the new optimal R1-MWF filter can be computed.

3.3 Speech+noise mode

In speech+noise mode, the speech+noise correlation matrix is up-
dated as in (3). However, as we are tracking B instead of Ry, an
update procedure for B is needed. As the noise correlation matrix
is not updated, we can setRv∆[m+1] = Rv∆[m], so that

B[m+1] = λy B[m]+(1−λy)
−
Y[m+1]YH [m+1] , (17)

with
−
Y[m+ 1] = R−H

v∆ [m]Y[m+ 1]. In this update,
−
Y[m+ 1] can

be efficiently calculated by solving

RHv∆[m]
−
Y[m+1] = Y[m+1] (18)

by a single backsubstitution.
Similarly to the adaptive algorithms in [1], the MWF will be

kept fixed in speech+noise mode, however, this need not be the case.

3.4 QRD-RLS implementation of SP-MWF

In a similar manner, the SP-MWF can be realized with a QRD-
RLS scheme. By working out (8) as in section 3.1, the following
expression is found:

WSP−MWF = (mvy−u) .
rHx u

rHx

“

mvy+(µ −1)u
” , (19)

where rx is a column of the speech correlation matrix (rx = Rxu),
and mvy is a column of Mvy (mvy= Mvyu). Then, as rx =

Rv(mvy−u), Rv = RHv∆Rv∆ and Rv∆mvy = Bu = b, this can
finally be written as:

WSP−MWF = (mvy−u) .
< Rv∆u , b−Rv∆u >

< b+(µ −1)Rv∆u , b−Rv∆u >
,

(20)
where the dotproduct < v1,v2 >= vH2 v1.

Vectormvy can be updated during noise-only periods in a simi-
lar way as matrixMvy is updated for the R1-MWF filter. However,
complexity is reduced here as only one column ofMvy is needed,
so that only a single column of B has to be stored and updated. In
contrast, the R1-MWF (9) requires the full matrixMvy in order to
calculate tr{Mvy} in the single channel postfilter. The single chan-
nel postfilter of the SP-MWF requires the calculation of two dot-
products, using vectors that are easily obtained from the (reduced)
QRD-RLS scheme.

3.5 Residual extraction

In noise-only mode, it is also possible to obtain the output of the

(spatial) filtering (mvy−u)HY = (mvy−u)HV directly from the
QRD-RLS scheme, without having to solve (10). Namely, by ex-
tracting the least squares residuals as in [8], it can be shown that:

(mvy−u)HV = −Vref−
1

p

1−λv
ε

N
Y

n=1

cosθn , (21)

where the cosθn are found in the Givens rotation matrices, and
where ε is a by-product of the QRD-RLS scheme, i.e. the value
which was indicated with a ∗ in (16), above the reference column of
B. The final output is then found by multiplying (21) with the single
channel postfilter of (9) or (20). As the postfilter of the R1-MWF
(9) requiresMvy so that (10) still has to be solved, the residual ex-
traction does not yield any benefit. This is however not the case for
the SP-MWF, so that the SP-MWF allows for a further reduction of
the computational complexity compared to the R1-MWF.

4. SIMULATIONS

4.1 Setup

We consider a binaural hearing aid configuration, i.e. two hearing
aids connected by a wireless link. The link is assumed to be ideal in
terms of bandwidth and power consumption. We therefore assume
that all microphone signals are available as inputs to the noise re-
duction procedure. Two microphones are used in the left ear device
and two in the right ear device, giving a total of N=4. The binaural
procedure produces a stereo output, but only the output for the left
ear device will be shown. The left-front microphone is then chosen
as the reference microphone.
Head-related transfer functions (HRTF’s) were measured in a

reverberant room (reverberation time RT60=0.61s, cfr. [9]) on a
dummy-head, so that the head-shadow effect is taken into account.
To generate the microphone signals, the noise and speech signals are
convolved with the HRTF’s corresponding to their angles of arrival,
before being added together. 11 different speech-noise configura-
tions were tested, where the azimuthal angles (defined clockwise
with 0◦ as frontal direction) of the noise source(s) are varied. The
speech source is always at 0◦, except for the last scenario where it
is at 270◦ (to the left of the head). The first six scenarios have a sin-
gle noise source at an angle between 60◦ and 300◦. Scenarios N2a,
N2b and N2c have two noise sources at [−60◦,60◦], [−120◦,120◦]
and [120◦,210◦] respectively. Scenario N4 has four noise sources at
60◦,120◦,180◦ and 210◦. Finally, for scenario S270N180 the target
speech source is at 270◦ and the noise source is at 180◦.
For the noise (interference) signal(s) multitalker babble noise

is used. The target speech signal consists of 6 instances of speech-
shaped noise, with periods of silence (12 s of speech, total signal
length 24s). Average spectra of the target and interference signals
can be found in [9]. The stimuli were scaled to obtain an input SNR
of 0 dBA.
To assess the impact on speech intelligibility, a speech intelligi-

bility (SI) weighted SNR improvement is calculated [10], i.e.

∆SNRSI =
X

i

Ii (SNRi,out−SNRi,in) , (22)

where the band importance function Ii expresses the importance of
the ith one-third octave band with center frequency f ci for intel-
ligibility. The last 12 seconds of the output signals are selected
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to measure the obtained output SNR, so that the performance after
convergence can be assessed.
A comparison is made between the QRD-RLS algorithms pro-

posed in this paper, and the adaptive frequency domain SDW-MWF
algorithm in [1] (unconstrained block-structured step size imple-
mentation). All algorithms are implemented in a weighted overlap-
add (WOLA) filterbank framework [11], as this is a flexible frame-
work suitable for hearing aid applications. The signals are sampled
at 20480 Hz, and are processed by 128-point FFT’s (with a frame-
overlap of 32 samples). The MWF-based algorithms are also com-
pared with a (time-domain) implementation of the GSC [4]. The
fixed beamformer and blocking matrix of the GSC preprocessing
stage are calibrated assuming the target speech source is located at
0◦. To avoid speech cancellation, the GSC filters are only updated in
periods where the target speech source is inactive. The filterlength
was chosen so that the total input-output delay of the GSC algorithm
is equal to the input-output delay of the WOLA filterbank.

All tested algorithms require voice activity detection (VAD),
which will be assumed to be perfect in these simulations.

4.2 SI weighted SNR improvement
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Figure 1: SI weighted SNR improvement at left output

In figure 1, the SI-weighted SNR improvement for the 11 different
speech-noise scenarios is shown. The curves denoted with SDW-
MWF are the performances obtained with the algorithm in [1],
which is based on the general SDW-MWF formula (5). The curves
denoted with R1-MWF and SP-MWF are the performances obtained
with the QRD-RLS based algorithms for the filters (9) and (20) re-
spectively. In order not to overload the figure, only the case µ = 5
is shown for the SP-MWF. Finally, the curve denoted with GSC is
the performance obtained with the GSC algorithm [4].

It can be observed that the R1-MWF (and SP-MWF) seems in-
sensitive to changes in µ , with respect to speech intelligibility. This
is actually expected, as in theory, the output SNR per frequency bin
is independent of µ [5]. Therefore the intelligibility weighted SNR,
where SNR values are measured per one-third octave band, should
indeed not change significantly as µ changes.
In theory the SDW-MWF is equivalent to the R1-MWF and

SP-MWF for a single target speech source so that its performance
should also be independent of µ . However, figure 1 illustrates that
in practice, the performance of the SDW-MWF algorithm is highly
dependent on µ , i.e. if µ is chosen too small, the performance de-
grades. This effect was also observed in [5] where the performances
of the batch filters were studied. The batch results indicated that the
R1-MWF and SP-MWF are inherently more robust to errors in the
estimated speech statistics than the SDW-MWF. The same effect is
now also observed in the performance of the adaptive implementa-
tions.

Figure 1 also illustrates that the GSC algorithm is outperformed
by the MWF algorithms. It was demonstrated in [12] that the GSC
is particularly sensitive to microphone mismatch, in contrast to the
MWF. In practice, microphones are rarely matched in phase and
gain, even in a single hearing aid. For a binaural hearing appli-
cation where the microphone signals of two separate hearing aids
are combined, the microphone mismatch may be even more severe,
which can explain the lower performance of the GSC in these simu-
lations. Additionally, when the target speech location deviates from
the assumed speech location (as for scenario S270N180), it can be
seen from figure 1 that the GSC performance also degrades. Fi-
nally, we note that algorithms such as the GSC which make use of
a fixed preprocessing stage, may also degrade localization perfor-
mance, whereas a binaural MWF algorithm enables correct local-
ization [9].

4.3 Impact of µ: single channel postfilter
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Figure 2: Broadband SNR improvement at left output

In figure 2, the broadband SNR improvement (i.e. the SNR cal-
culated on the broadband time domain output signals, without SI

weighting per one-third octave band) is shown for the R1-MWF1,
for different values of µ . As can be seen from (9), µ appears in the
single channel spectral postfilter part, and therefore acts as in single
microphone spectral subtraction algorithms [13]. If µ is increased,
more residual noise is attenuated, hence increasing the broadband
SNR by a few dB’s. Although speech intelligibility is not improved
(cfr. previous section), the listening comfort can be increased at the
cost of more speech distortion.
A problem may arise when the estimated tr{Mvy} takes too

large or too small values. Constraining the postfilter between an
upper and lower bound in this case, can give rise to musical noise
artifacts, as is explained in [13]. This is especially the case when
a small value of µ is chosen, as the postfilter value is then more
dependent on tr{Mvy}. A possible solution would be to make µ
dependent on the conditional speech presence probability as in [14].
In frequency bins where speech is absent, µ can be increased so that
the residual noise is reduced and musical noise artifacts are also
avoided, while the speech signal is not affected.

4.4 Robustness: effect of fixed wordlength

Figure 3 illustrates the effect of quantizing the values of the noise
correlation matrix (or its Cholesky factor), for the spatial scenario
N270 and for µ = 5. The QRD-RLS based implementation of

1The SP-MWF with speech distortion extension (8) behaves similarly to

R1-MWF, but seems slightly less aggressive. Namely, for the same value

of µ , although less SNR improvement is obtained, the filter introduces less
speech distortion.
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the R1-MWF is compared to an algorithm without QRD-RLS, i.e.
where the filter is calculated as in (6), using the noise correlation
matrix estimate (4). The SNR performance of the QRD-RLS al-
gorithm stays close to the optimal performance (i.e. the perfor-
mance obtained without quantization, as shown in figure 2) when
the wordlength is reduced, whereas the performance of the algo-
rithm without QRD-RLS degrades.
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Figure 3: Effect of fixed wordlength in the noise correlation matrix

5. CONCLUSION

In this paper, we have shown that the adaptive frequency domain
SDW-MWF can be realized with an efficient and robust QRD-RLS
updating scheme.
Simulations on a binaural 4-microphone hearing aid setup show

an improved speech intelligibility weighted SNR compared to the
adaptive algorithm in [1], especially for small values of the trade-off
parameter µ . Moreover, in contrast to the algorithm in [2], µ can be
different from 1 without needing large circular buffers. The QRD-
RLS algorithm can thus be used for smaller values of µ (low distor-
tion beamforming), as it does not suffer from the same performance
decrease as [1], but can also be used for larger values of µ , if the
broadband SNR (and thus listening comfort) should be increased.
Additionally, as the processing is performed in the frequency do-
main in contrast to the algorithm in [2], computational efficiency
is increased. Finally, it was demonstrated that the QRD-RLS algo-
rithm has a higher numerical robustness so that the wordlength can
be reduced.
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