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ABSTRACT

Blind source separation (BSS) consists in processing a set of ob-
served mixed signals to separate them into a set of original compo-
nents. Most of the current blind separation methods assumes that
the source signals are “as statistically independent as possible”. In
many real-world cases, however, source signals are considerably
dependent. In order to cope with such signals, we proposed in [1]
a geometric method that separates dependent signals provided that
they are nonnegative and locally orthogonal.

This paper also presents a geometric method for separating non-
negative source signals which relies on an assumption weaker than
local orthogonality. The separation problem relies on the identifica-
tion of relevant facets of the data cone. After a rigorous proof of the
proposed method, we give the details of the separation algorithm
and report experiments carried out on signals from various origins,
clearly showing the contribution of our method.

1. INTRODUCTION

Blind source separation (BSS) is a data processing task which is
commonly know as the cocktail-party problem. A concrete descrip-
tion of the problem assumes we are in a cocktail-party where many
groups of person are speaking. There are also many sensors (micro-
phones) scattered in different spots. Each sensor performs a record-
ing of the sound detectable in the spot where it is. The goal is to
retrieve the speech given by each person from the various record-
ings.

There has been a considerable interest for separating source sig-
nals blindly because such a situation occurs in numerous fields such
as analytical chemistry [2], communication [3], data mining [4],
medical sciences [5]. .. More formally, solving a blind source sepa-
ration problem consists in retrieving n unknown source signals from
n of their mixtures, despite the lack of information about the mixing
process. This can be expressed, in the instantaneous and noiseless
case, by the following equation:

X =AS (1

where X is an n x m matrix holding in its rows the detected sig-
nals. A is an n X n mixing matrix whose entries are the unknown
mixing coefficients and S is an n X m matrix holding in its rows
the unknown source signals. A full identification of A and S is
not possible because the sources can be permuted and scaled pro-
vided that the columns of A are transformed accordingly. More pre-
cisely, if P is a permutation matrix and A a nonsingular diagonal
matrix then we have: AS = (APA)(A~!P~LS). The pairs (A, S) and
(APA,A~'P~15) are regarded as equivalent solutions in the sense
of BSS problems. However, the model described by (1) is not vi-
able in practice. Indeed, a more realistic model is the one involving
additive noise:

X =AS+N 2

where N is an n X m matrix modeling the sensor noise. This of
course yields a more difficult problem because the components of
N are also unknown.
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The blind separation of signals has been studied in the field of
statistical signal processing where the concept of independent com-
ponent analysis (ICA) is used to recover the source signals [6]. The
mixtures and sources are therefore defined as sampled functions
of n acquisition variables who may correspond to time slots, fre-
quency slots, positions, wavenumber, etc... depending on the nature
of the physical process under investigation. ICA-based methods
focus on source signals that are statistically independent. But, in
practice, these methods may be applied even if statistical indepen-
dence does not hold. In such case, the goal is to find a set of source
signals that are “as statistically independent as possible” given the
observed signals. But the quality of the separation is degraded as
dependence between sources increases. The separation process is
achieved through the use of mathematical tools from second order
statistics [7], fourth order statistics [6, 8] or information theory [9].

Estimated sources presenting as few dependence as possible,
given the observed data, may not be satisfactory, especially when
the true source signals are known to be correlated. This situation
happens in many scientific fields, like in the medical or the
chemical fields [2, 5]. The present work originates from analytical
chemistry, more precisely, from nuclear magnetic resonance
(NMR) spectroscopy of organic molecules in solution. There is
no reason postulate the non-correlation of the NMR spectra of the
molecules that form a mixture produced by a chemical reaction
or extracted from a biological system. This is particularly true if
the molecules share common structural features and therefore are
difficult to separate by a chemical process. The NMR technique
allows the practical realization of diffusion filters that modulates
signal intensity according to the translational diffusion coefficient
of the molecules [10]. Like in imaging techniques, the signals have
positive values. Therefore, there is a need for blind separation
algorithms that incorporate this constraint imposed by the physical
origin of the signals.

In a previous paper, we proposed a geometric method designed
for nonnegative and locally orthogonal source signals [1]. The blind
source separation is therein expressed as the identification of the
extreme directions of the cone containing the data. The geometric
approach has been explored in many works ever since [18, 20, 19].
This paper presents an improvement of the method proposed in [1].
It addresses the weakening of the local orthogonality assumption.
The latter is replaced by an assumption that can be informally
described by a “good” distribution of the source points in the
nonnegative orthant. We show that under the new hypothesis, the
separation process can be expressed as the identification of relevant
facets of the data cone.

The paper is organized as follows. In section 2, we remind
some notions and properties of convex geometry. Section 3 provides
the theoretical basis of our method. The separation algorithm is
described in section 4. Section 5 reports experiments carried out on
real-world source signals providing a comparison between the JADE
algorithm [8] and ours. Finally, section 6 is a brief conclusion.
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2. ELEMENTS FROM CONVEX GEOMETRY

Let us first remind some concepts and properties from convex ge-
ometry, the theory on which the proposed method is based. For
more on the definitions and proofs omitted in this section see [11].
To begin with, we introduce some notations. We write A C B
to mean that each column of matrix A is collinear to, at least, one
column of matrix B. If A C B and A has less columns than B then we
write A C B. By A\‘, (resp. A\,-), we denote the submatrix obtained

from A by removing the i’ column (resp. row).

2.1 convex cones

A subset # of Euclidean space IR" is a convex cone iff ajx| +
x, € % forall xp,x; € % and a;,ap > 0. The dimension of
a convex cone is given by the dimension of the smallest affine set
containing it.

Let X be a matrix of IR”*™. The subset of IR” defined by

Z =cone(X) ={Xo | a > 0} 3)

is a convex cone which is termed polyhedral and X is said to be a
generating matrix of 2~ since every element of 2" is a nonnegative
linear combination of X columns.

Let 2 be a convex cone. % is said to be pointed if and only
if it does not contain an element x and its opposite —x, unless x is a
ZEro vector.

2.2 Extreme directions

Let J# be a pointed convex cone. A nonzero vector xg € £ is an
extreme direction of ¢ iff for all o, > 0 and for all x;,xy €
A \{agxe | ag > 0}, we have xg # 0x1 + 0px;.

Clearly, if x¢ is an extreme direction of % then all otexe, 0 > 0
are also extreme directions of # and the subset { Qgxe | 0t > 0} is
called an extreme ray of J# . In what follows, all nonzero vectors
belonging to the same extreme ray will be considered as identical
directions.

If a matrix X holds exactly the set of extreme directions of a
pointed polyhedral convex cone 2 arranged columnar then X is
said to be a minimal generating matrix of 2. Let 2" = cone(X) be
a pointed polyhedral convex cone in IR". If X is fat full-rank (i.e.
rank(X) = n), then 2" is termed proper. 2" is called simplicial iff
it has exactly n extreme directions.

2.3 Dual cone

For any convex cone, its dual is a unique cone which is always con-
vex. When a polyhedral convex cone 2~ = cone(X) is pointed, its
dual 2™ can be expressed by means of a generating matrix of 2"

2*={yeR"|X"y>0} 0))

If the extreme directions number of a pointed, polyhedral and con-
vex cone does not exceed the ambient space dimension then its dual
can be defined by

2* ={xTa|o=0} 5)

were X1 denotes the pseudo-inverse of X. Equations (4) and (5) de-
fine the same cone. These are respectively the face description and
the vertex description of 27*. All cones that are pointed, polyhedral
and convex admit both descriptions. However, for pointed, polyhe-
dral convex cones whose extreme directions number is in excess of
the ambient space dimension, conversion between face description
and equivalent vertex description is not trivial [11]. In fact, this is
a well studied problem in convex geometry which can be solved by
various algorithms [12, 13].

Properties 1 For any convex cone % and its dual J#*, we have:
G =

(ii) For any convex cone ¢, we have # C K" = #* D H'*,
(iii) 7 is polyhedral if and only if J¢* is polyhedral.

(iv) X is proper if and only if ™ is proper.
(v) % is simplicial if and only if X is simplicial.

2.4 Cone faces

A face of cone ¥ is a cone . C ¥ such that for all x € .7, if
X = x1 +xp with x1,x, € # then x1,x, € .%. If 2# has dimension
n then a face of % having dimension n — 1 is called facet.

Properties 2

(i) The extreme directions of polyhedral proper cone 2 are respec-
tively orthogonal to the facets of its dual Z™*; likewise, the ex-
treme directions of polyhedral proper cone Z* are respectively
orthogonal to the facets of Z .

(ii) Given a nonsingular matrix A, if cone(F) is a face of a polyhe-
dral convex cone cone(S) then cone(AF) is a face of cone(AS).

3. METHOD

For the purpose of establishing the theoretical background of the
proposed method, we state the blind source separation problem by
considering the noiseless case:

Problem 1 Given a matrix X € R with n < m, find a nonsingu-
lar matrix A € R™" and a matrix S € R™™™ such that X = AS.

In our case, we are concerned with the separation of mixtures
obtained from nonnegative source signals. Hence, as a first working
hypothesis, we assume that the source matrix S is nonnegative:

Hypothesis1 S > 0.

A consequence of hypothesis 1 is that the column vectors of X
are constrained to be nonnegative linear combinations of the col-
umn vectors of A. Notice, however, that matrix X is not necessarily
nonnegative because A may contain nonnegative coefficients. For
this reason, nonnegative matrix factorization methods [17] cannot
be applied to problem 1. With the aid of hypothesis 1, the following
lemma expresses a week version of problem 1 in terms of a convex
geometry problem.

Lemma 3 Let A and X be two matrices with the same number
of rows, then there exists S > 0 such that X = AS if and only if
cone(X) C cone(A).

Proof:

(=): Let x be in cone(X). Then x = Xo, a = 0. It follows that
x=ASa, a = 0. But S = 0, then o' = Sax = 0. We therefore obtain
x=Ad/, o > 0, which is equivalent to x € cone(A).

(«): For any column x' of X, we trivially have x' € cone(X).
Since cone(X) C cone(A) then x' € cone(A) which is equivalent to
J st = 0,x' = As'. By applying this to every column of X, we obtain
X =AS, S = 0, where S is the matrix whose columns are the s'’s.

According to lemma 3, solving problem 1 amounts to finding a
simplicial cone containing the data cone 2~ = cone(X).

Our second assumption is that the n source signals are linearly
independent.

Hypothesis 2 The source matrix S is fat full-rank, i.e. rank(S) = n.

The statement of problem 1 imposes that the mixing matrix A is
nonsingular, then we deduce that data matrix X is also full-rank.
And since S is nonnegative, we can easily show that 2" is neces-
sarily pointed. Hence, 2" is a proper polyhedral cone. There is,
in general, an infinity of simplicial cones containing a given proper
cone. Indeed, suppose for instance that our data matrix is nonnega-
tive then all simplicial cones containing the positive orthant, contain
also the data cone and there is an infinity of such simplicial cones.
So we must resort to supplementary hypothesis in order to limit the
number of candidate solutions.

As a third hypothesis, we assume that the source points are
spread in such a way that every facet of the nonnegative orthant
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contains a facet of . = cone(S), the source cone. This can be
equivalently expressed by imposing that S contains n — 1 linearly
independent column vectors that are orthogonal to every vector e;
of the standard basis of IR".

Hypothesis 3 S contains n— 1 linearly independent column vectors
orthogonal to each e;, i: 1,...,n.

Let us designate by S;—( the matrix composed of the columns of §
which are orthogonal to e; and by .%;—¢ the polyhedral convex cones
generated by S;—g.

Lemma 4 .¥;_ is a facet of 7, for i:1,...,n.

Proof: Since S;— is a submatrix of § whose rank is n — 1 (hypothe-
sis 3) whereas S has rank n, we have .%;—y C .. Now, we show that
cones .%;—q,i: 1,...,n are faces of .. Let us prove that for every
s € S—g suchthat s =" 45" with s’ s” € .7, we have s’ s € .—y.

Since s € .%/—¢ then s; = 0. Moreover, s’ € .7, which implies
that s} > 0. Therefore, in order to have s = 5" +s”, s/ must be zero.
On the other hand, s’ € . then by distinguishing the columns of
Si=o from the other columns of S, (which are denoted S;(), we
can write s’ = S;_got + Siz00, with o, & = 0. More precisely,
;= (Si=0)i@ + (Siz0)i® = 0 and since (Sj—o); is a zero vector and
(Siz0)i is a nonnegative and nonzero vector, & must be zero. It
follows that s’ = S;_ga, « > 0, which is equivalent to §' € .%/—g.
We can proceed in the same manner to show that s” is also in .%;—.
Thus, % is a face of .. Finally, S;—¢ has rank n — 1, then .%;_
is a facet of ..

Lemma 5 Each facet of &/ contains a facet of Z .

Proof: According to lemma 4, .%o = cone(Si—g) is a
facet of . = cone(S). It follows, by property 2-(ii), that
Zi—o = cone(ASi—p) is a facet of 2 = cone(AS). But, the i/
row of S;—¢ is a zero vector. Then AS;—o = A\i(Si:())\,-. On the
other hand, by lemma 3, cone(A\i(S,-:o)\,-) C cone(A\V). Thus,
Zieo C cone(AV). But, cone(AV) C o/ trivially verifies the
face definition, moreover, the n — 1 columns of A\ are linearly
independent. Hence, cone(A\i ) is a facet of .27 The result follows.

Lemma 5 tells us that simplicial cone .2/ may be determined
through its facets which must contain facets of .2". These facets are
in turn identified by considering the dual cones.

Lemma 6 Each extreme direction of </ is an extreme direction of
A

Proof: First, notice that o7* and 2™ are both proper polyhedral
cones of IR” since &7 and 2" are so. Let a} be a nonzero extreme
direction of /*. According to property 2-(i), ag is orthogonal
to one of the facets of «7. The latter facet contains, according to
lemma 5, a facet of 2~ which will be denoted by .#. Then aj
is also orthogonal to .%. Again according to property 2-(i), .#
is orthogonal to one of the extreme directions of 2™* which will
be denoted by xi. Since .# has dimension n— 1, a; and x} are
necessarily collinear. Moreover, a; and x} belong to the same ray.
Indeed, since 2" C & and then 2™ D &7*, both x} and a} are in
Z*. Then x} and a; cannot have opposite directions otherwise
Z* will not be pointed. Thus, a; is also an extreme direction of

2.

A simplicial cone &7 = cone(A) can be determined via its dual
o/* = cone(A*). Indeed, by (5), we have

A=A"T (6)

Lemma 6 provides a necessary condition for a given direction
a* to be an extreme direction of &7*: a* must be an extreme di-
rection of 2 *. This condition can be written as A* T X* where

A* and X* are respectively composed of the extreme directions of
o/* and 2" arranged columnar. On the other hand, we know that
a simplicial cone is completely identified by the set of its extreme
directions. We begin therefore by computing the extreme directions
of Z™* from which we can identify those of 2#*. So far, we only
have a face description of 2™* given by (4), since X is the only
known matrix. Then, we have to obtain a vertex description of 2™
consisting of a matrix X* whose columns are the extreme direc-
tions of 2"*. This can be obtained by means of one of the existing
algorithms allowing the conversion from a face description to an
equivalent vertex description [12, 13].

As suggested by lemma 6, for simplicial cone .7 to be deter-
mined, one has to select n columns among those of X*. There are,
in general, many such combinations since X* may contain more
than n columns. It follows that, hypothesis 3 does not guarantee the
uniqueness of the solution to problem 1. Nevertheless, it constrains

the number of solutions to be finite. More precisely, we have (”r'l)
solutions which simultaneously verify hypothesis 1, 2 and 3, where
m* is the number of extreme directions of 2"*.

Theorem 7 The rows of S are among those of X*T X.

Proof: By (1) and (6), we have S = A*TX. On the other hand, by
lemma 6, each column of A* is a column of X* and then, each row
of A*T is a row of X*T, we deduce that the rows of § are among the
rows of X*TX.

At this stage, having found a set of candidate source signals
stored in the rows of X*7 X, we need a supplementary criterion in
order to select those corresponding to the true source signals. We
propose to select a set of n sources which are “as orthogonal as
possible” given the data. Since we are concerned with nonnegative
source signals, this requirement results in rather sparse source ma-
trices (where only a few of the components are significantly active).
Sparseness is a property which is often verified by nonnegative sig-
nals as outlined in [14]. An other advantage of maximizing orthogo-
nality is that, in accordance with hypothesis 2, non full-rank source
matrices should be avoided. Hence, we need to define degrees of
orthogonality. To this end, we propose to use the Gram determinant
as a measure of orthogonality:

I(S) = det(SS™) (7
where the rows s;,i: 1,...,n of § are assumed to have unit norm.
The properties of the Gram determinant (see [15]) imply that 0 <
I'(S) <TT-, |lsi||*> = 1. The signals stored in the rows of S are as
orthogonal as the associated Gram determinant is close to one. The
maximal value is reached when the rows of S are pairwise orthogo-
nal. Conversely, a value of I'(S) close to zero reveals nearly linearly
dependent source signals. Let X denotes the set of all n x m matri-
ces obtained by selecting any n rows from X*7 X and scaling them
to get unit row vectors. Then, as an estimate of the source matrix,
we propose the matrix that maximizes the expression:

Hypothesis 4 S = argmaxgcy I'(S).

Once, we have determined an estimate of source matrix S, we
can deduce an estimate of the mixing matrix according to (1).

4. ALGORITHM

The DEDS algorithm (for Dual Extreme Direction-based Separa-
tion) (see Function 1) is an implementation of the blind source sep-
aration method described in section 3. It is composed of two main
steps. The first step consists in computing X*, a matrix that gen-
erates the dual of the data cone. This step can be achieved by the
O(mn®>m*) algorithm proposed in [13] where m* denotes the num-
ber of extreme directions of 2. It can also be performed by the
double description method [12] for which there is an implementa-

tion running in O(m!"/2) steps.
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The second step consists in extracting an estimate of the source
matrix by selecting n rows from those of the matrix product X*7 X.
Note that by (4), X*T X is a nonnegative matrix. According to hy-
pothesis 4, the n selected rows must be associated with the max-
imum value of function I'. Finding a globally optimal solution is
computationally a difficult task (we suspect that it is NP-hard). For
efficiency reasons, we used a polynomial greedy algorithm which
has experimentally proved to give satisfactory sub-optimal solution
in short times. This algorithm uses the orthogonality measure de-
scribed above which is, nevertheless, expressed in a more appro-
priate form. This is intended to avoid a repeated computation of
determinants, a task that may slow down the separation process.

Using the Gram-Schmidt orthogonalization, we can easily
prove that

1(S) = det(ssT) = [T I ®)
i=1

where the r;’s are iteratively defined as the difference between s;

and its orthogonal projection on the range of ry,ry,...,rj_1:
i—1 T
il
ri=si— Y, 5k ®
k=1 ll7ll

The DEDS algorithm calls function OptGramDet which begins
by scaling the rows of X*T X to obtain unit norm vectors. Denote by
Y the resulting matrix. At iteration #, the algorithm determines the
row s; of Y which is associated with the maximum | r;|| according to
(9). At a first glance, s can be any of the rows of Y since all these
vectors have unit norm and by (9), we have r| = s;. Nonetheless,
the choice of s; has a great impact on the quality of the overall
solution. This is because a bad choice of s; may lead to a low
I'(S) value at the end of the optimization process. The clue to a
good chose is to determine the direction (a row of Y)) which is the
more orthogonal to the others. Such a direction can be obtained by
calculating first the mean vector y = %Zf”: 1vi- Then, by projecting
all the y;’s on y and choosing as §] the y; associated with the highest
residual norm:

ST
~ iy _
§1 = argmax |y; - —H'y_szH (10)

Once, we have in hand the first vector §1, we apply the process
described above to get the n — 1 remaining vectors and to form an
estimate of the source matrix S = (§1,52,...,8,). The complexity
of the selection process requires, at most, O(nzmz) steps. Indeed, it
includes n steps of m linear projections of vectors in IR on a basis

containing, at most, n — 1 vectors. Finally, an estimate of the mixing
matrix is obtained via (1).

Function 1 DEDS(X) — (A,S)
1. n+— rank(X)

2. X* «— Dual(X)

3. S «— OptGramDet(X*T X n)
4. A—XxS"

5. RESULTS

We compared the blind source separation results obtained by the
DEDS algorithm presented in this paper with those obtained by the
JADE algorithm [8]. The latter has been chosen because it has
proved to be able to effectively separate a wide variety of signals
without resorting to parameter tuning. We have carried out experi-
ments involving real source signals from two origins:

e Nuclear magnetic resonance (NMR) spectra resulting from the
analysis of chemical organic compounds [2]. We experimented
on four source signals, each of which is composed of 7000 sam-
ples.

e Four of the EEG signals available on the ICALAB site [16]
sampled over 512 frequency slots after conversion to the
frequency domain.

The source signals were subsequently mixed according to the
model described by (2). The mixing matrices were generated at
random. Their elements are normally distributed with zero mean
and unit variance. To show the impact of the mixing process on
the performances of both algorithms, we experimented with three
groups of mixing matrices. In each group, the determinants of the
mixing matrices were varied in a specified interval. We used the
following intervals: 0.5+0.1, 0.05£0.01 and 0.005 £ 0.001.

The additive noise is assumed to be white and Gaussian with
uncorrelated samples having a variance which is assumed to be uni-
form over the rows of matrix N. The signal-to-noise ratio (SNR)
was varied from 2 to 20 dB by a step of 2 dB. Each point appearing
in the graphics of Figures 1 to 3 corresponds to the mean value of
the performance index obtained on 1000 problem instances.

As a measure of algorithm performances, we used the Amari
performance index [9] which is a real number varying in [0,1]. A
signal separation is all the more correct as the value of the Amari
performance index is close to zero.

Figures 1 to 3 depict the variation of the Amari performance
index obtained in the various experiments. Each figure corresponds
to one of the instance groups described above. In each graphic, we
fixed the quality of the mixing process and the source signals from
which the data are constructed and varied the signal-to-noise ratio.

By having a close look at the maximum and minimum points of
the various curves, we can see that the quality of the mixing process
is the most influential parameter. Indeed, the performances of both
algorithms significantly degrade as the determinants of the mixing
matrices decrease. On the other hand, the relevance of the signal-to-
noise ratio is obvious with the exception of an unexplained behavior
of JADE observed on the EEG instances of Figure 3 where we can
see a weak rise of the performance index after having reached a
minimum at 12 dB.

Now we turn to the comparison between the two algorithms.
The quality of the mixing process has proved to be the parameter
which affects the performance ratio of the two algorithms more. In-
deed, on the two first groups of instances, i.e., those corresponding
to the good and the medium mixing processes, DEDS is almost al-
ways superior to JADE. However, when we consider the third group
of instances (A(A) = 0.005), the trend is partially inverted in the
experiment involving the NMR signals. This suggests that JADE
is less sensitive to a degradation of the mixing process. Nonethe-
less, a compensation phenomenon seems to take place as we con-
sider widely dependent source signals (EEG signals). And we are
tempted to say that the performance deterioration that can be sus-
tained by DEDS due to a bad mixing process can be recovered by a
poor performance of JADE due to statistical dependence of signals.
On the other hand, it is rather difficult to draw any general conclu-
sion concerning the effect of the signal-to-noise ratio on the perfor-
mance ratio of the two algorithms. On the first and third instance
groups, the effect of the signal-to-noise ratio seems to be hidden by
the effect of the mixing process quality. Conversely, on the second
instance group, we can see (Figure 2) a rise in the performance ratio
in favor of DEDS as the signal-to-noise ratio increases.

6. CONCLUSION

This paper presented a new blind source separation method which
can be applied to nonnegative and statistically dependent source sig-
nals. The blind separation problem was expressed as the identifica-
tion of relevant facets of the data cone. This task is achieved by an
effective algorithm which first computes the dual of the data cone
then selects, by means of a greedy process, a promising subset of
source signals from a set of source candidates.

The application of the DEDS algorithm to simulated BSS in-
stances involving real-world source signals showed that its perfor-
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Figure 1: Mean of Amari performance index obtained with DEDS
and JADE algorithms on randomly mixed real life signals. The ran-
dom mixing matrices used in this experiment have their determinant
varying in the interval 0.5+0.1.

A blind source separation technique using second-order statis-
tics, IEEE, Transaction on signal processing, 45 (1997) 434—
444,
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Figure 2: Mean of Amari performance index obtained with DEDS
and JADE algorithms on randomly mixed real life signals. The ran-
dom mixing matrices used in this experiment have their determinant
varying in the interval 0.05+0.01.

mance is highly competitive with one of the most popular blind
separation algorithms: JADE. Further progress can be carried on,
notably by weakening the assumption concerning the distribution
of the source points over the nonnegative orthant. It is also con-
ceivable to extend the method to cope with source signals with real
values (not only nonnegative).
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