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ABSTRACT
This paper addresses the problem of interpolating a (non-
bandlimited) signal from a discrete set of noisy measurements
obtained from non-δ sampling kernels. We present a linear
estimation approach, assuming the signal is given by a con-
tinuous model for which first and second order moments are
known. The formula provides a generalization of the well-
known discrete-discrete Wiener style estimator, but does not
necessarily involve Fourier domain considerations. Finally,
some experiments illustrate the flexibility of the method under
strong noise and aliasing effects, and shows how the input
autocorrelation, the sampling kernel and the noise process
shape the form of the optimal interpolating kernels.

1. INTRODUCTION

Sixty years after Shannon’s key contribution, we observe a
revived interest in sampling theory mainly due to new devel-
opments in e.g., spline-based signal processing [1, 2, 3], and
estimation theory [4]. The essential message of the present
paper is that even for non-ideal sampling, that is: for non-
bandlimited signals and/or for sampling kernels that strongly
deviate from Dirac δ -pulses, a linear reconstruction which
is optimum in the least squares (LS) sense is possible and
attractive. This statement should appear obvious and self-
evident to anybody trained in statistical signal processing, but
there is only very few work which actually goes along that
line. This linear MMSE solution can be achieved in a much
more straightforward way than this may appear from earlier
publications on reconstruction from non-ideal sampling. For
this approach, the input signals are assumed to be realizations
from a wide-sense stationary (WSS) process, and the first and
second order moment functions – the autocorrelation function
(ACF) – must be given, or estimated. We do not see many
practical situations where these very mild requirements cannot
be met. The range of application of this approach includes sit-
uations when we do not deal with bandlimited signals, that is:
even if the conditions of the Whittaker-Shannon-Kotel’nikov
(WSK) theorem are not met. The price to pay for that is
(obviously) that a perfect reconstruction is not possible, but
a simple, straightforward MSE-optimal solution may be an
attractive goal in many situations anyway.

We stress that the essential mathematical principles em-
ployed here date back to Gauss and Wiener, and that the
decisive point is to use these principles in an unbiased man-
ner. The richness of this theory lies partly on the fact that
it is easily adaptable to different tasks in signal and image
processing, such as optimal filtering [5]. We focus on this
work in the reconstruction from regularly spaced noisy dis-
crete samples, also known as smoothing or approximation [6].
Statistical approaches to reconstruction from samples have

received little attention in the signal and image processing
literature during the recent two decades, whereas early exten-
sive work using Wiener filtering (e.g. [7], or [8]) seems to
be forgotten or pushed aside, possibly due to the extensive
usage of formulations in the Fourier domain, which do not
really simplify the exposition and practical application in case
of discrete signals. However, more recently, statistical recon-
struction methods seem to regain attention. These methods
can be classified as discrete or continuous approaches. On the
discrete side, the work of Leung et al. [9] on image interpola-
tion shows a comparison on the performance between several
ACF image models for both ideal and nonideal sampling. Shi
and Reichenbach [10] derive the Wiener filter for 2-D images
in the frequency domain, and propose a parametric Markov
random field to model the ACF from the sampled (low reso-
lution) data. On the continuous counterpart, Ruiz-Alzola et
al. [6] present a comparison between Kriging (a quite popular
interpolation method in geostatistics) and Wiener filtering,
based on finite sets of noisy samples. A short section in a
contribution by Ramani et al. [11] determines the filter in the
frequency domain.

In contrast to that, we proceed as follows: we first find
the optimal MMSE estimator in the case where only a fi-
nite number of samples are available. This is also done in
[6], but in contrast to that paper we also provide the con-
nection to the case of infinitely many discrete samples. The
formula obtained is shown to be equivalent to the frequency
domain version presented in [12], but both its derivation as
well as its final structure are simpler than in [12]. A short
section provides the link between the proposed formula and
the WSK theorem. For completeness, we review the usual
discrete-discrete approach, as found for instance in [13, 8],
and illustrate with some experimental results.

2. NOTATION AND FUNDAMENTAL
ASSUMPTIONS

In this work, we denote discrete signals with brackets, e.g.,
c[k],k ∈ Z and continuous signals with parenthesis, e.g.,
s(x),x ∈ R. The continuous-space Fourier transform of a sig-
nal s(x) is expressed as S(ω) and the discrete-space Fourier
transform of a sequence c[k] is expressed as C(e jω). Dis-
crete convolution is indicated with an asterisk (∗) and for its
continuous counterpart a star (?) is employed. We write f̄ (x)
(resp. p̄[k]) for the time-reversed function f̄ (x) = f (−x) (resp.
p̄[k] = p[−k]). Each of the stochastic processes considered
here is a zero-mean wide-sense stationary (WSS) process,
unless explicitly stated otherwise. For such a process {s},
we denote by rss(d) its autocorrelation (or autocovariance)
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Figure 1: The block diagram represents the sampling-
reconstruction problem.

function (ACF), namely,

rss(d)
de f
= E [s(x) · s(x+d)] , x arbitrary.

For a random vector ~g, Cg denotes its covariance matrix,

Cg
de f
= Cov [~g,~g] = E

[
~g ·~gT ] .

For reasons of compact and simple presentation, we ad-
dress the problem in a single dimension; generalization to
higher dimensions is straightforward. The process of sam-
pling and reconstruction can be summarized as follows: the
input signal s(x) is sampled with a sampling device character-
ized by the analysis kernel1 a(x) and the sampling raster width
D. Thus, if we define the function z(x) as the convolution
between the signal s and the kernel a, i.e.,

z(x) = (s? ā)(x), (1)

then the samples g[k] are given by

g[k] = z(kD)+ v[k], k ∈ Z,

where v represents a zero-mean noise term with known co-
variance function rvv.

The samples are called ideal (or the sampling process is
said to be ideal) if the analysis kernel a(x) is equal to the
Dirac impulse δ (x). In this case and in the abscense of noise,
the sample g[k] agrees with the signal value s(kD).

The reconstruction aims at finding a linear estimate ŝ(x)
of s(x) from the samples g[k] of the form

ŝ(x) =
+∞

∑
k=−∞

g[k] · rrec(x− kD), (2)

that is optimum in the least squares sense, that is: the second
power Q of the error signal should be minimized. We call
the function rrec the reconstruction kernel. In contrast to
e.g.[14], the expectation is performed over the error signal
process as well as over {s(x)}, that is: s(x) is considered
to be a realization of a random process. In agreement with
other authors [1, 12], we show in Section 4.2, that the recon-
struction process can be formulated as a two-step process, by
first applying a discrete filter on the samples, and secondly
convolving the resulting sequence {u[k]} with a continuous

’generating function ’ ϕ(x). Symbolically,

ŝ(x) =
+∞

∑
k=−∞

u[k] ·ϕ(x− kD). (3)

The diagram shown in Fig.1 illustrates this process.
1see [2, p. 571]

3. OBTAINING THE COVARIANCE FUNCTIONS

For readers familiar with linear estimation theory, it is
not at all surprising that the optimal reconstruction ŝ de-
pends only on the covariances Cov [s(x),s(x̃)] = rss(x− x̃),
Cov [s(x),g[k]], and Cov [g[k],g[`]]. In this section, we ex-
press the last two covariances in terms of the signal autocor-
relation function rss, the sampling kernel a, and the noise
autocorrelation rvv, by adapting results from the theory of
linear systems with stochastic inputs.

Eq.1 is the defining expression for the linear shift-invariant
(LSI) system with stochastic input s(x), impulse response ā,
and output z(x). According to the well-known correlations
formulas for LSI systems (cf. [15, p.272]), an straightforward
adaption to our current setting shows that

rsz(τ) = (rss ?a)(τ), (4)
rzz(τ) = (rss ?a? ā)(τ). (5)

Assume furthermore that the noise and the signal are uncorre-
lated. Then, we obtain

Cov [g[k],s(x)] = Cov [z[kD],s(x)] = (rss ?a)(x− kD), (6)

as a consequence of eq.4. Similarly,

Cov [g[i],g[`]] = Cov [z[iD],z[`D]]+Cov [v[i],v[`]]
= (rss ?a? ā)((`− i)D)+ rvv[`− i], (7)

following eq.5.

4. MMSE ESTIMATION IN THE MIXED
CONTINUOUS-DISCRETE CASE

4.1 Estimation from finite noisy samples
Let us assume that we observe K samples from the signal
s, which are assembled in the vector ~g = (g[N1], . . . ,g[NK ])T .
There are no special requirements on the choice of the sam-
pling locations Ni, but in our case we assume that they are
equally spaced. For each point x, we design the estimate ŝ(x)
to explicitly depend linearly on the sample vector~g as follows:

ŝ(x) = ~wT (x) ·~g. (8)

where the weighting vector ~w is to be chosen in order to
minimize the mean-square error Q = E

[
(s(x)− ŝ(x))2

]
.

Introducing the vector

~f (x)
de f
= ( f1(x), . . . , fK(x))T

where

fi(x) = E [s(x) ·g[Ni]]
= (rss ?a)(x−NiD),

(using eq.6), and noticing that the element cg(i, `) of the co-
variance matrix Cg equals

cg(i, `) = (rss ?a? ā)((N`−Ni)D)+ rvv[N`−Ni], (9)

in virtue of eq.7, then a short algebraic manipulation shows
that the optimal ~w, given by the critical point of Q, satisfies
the normal equation

Cg ·~w = ~f (x). (10)
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Substituting in eq.8, we conclude that the optimal estimate
ŝ(x) is given by

ŝ(x) = ~f T (x) ·C−1
g ·~g, (11)

and the variance of the error term e(x) = s(x)− ŝ(x) equals

Var [e(x)] = rss(0)−~f T (x) ·C−1
g ·~f (x).

4.2 The case of infinitely many noisy samples
Let us address the case where the sample sequence ~g is in-
finitely long, i.e., ~g = (g[k])k∈Z. Then we need to reinterpret
eq.10 and eq.11 accordingly. In particular, Cg can be inter-
preted as a linear operator that maps an (infinitely long) vector
~w to

Cg ·~w = (~ci ·~w)i∈Z (12)

where, for a fixed i, ~ci is the ‘i-th row” of Cg, that is, ~ci
given by eq.9, and the product in 12 should be understood in
some appropriate sequence space, `2 being the usual choice.
Another interpretation is to characterize Cg as a convolution
operator: in fact, eq.12 can be written as

Cg ·~w =~t ∗~w,

where
t[i] = (rss ?a? ā)(x)

∣∣
x=iD + rvv[i].

Now, assume that Cg is an invertible operator and let~u be
the unique vector such that

Cg ·~u =~g.

In terms of convolution,~t ∗~u =~g. Therefore, the formula for
the optimal estimate ŝ(x), derived in eq.11, reduces to

ŝ(x) = ~f (x)T ·~u.

Expanding this product we obtain

ŝ(x) =
∞

∑
i=−∞

ui · fi(x)

=

(
∞

∑
i=−∞

ui ·δ (x− iD)

)
? (rss ?a)(x). (13)

From this formula, we can fully describe the reconstruction
process as a two-step process:
(i) The samples~g are linearly filtered by a discrete-discrete

filter characterized by the matrix C−1
g , whose impulse

response is given by the inverse under convolution of the
vector~t.

(ii) The filtered samples ~u are linearly filtered with a discrete-
continuous filter whose impulse response is given by
ϕ(x) = (rss ?a)(x).

This completes eq.3 and the reconstruction diagram in Fig.1.

4.3 Connection with Fourier domain formulation
In [11], the authors express the reconstruction process just
described (for the case D = 1) by rewriting the estimation
problem in the frequency domain and expressing the discrete-
discrete filter in terms of its Fourier transform. We proceed to

verify that the result obtained in [11] is (as expected) equiva-
lent to the one contained in eq.13.

Let pW be the convolution inverse of~t, and let qW = ϕ

(the notation is chosen in order to match that of [11]). By
definition of the convolution inverse and the formula of~t, we
have that

pW [k]∗
(
rvv[k]+ (qW ? ā)(x)

∣∣
x=k

)
= δ [k].

Taking Fourier transform on both sides, we obtain

PW (e jω) ·
(

Rvv(e jω)+
∞

∑
k=−∞

QW (ω +2πk) ·A(ω +2πk)
)

= 1.

Therefore, the impulse response of the discrete-discrete filter-
ing step in Fourier domain equals

PW (e jω) =
1(

Rvv(e jω)+
∞

∑
k=−∞

QW (ω +2πk) ·A(ω +2πk)

) ,

which coincides with formulas (49) and (50) given by Ramani,
Van de Ville, Blu, and Unser in [11].

4.4 Connection to WSK theorem
As a simple illustration, we show that the WSK theorem is a
particular case of eq.13. The WSK conditions assume that the
analysis kernel is ideal, namely, a(x) = ā(x) = δ (x), and the
process s to be bandlimited. For simplicity, let the process {s}
be uniformly bandlimited to the frequency fmax = 1

2D . Thus,
its power spectrum density is given by Rss( f ) = rect(D · f ),
and consequently, its autocorrelation function is given by
rss(d) = 1

D sinc
( d

D

)
. Then, we see that

fi(x) = sinc
( x

D
− i
)

, and

Cg ·w = ~t ∗~w =
1
D

~w

Substituting these results in eq.10 and simplifying, we obtain
~w =

(
sinc

( x
D − i

))
i∈Z and the optimal estimate ŝ(x) is given

by
ŝ(x) = ~w ·~g = ∑

i
s(iD) · sinc

( x
D
− i
)

,

which coincides with the WSK interpolation formula. It is
also possible to check that the error is actually zero.

5. MMSE ESTIMATION IN THE
DISCRETE-DISCRETE CASE

In this section, we provide a short description of the recon-
struction process in the case where the original process is
assumed to be discrete, in order to show how it follows as a
special case of the mixed continuous-discrete setting previ-
ously studied. The discrete-discrete setting is probably the
most popular among researchers since first, DSP implementa-
tions of the principles shown so far are to be implemented in
terms of discrete signals anyway, and second, the necessary
mathematical tools are significantly simpler to handle. As
should be expected, the reconstruction has the same basic
form as the one found in Section 4.
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So, assume that the signal ~s = (s[1],s[2], . . .s[M])T is a
realization of a WSS discrete process {s[n]} and the sam-
ples g[k], arranged in the vector ~g = (g[1],g[2], . . .g[K])T

are obtained by performing the scalar product of the se-
quence {s[n]} with an analysis kernel sequence ak[n] accord-
ing to g[k] =~aT

k~s+ v[k]. In matrix form, ~g = H ·~s+~v, where
H is the matrix whose ith row equals ~aT

i , for i = 1, . . . ,M.
It is assumed that there exists a positive integer D such that
M = KD (subsampling factor).

If the estimate ŝ[m] of s[m] is modeled as a linear function
of ~g according to ŝ[m] = ~wT

m~g, then following the same con-
siderations for the mixed continuous-discrete approach, one
can show that the operator Cg and the vector ~f are given by

Cg = HCsHT +Cv, ~f = HCT
s ,

and thus the optimal estimate ~̂s (in the MMSE sense) of the
vector~s is given by

~̂s = CsHT (HCsHT +Cv
)−1

~g.

This is of course the well-known discrete-discrete
Wiener/Bayes estimator formula available in [13, p.364] and
in [8, p.292].

6. EXPERIMENTS

In this section, we illustrate the method presented before using
two types of process. The first one is a third order autore-
gressive process AR(3) formed by applying three times the
impulse response h(s) = 1/(1−αs) to a white noise process,
with α = 0.95. We will label this process as AR(3,α).

For this value of α , the process AR(3,α), although non-
bandlimited, is quite smooth and is thus a study case for which
the sampling-reconstruction process does not strongly deviate
from the WSK conditions.

The second type of process is a first order normalized
AR(1) or Markov process, whose ACF is given by rss(d) =
α |d|,0 < α < 1. We denote this process by AR(1,α).

The sampling process for both type of processes was
performed using the ’averaging’ analysis function a(x) =
rect(x/τ). The values of τ used were τ = 1 (maximum width),
τ = 3/5 (intermediate width) and τ→ 0 (ideal sampling). The
SNR (in db) was computed according to 10log10(σ

2
s /σ2

v ).
Reconstruction results from nonideal noisy samples for

AR(3,α) are shown in Fig.2. We remark that, due to the pres-
ence of noise, the optimal reconstruction does not necessarily
pass through the samples, as they are just partially reliable.

In Fig.3 we show reconstruction kernels, that is, the func-
tion rrec(x) in eq.2, for the process AR(3,α), with nonideal
sampling in Fig.3 a) and with ideal sampling in Fig.3 b). In
this case, the non-δ kernel a(x) has an stretching effect on
the shape of the kernel, due to the averaging operation per-
formed according to eq.13. The effect is more noticeable
under favorable noise conditions. Moreover, for both plots
presented in Fig.3, the noise has a clearly visible damping
effect on the reconstruction kernel, in an attempt to reduce
the influence of high frequencies. Nevertheless, notice that
the two dashed kernels (SNR=10 db) in Fig.3(a) and (b) are
indeed very similar to each other. Thus, the magnitude of the
damping effect caused by the noise term on the interpolating
kernels depends on the signal statistics and the analysis kernel.
This agrees with what was observed in [9].

−8 −4 0 4 8
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−8 −4 0 4 8
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b)a)

SNR = 10 dBSNR = 40 dB

Figure 2: Examples of optimal reconstructions for the third
order process AR(3,α) with α = 0.95. Dashed line: input sig-
nal. Solid line: reconstructed signal. Filled circles: nonideal
noisy samples. Both process were sampled using τ = 1.
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Figure 3: Examples of optimal reconstruction kernels for the
third order process AR(3,α) with α = 0.95, under different
noise levels. For figure a), the process was sampled using
τ = 1 (maximum width), while for figure b), the sampling
process was ideal. Solid line: SNR=40 db. Pointed line:
SNR=20 db. Dashed line: SNR=10 db.

For the AR(1,α) process, Fig.4 shows the reconstruction
results for α = 0.98. This process is then not bandlimited
but the area of the nonbandlimited part of the signal accounts
only for about 10% of the total integral.

In Fig. 4 (c) the interpolation looks almost piecewise lin-
ear, but is actually of exponential type. This family of kernels
are known in the literature as exponential splines [3]. Consid-
ering that Markov models are in many situations adequate for
both image and geostatistics data, then it is not surprising that,
in certain cases, linear interpolation outperforms other more
more sophisticated polynomial splines interpolating functions.
Fig. 4 (a) and Fig. 4 (b) are included in order to stress the
smoothing effect of the analysis kernel on the reconstructions.

For positive values of α away from 1, AR(1,α) processes
exhibit very high frequencies, thus violating drastically the
WSK conditions. Therefore, any attempt to reconstruct the
signal from discrete samples as performed in the previous
cases renders a very rough estimate of the signal. In any case,
it is interesting to regard these extreme cases for which the
optimal interpolation scheme is far from being linear. Fig.5
shows reconstruction kernels for AR(1,α) with α = 0.70 and
α = 0.50. Decreasing the value of α produces an increase on
the concavity of the kernel in the ideal sampling case. This
effect is in agreement with the examples shown in [3].

In summary, we see that the linear MMSE estimator is
able to handle both mild and strong aliasing, as well as noise
present on the samples, and the resulting interpolating func-
tion include the ubiquitous sinc and polynomial interpolation-
type schemes, as well as other more exotic examples.

1294



−8 −4 0 4 8

−1

0

1

2

−8 −4 0 4 8

−1

0

1

2

−8 −4 0 4 8

−1

0

1

2

−8 −4 0 4 8

−1

0

1

2

c) d)

a) b)

Figure 4: Examples of optimal reconstructions for the first
order process AR(1,α) with α = 0.98. The thin red line is
the original signal, while the thicker blue line is the optimal
reconstruction from the samples shown. Figure a): nonideal
sampling with τ = 1, noiseless conditions. Figure b): nonideal
sampling with τ = 1, SNR=10 db. Figure c): ideal sampling,
noiseless conditions. Figure d): ideal sampling, SNR=10 db.
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Figure 5: Examples of optimal reconstruction kernels for the
first order process AR(1,α) under noiseless conditions for
three different values of the width τ . Figure a) shows results
for α = 0.70, while for figure b), α = 0.50 was used. Solid
line: τ = 1. Pointed line: τ = 3/5. Dashed line: τ → 0.

7. CONCLUSION

We have shown how to obtain a mixed continuous-discrete
version of the Wiener/Gauss-Markov estimation technique
commonly known for discrete data. It is applicable to the
problem of interpolating a signal from nonideal samples, un-
der the criterion of minimizing the MSE. For this approach, it
is not necessary to assume a bandlimited input process; the
derivation is straightforward and does not need a frequency
domain formulation. There is a strong relation of our results
shown here both with [4, 11] as well as with the classical
’smoothing splines’ approach by Wahba [16]. The most im-
portant difference to all these works is that the interpolation
kernel is determined here directly from the measurable (!)
statistical properties of the regarded signals, and does not re-
quire to set up a priori a class of signals (polynomial splines,
exponential splines) in which the solution has to reside. Fur-
thermore, with given statistical models for the signal and the
noise there is no need to reason about the determination of
a ’regularization parameter’ λ , since the correct balance be-

tween the measurement model and the prior follows directly
from the theoretical framework, thanks to Mr. Wiener.
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[5] M. Mühlich and R. Mester, “A statistical unification
of image interpolation, error concealment, and source-
adapted filter design,” in 6th SSIAI, 2004, pp. 128–132.

[6] J. Ruiz-Alzola, C. Alberola-López, and C. Westin,
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