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ABSTRACT by adding environmental noise in different signal-to-meoratios.

This paper presents a system for acoustic event detection jh'€ Environmental noise is selected from a collection ofapgate
recordings from real life environments. The events are rregtle MPIENt noises where other similar events can be preseneapec
using a network of hidden Markov models; their size and togpl & "€alistic polyphonic fragment. Similar classificatiorpenments
is chosen based on a study of isolated events recognitiorale are also run on real-life (ecordlngs, with the purpose osilging
studied the effect of ambient background noise on evensiflas € MOst prominent audio event in segments of various sibe.
cation performance. On real life recordings, we testedgaiton (St Ségments are provided by manual annotation, as it wihb
of isolated sound events and event detection. For eventtitste ~ Pained later. Afinal experiment is the detection of audieres in
the system performs recognition and temporal positioniihg se- !ong recordings, which |ncludes recognition and tempoositon-
quence of events. An accuracy of 24% was obtained in clasgify ing of a sequence of evgnts W'th'.n the recF)rdlng.l
isolated sound events into 61 classes. This corresponde tac: The paper is organized as it follows: Section 2 presents an

curacy of classifying between 61 events when mixed with ambi OVerview of audio scene recognition and event detectiotissuve
background noise at 0dB signal-to-noise ratio. In eveneatn, ~ [INd relevant to our work. Section 3 presents the tests cogeso-
the system is capable of recognizing almost one third of veets lated sound event classification. Section 4 describes thedfimice

and the temporal positioning of the events is not correc8ftr of ~ [oF the recognition system stucture, the database of rieatdtord-
the time. ings and the experimental results in classifying and detgetudio
events in the recordings. Section 5 presents discussioo@mdu-
1 INTRODUCTION sions and the orientation towards future work.
Audio streams, such as broadcast news, meeting recordings, 2. PREVIOUS WORK
personal videos contain sounds from a wide variety of saures- ) - o )
amples include audio events related to human presence, asuch Most of the previous work classifies an audio signal into ofie o

speech, laughter, or coughing, or to sounds of animalscthjaa-
ture, or situations. The detection of these events is usefgl, for
automatic tagging in audio indexing, automatic sound asisifor
audio segmentation or audio context classification.

predefined classes using standard features such as meéfreg
cepstral coefficients (MFCC) and classifiers such as hiddarkéd
models (HMM) or Gaussian mixture models (GMM). In [3], au-
thors compared various features and classifiers in clasgifiye-

An audio context or scene is characterized by the presence dfveen 24 everyday contexts, such as restaurant, car,yitznad of-

individual sound events. In this respect, we may want to mana fice. The system used MFCCs and their first-order time devivst
a multi-class description of our audio or video files by déteg ~ as features and HMMs with discriminative training for cléisa-
the categories of sound events which occur in a file. For elmp tion. The authors also conducted a listening test to compyere
one may want to tag a holiday recording as being on the "beach’system’s performance to the human abilities. The averagggre-

playing with the "children” and the "dog”, right before thetbrm”
came. These are different level annotations, and while gaelb as
a context could be inferred from acoustic events like wawesd,
and water splashing, the audio events "dog barking” or teih”
should be explicitly recognized, because such acoustictavay
appear in other contexts, too.

The goal of this paper is to present an event detection syfsiem
a large and complex dataset. Previous related work incladd®
scene recognition [1, 2, 3], analysis of video sound tradkS], and
acoustic event detection [6]. Earlier work commonly corsitbnly
a rather limited number of audio events in a small set of aedio-
ronments. The work presented in this paper extends the deted-
tion task to a comprehensive set of event-annotated audieriala
from everyday environments. We consider the task of reciggi
and locating audio events in polyphonic long recordings. use
the term "polyphonic” for denoting recordings in which theare
overlapping events, and at one instant of time there is nitdtian
for the number of event sound sources that can be present.

tion accuracy of the system was 58%, against 69% obtaindtkin t
listening tests, in recognizing between 24 everyday casteXhe
accuracies in recognizing six high-level classes were 8@#/tHe
system and 88% for the humans.

The work in [7] deals with direct audio context recognition.
Individual events are considered to be characteristichefaudio
scene, and are not modeled themselves, but included in sodel
the contexts. The events and contexts are chosen such timét-to
imize overlapping. The authors present results for clgssif 14
different contexts using MFCCs and matching pursuit festpuos-
ing fixed length segments in training and testing.

In [2], the authors propose unsupervised clustering of éste
ing events recorded automatically in an office environmehhe
"interesting” events are detected by continuous monitpafback-
ground noise and then clustered into discrete categorieg ugsu-
pervised k-means. Authors of [4] propose a framework foedgbn
of key audio effects in a continuous stream. They use 10 aefdio
fects, distinct enough to be perceived, modeled using HMIlls w

Our experiments comprise three parts. First, a study of the e parameters trained using isolated audio effects from Wed,dz-

fect of hidden Markov model (HMM) size and topology for clidiss
cation performance is performed using a database of isb&aidio
events. On the same database, we study the effect of thelmolyp

1This work was financially supported by the Academy of Finland
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code the optimal sequence using the Viterbi algorithm.

Acoustic information is used also for finding interestingse
ments of video in video content analysis. Authors of [5] présan
audio keyword generation system for sports videos baseddio a
They use HMM s for classifying semantic events and a suppat v
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Figure 1: Isolated events classification performance fffedint  Figure 2: Isolated event classification performance undeying
size and type models. SNR conditions.

tor machine (SVM) classifier for finding audio keywords insec  the average length of the audio events; this did not resuitgher
basketball and tennis videos. Audio event detection candinde  performance. Most of the fully-connected models becamgadia
also in healthcare monitoring for elderly people [8] or astiased nalized during the training. Based on the simulations, ftemps
surveillance [1]. that a three-state left-to-right HMM with 4 to 16 mixture déres
Efforts on acoustic events detection are presented in the. CH per state is a good choice for modeling audio events.
project in their CLEAR evaluation [6]. The goal of the acous-  We conducted an additional study of how the environment rich
tic event detection task is to detect and recognize a closedfs ness influences the recognition of events. To simulate aralatu
pre-defined acoustic events. The evaluation data consi$t@er-  polyphonic environment, we studied the effect of differsignal-
lapping acoustic events occurring in the CHIL lecture anétng  to-noise ratios, the signal being the event to be recognazeti
corpus. Participants to the CLEAR evaluation proposed %8ys  ngjse” being selected from a database of ambient ndisesm-
based on HMMs and one on SVMs; the best performing systemjent noise samples were chosen from the same 9 contexéslass
used HMMs and AdaBoost for feature selection[9]. Our prebos the sound effects. The background samples were randonelgtsel
consisted of fully connected HMMs, using MFCCs and optimalfor each sound effect from the same context to which the event
path search decoded using the Viterbi algorithm [10]. longs, and the same background sample was used for theediffer
Despite the research done so far, reliable detection and cagNR-cases. The results of sound effects classificationrwadging
egorization of audio events from everyday audio is not n&atur SNR conditions is presented in Figure 2 for a three-state Ha&M
enough for practical applications, such as automatic imdeef 5 function of the number of gaussians per state. It can beraéxse
video sound tracks. The presented research contributéeteld  how the performance decreases considerably with the inted
by presenting a detailed evaluation of an HMM-based eveteicdle  olyphony. This happens also in everyday life; when the stiou
tion system on a realistic and diverse set of audio material. power of the environmental noise is too high compared toviddal

events, we simply do not hear or recognize them anymore.
3. ISOLATED EVENTS CLASSIFICATION

In order to select the appropriate size and type of audioteved- 4. EVENT DETECTION IN REAL LIFE RECORDINGS
els, we performed preliminary tests for isolated sound ged@n. . . .
For this, a collection of isolated sound effects was setefitam the [N the event detection in real life recordings, two tasks evalu-
Stockmusic online sample databasand organized into 61 classes. ated: classification of isolated events in polyphonic rdows and
This database contains a total of 1359 samples belonginglib 9 Qetectlon of events in continuous sequences. For c.IaSl_nmcaf
ferent contexts: crowd, hallway, household, human, nanffice, ~ isolated events, the test data provided to the recognizesists of
outdoors, shop, vehicles. a short segment of_audlo containing one specific event, budeh-
Samples from these classes were randomly selected either f8€nt can have a rich content meaning that other events may als
the training set (70%) or to the testing set (30%). The trajni be present on the duration of th.e target event to be recognies
and testing set randomization was done five times and thegeer taskis similarto the SNR experiments from Section 3. In twia-
performance was calculated. Isolated event recogniticimale-  {iC event detection, the system also needs to temporaliyiposhe
mented for the 61 event classes, using MFCC based featudes aRvents. The test data consists of an entire track, and thersys
HMMSs. We chose the same parametrization method as in [18]. Si performs segmentation and classification simultaneously.
teen MFCCs were extracted from 20 ms long Hamming-windowed
frames with 50% frame overlap and 40 mel-bands spanning¢he f 4.1 System description
quency range up to the Nyquist frequency were simulated én th
frequency domain. The zeroth order coefficient was dischrdie
addition to the static MFCC coefficients, we appended thedird
second time derivatives. Using these features, an HMM veased o> h .
for each audio event class ?Jsing the Expectation-Maxinaizat MFCCs. The parame.zterllzatlon was the same as in Section 3,
(EM) algorithm. In the classification stage, the likelihoofdeach For event classification, the class corresponding to theeinod
HMM producing the test observation sequence was obtainied us resulting in the largest likelihood for the test observatsequence

the Viterbi algorithm, and the event was selected as the omrec IS CN0Sen as recognition result. For event detection, the@dels
sponding to the HMM giving the largest likelihood. are connected into a network HMM, having equal transitiasbpr

Figure 1 presents the recognition rates for different size a Pilities from one event model to another. The detection tasout
type of HMMs and number of gaussians per state. At a suffigient IS @n unrestricted sequence of the 61 models, where any madel
high number of gaussians per state, the system attains iisTam  [0llow any other and there is no limit for the number of everitse
possible performance for the task, which in our case is 54%o OPtimal sequence of events is decoded using the Viterbrittigo.
events. We also tried adjusting the number of states acupiio The output of the system contains the timestamps for theyrézed

The system for event detection consists of 61 event claseinod
represented by three-state left-to-right HMMs with 16 gaaiss per
state. The set of features used for constructing the modelthe

Lhttp://stockmusic.com/ 2http://www.sound-ideas.com/
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Figure 3: Count-based probabilities for the event clasatsitated for the entire database. The histogram is doeihay "speech”, as it is
the most frequently annotated event, appearing in all tberded contexts.

events, assuming that the system will indicate the most jpremt
event at a given polyphonic segment.

Table 1: Number of events extracted for each context of tberck

ings
4.2 Database of real life recordings basketballl 990 T beach 738
For the modeling and recognition of acoustic events we ctate bus 1729 | car 582
long recordings (10 to 30 min each) from ten different acioust- office 1220 | hallway 822
vironments (see the list in Table 1). All the recordings ar@dm restaurant| 780 | shop 1797
using a binaural setup, where a person is wearing the miorgsh Street 827 | tracknfield | 793

in his ears during the recording. The recording equipmensisis

in a Soundman OKM Il Klassik/studio A3 electret microphond a
Roland Edirol R-09 wave recorder using 44.1 kHz sampling rat
and 24bit resolution.

The events in the recordings were manually annotated by spe
ifying the name and exact location (start and end time) oheac
audible event within the files. For each context there are 84to
recordings, with a total of 103 recordings in the databaséhiww
each context there are from 9 to 16 annotated event classaling
to 61 event classes, and there are many event classes agpeari
multiple contexts. We formed distinct classes for eventzeaping
at least 10 times, while more rare events are included inssd&
beled as "unknown”. Figure 3 illustrates the event classektheir
frequencies of occurrence within the database. The classeasot
balanced, some events are very frequent, while other ayeceen-
mon, as it is expected in a natural environment.

The data was split into non-overlapping training and tessiets
such that in five folds all the material gets tested. Indiaidevent
instances as annotated are used for training. The feataremé
event instance were calculated directly from the polypbanix-
ture, in the region of each track that was annotated as hakiatg
event present. In the case when more events appear sinultspe
the same part of the track (therefore the same observatichorg
was assigned to all the event classes present in that segifieat
observations for individual events were used to construadtets for
each class. Table 1 presents information about the numtesreot
instances extracted from each context.

4.3 Event classification

In this experiment we are interested in recognizing one tegen
presented test segment, considering that the system wetiltiig the
most prominent event in that segment. The experiments ware p
formed in the described five fold setup. In this case, thedatt is
segmented into chunks containing one event, accordinget@mh
notated start and end times for each event instance. Thgsesats

Table 2: Acoustic event classification evaluated usinggisine,
two and three-best list

3-best
441 %

2-best
35.4%

one best
23.8%

accuracy

are similar to the data used for training the event classeghis
respect, the task is isolated event classification, but pétiiphonic
audio, where other events may also be present on the durtiba
target event to be recognized.

The average recognition accuracy is 23.8%, and some event
classes have zero recognition rate. The confusion matrprés
sented in Figure 4, and the recognition rates for individiasses
are presented in Figure 5. There are cases when one evest clas
is not present both in training and testing, thus we expeict iie
wrongly classified, while in other cases there may be acoasénts
that are more prominent for a given segment than the target-on
for example water splashing is often recognized as wind eestr
which is a concurrent event in the beach recordings. To tatioesic-
count the possibility of recognizing multiple superimpdsents,
we chose from one to three best scoring models for each tégted
The results of the experiments are presented in Table 2. e e
uation considers an event to be correctly recognized if tgl@his
among one to three most likely models.

In the SNR experiments from Section 3, the recognition rates
drop with approximately 10% every 5 dB. At the 0dB level, tha<
current background ambient noise has the same level asahetac
event to be classified. At that value, the recognition rateois-
parable with the results obtained for the real life recogdin This
suggests that the level at which our annotator could sty hear
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Figure 4: Confusion matrix for event classification. Thedistpre-
sented in the figure represent every fifth event class in aigptical
order.

and annotate a distinct sound event is when the acousticrpafwe
the power is approximately the same as the power of the ezt i

4.4 Event detection

As mentioned, for the event detection task, the optimal eegel
of events is decoded using the Viterbi algorithm within tlys-s
tem HMM network, assuming that the system will indicate thestn
prominent event at a given time. The output contains the atat
end times for the recognized events, marked as the points thiee
search path goes from one event model to another.

Prior knowledge of the events frequency of occurrence can b
used in the detection. This information is presented as malized
histogram of the event counts, as illustrated in Figure 3=sehare
prior probabilities for the event classes. The likelihoofithe event
classes during recognition will be multiplied by their prvobabil-
ities in order to determine a posterior probability thatllien be
used in the Viterbi search.

Table 3: Acoustic event detection evaluation results

system Precision| Recall | Accuracy
no priors 38.9% 24.5% | 30.1%
using priors| 39.6% 24.2% | 30.0%

Table 4: Acoustic event detection error

system missed | false substitu- | overall
events | alarms| tions error

no priors 60.6% | 1.4% 22.1% 84.1%

using priors| 60.7% | 1.4% | 21.8% 84.0%

output lies between the timestamps of at least one annotstad
and the annotated label and system output are similar. The-an
tated sound event is considered correctly detected if thergs at
least one system output whose temporal centre is situatacbe
the timestamps of annotated sound event and the labelsaitarsi
or if the temporal centre of the annotated sound event liesden
the timestamps of at least one system output and the lateessrar
ilar. The results are presented in Table 3.

The temporal resolution of the detected acoustic events is
scored using the metric for Speaker Diarization, adaptededask
of audio event detection in the CLEAR evaluation. A one-t@-o0
mapping of the reference acoustic events to the acoustitsoet-
put by the system is computed, and the measure is the agigregat
over all reference acoustic events of the time that is jpiattributed
to both the reference and the corresponding system outpustc
event to which that reference events are mapped. This is ctatdp
over all audio segments, including regions of overlapping.

The overall error scor&R will be computed as the fraction of
the time that is not attributed correctly to an acoustic éven

e
Z{dur(seg) # maX(Nref , Ngys) — Neorrect) }
Sy

=R S {dur(se) * Neo ]
Sy

where the audio data is divided into adjacent segments wiarser

As a performance evaluation measure for the events detectioygincide with the points where either a reference or a systetput
we use the accuracy evaluation metric from the CLEAR 200F eva 5.4 stic event starts or stops, so that for the given segriiest

uation. This metric is used to score detection of relevanuatic
events (AE). It does not take into account temporal coirmaigeof
the annotated and system output timestamps. It is defineleas t
F-score (the harmonic mean between precision and recalljhe
evaluation, the balanced F-score was used:

Precision x Recal |

S W aihhah il
ACC = 2% Brecision T Recall

where
. number of correct system output AEs
Precision =
number of all system output AEs
and
number of correctly detected reference AEs
Recall =

number of all reference AEs

The system output is considered correct if there existsat le
one annotated sound event whose temporal centre is sitbated
tween the timestamps of the system output, and the anndédted
and system output are similar, or if the temporal centre e&ystem

12

number of current reference AEs and the number of systenubutp
AEs do not change. For each segmaagt dur is the duration of the
seg, Nret is the number of reference AEs $ag, Ngys is the number

of system output AEs iseg andNcorrect IS the number of reference
AEs inseg which have a corresponding mapped system output AEs
in sy .

The overall detection error of the system and some detailatab
the errors are presented in Table 4. The total amount of dcore
time is 920 min; this represents the added duration of albtated
events, being 2.5 times more than the actual time covered/éry o
lapping events. The overall acoustic event detection effrttre pre-
sented system for the 61 event classes is 84.1% of the tataddsc
time.

Using the prior information based on overall events couids d
not improve the results for event detection. Such direchtooay
not reflect the true probability of events in different codge be-
cause of averaging over all the contexts, the histogramgorgi3
is dominated by "speech”. Indeed, speech is present in@ltom-
texts and it overlaps practically all other events, and gists a lot
of confusions in the classification.

In the audio events detection of the CLEAR evaluation, the
best system score was 36.3% accuracy and 99.5% detectmn err
In comparison, our system has a lower detection error for ahmu
higher number of classes, but the accuracy of recognititowisr.
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Figure 5: Event classification performance of individuasdes

5. CONCLUSIONS

This paper presented a detailed evaluation of an HMM-bagewt e
detection and classification system using recordings ofltter-
ent natural environments. Three different tests were peréd. A
study of the topology and size of the selected models wasipeed
on a database containing isolated audio events, obtainmegxa
mum performance of 54% for the three-state left-to right rly-
connected HMMs. Based on these results, we selected astatse-
left-to-right model for the subsequent experiments. Weqoared

a similar event classification task on the real-life recogdi, obtain-
ing a recognition performance of 24%. Similar performan@sw
obtained in isolated events recognition with with backgmbuoise
mixed at 0 db SNR, suggesting that this is the level where Imsma
can clearly hear and annotate an audio event in a naturagxtont
For detecting successive events in a long recording, thpased
system has an accuracy of 30% for 61 classes and a deteation er
of 84.1%. Using prior information based on overall eventraatid
not bring any improvement. We think this is due to adding up al
the events from different environments, which averagesteutlif-
ferences in count between events specific to certain envieois.
Our future work will consider e.g. using missing featurehteicues
for improving the event detection robustness in polyphanig-
tures. The current event detection system is used in an aodiext
recognition system based on acoustic events.
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