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ABSTRACT

This paper presents a system for acoustic event detection in
recordings from real life environments. The events are modeled
using a network of hidden Markov models; their size and topology
is chosen based on a study of isolated events recognition. Wealso
studied the effect of ambient background noise on event classifi-
cation performance. On real life recordings, we tested recognition
of isolated sound events and event detection. For event detection,
the system performs recognition and temporal positioning of a se-
quence of events. An accuracy of 24% was obtained in classifying
isolated sound events into 61 classes. This corresponds to the ac-
curacy of classifying between 61 events when mixed with ambient
background noise at 0dB signal-to-noise ratio. In event detection,
the system is capable of recognizing almost one third of the events,
and the temporal positioning of the events is not correct for84% of
the time.

1. INTRODUCTION

Audio streams, such as broadcast news, meeting recordings,and
personal videos contain sounds from a wide variety of sources. Ex-
amples include audio events related to human presence, suchas
speech, laughter, or coughing, or to sounds of animals, objects, na-
ture, or situations. The detection of these events is useful, e.g., for
automatic tagging in audio indexing, automatic sound analysis for
audio segmentation or audio context classification.

An audio context or scene is characterized by the presence of
individual sound events. In this respect, we may want to manage
a multi-class description of our audio or video files by detecting
the categories of sound events which occur in a file. For example,
one may want to tag a holiday recording as being on the ”beach”,
playing with the ”children” and the ”dog”, right before the ”storm”
came. These are different level annotations, and while the beach as
a context could be inferred from acoustic events like waves,wind,
and water splashing, the audio events ”dog barking” or ”children”
should be explicitly recognized, because such acoustic event may
appear in other contexts, too.

The goal of this paper is to present an event detection systemfor
a large and complex dataset. Previous related work includesaudio
scene recognition [1, 2, 3], analysis of video sound tracks [4, 5], and
acoustic event detection [6]. Earlier work commonly considers only
a rather limited number of audio events in a small set of audioenvi-
ronments. The work presented in this paper extends the eventdetec-
tion task to a comprehensive set of event-annotated audio material
from everyday environments. We consider the task of recognizing
and locating audio events in polyphonic long recordings. Weuse
the term ”polyphonic” for denoting recordings in which there are
overlapping events, and at one instant of time there is no limitation
for the number of event sound sources that can be present.

Our experiments comprise three parts. First, a study of the ef-
fect of hidden Markov model (HMM) size and topology for classifi-
cation performance is performed using a database of isolated audio
events. On the same database, we study the effect of the polyphony

1This work was financially supported by the Academy of Finland.

by adding environmental noise in different signal-to-noise ratios.
The environmental noise is selected from a collection of appropriate
ambient noises where other similar events can be present to create
a realistic polyphonic fragment. Similar classification experiments
are also run on real-life recordings, with the purpose of classifying
the most prominent audio event in segments of various sizes.The
test segments are provided by manual annotation, as it will be ex-
plained later. A final experiment is the detection of audio events in
long recordings, which includes recognition and temporal position-
ing of a sequence of events within the recording.

The paper is organized as it follows: Section 2 presents an
overview of audio scene recognition and event detection studies we
find relevant to our work. Section 3 presents the tests covering iso-
lated sound event classification. Section 4 describes the final choice
for the recognition system stucture, the database of real life record-
ings and the experimental results in classifying and detecting audio
events in the recordings. Section 5 presents discussion andconclu-
sions and the orientation towards future work.

2. PREVIOUS WORK

Most of the previous work classifies an audio signal into one of
predefined classes using standard features such as mel-frequency
cepstral coefficients (MFCC) and classifiers such as hidden Markov
models (HMM) or Gaussian mixture models (GMM). In [3], au-
thors compared various features and classifiers in classifying be-
tween 24 everyday contexts, such as restaurant, car, library, and of-
fice. The system used MFCCs and their first-order time derivatives
as features and HMMs with discriminative training for classifica-
tion. The authors also conducted a listening test to comparethe
system’s performance to the human abilities. The average recogni-
tion accuracy of the system was 58%, against 69% obtained in the
listening tests, in recognizing between 24 everyday contexts. The
accuracies in recognizing six high-level classes were 82% for the
system and 88% for the humans.

The work in [7] deals with direct audio context recognition.
Individual events are considered to be characteristics of the audio
scene, and are not modeled themselves, but included in models of
the contexts. The events and contexts are chosen such that tomin-
imize overlapping. The authors present results for classifying 14
different contexts using MFCCs and matching pursuit features, us-
ing fixed length segments in training and testing.

In [2], the authors propose unsupervised clustering of interest-
ing events recorded automatically in an office environment.The
”interesting” events are detected by continuous monitoring of back-
ground noise and then clustered into discrete categories using unsu-
pervised k-means. Authors of [4] propose a framework for detection
of key audio effects in a continuous stream. They use 10 audioef-
fects, distinct enough to be perceived, modeled using HMMs with
parameters trained using isolated audio effects from Web, and de-
code the optimal sequence using the Viterbi algorithm.

Acoustic information is used also for finding interesting seg-
ments of video in video content analysis. Authors of [5] present an
audio keyword generation system for sports videos based on audio.
They use HMMs for classifying semantic events and a support vec-
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Figure 1: Isolated events classification performance for different
size and type models.

tor machine (SVM) classifier for finding audio keywords in soccer,
basketball and tennis videos. Audio event detection can finda use
also in healthcare monitoring for elderly people [8] or audio-based
surveillance [1].

Efforts on acoustic events detection are presented in the CHIL
project in their CLEAR evaluation [6]. The goal of the acous-
tic event detection task is to detect and recognize a closed set of
pre-defined acoustic events. The evaluation data consistedof over-
lapping acoustic events occurring in the CHIL lecture and meeting
corpus. Participants to the CLEAR evaluation proposed 5 systems
based on HMMs and one on SVMs; the best performing system
used HMMs and AdaBoost for feature selection[9]. Our proposal
consisted of fully connected HMMs, using MFCCs and optimal
path search decoded using the Viterbi algorithm [10].

Despite the research done so far, reliable detection and cat-
egorization of audio events from everyday audio is not mature
enough for practical applications, such as automatic indexing of
video sound tracks. The presented research contributes to the field
by presenting a detailed evaluation of an HMM-based event detec-
tion system on a realistic and diverse set of audio material.

3. ISOLATED EVENTS CLASSIFICATION

In order to select the appropriate size and type of audio event mod-
els, we performed preliminary tests for isolated sound recognition.
For this, a collection of isolated sound effects was selected from the
Stockmusic online sample database1, and organized into 61 classes.
This database contains a total of 1359 samples belonging to 9dif-
ferent contexts: crowd, hallway, household, human, nature, office,
outdoors, shop, vehicles.

Samples from these classes were randomly selected either to
the training set (70%) or to the testing set (30%). The training
and testing set randomization was done five times and the average
performance was calculated. Isolated event recognition was imple-
mented for the 61 event classes, using MFCC based features and
HMMs. We chose the same parametrization method as in [10]. Six-
teen MFCCs were extracted from 20 ms long Hamming-windowed
frames with 50% frame overlap and 40 mel-bands spanning the fre-
quency range up to the Nyquist frequency were simulated in the
frequency domain. The zeroth order coefficient was discarded. In
addition to the static MFCC coefficients, we appended the first and
second time derivatives. Using these features, an HMM was trained
for each audio event class using the Expectation-Maximization
(EM) algorithm. In the classification stage, the likelihoodof each
HMM producing the test observation sequence was obtained using
the Viterbi algorithm, and the event was selected as the one corre-
sponding to the HMM giving the largest likelihood.

Figure 1 presents the recognition rates for different size and
type of HMMs and number of gaussians per state. At a sufficiently
high number of gaussians per state, the system attains its maximum
possible performance for the task, which in our case is 54% for 61
events. We also tried adjusting the number of states according to

1http://stockmusic.com/

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

20

30

40

50

number of gaussians

R
ec

og
ni

tio
n 

ra
te

 %

 

 

clean
10 dB
5 dB
0 dB
−5 dB
−10 dB

Figure 2: Isolated event classification performance under varying
SNR conditions.

the average length of the audio events; this did not result inhigher
performance. Most of the fully-connected models became diago-
nalized during the training. Based on the simulations, it appears
that a three-state left-to-right HMM with 4 to 16 mixture densities
per state is a good choice for modeling audio events.

We conducted an additional study of how the environment rich-
ness influences the recognition of events. To simulate a natural
polyphonic environment, we studied the effect of differentsignal-
to-noise ratios, the signal being the event to be recognizedand
”noise” being selected from a database of ambient noises2. Am-
bient noise samples were chosen from the same 9 context classes as
the sound effects. The background samples were randomly selected
for each sound effect from the same context to which the eventbe-
longs, and the same background sample was used for the different
SNR-cases. The results of sound effects classification under varying
SNR conditions is presented in Figure 2 for a three-state HMMas
a function of the number of gaussians per state. It can be observed
how the performance decreases considerably with the introduced
polyphony. This happens also in everyday life; when the acoustic
power of the environmental noise is too high compared to individual
events, we simply do not hear or recognize them anymore.

4. EVENT DETECTION IN REAL LIFE RECORDINGS

In the event detection in real life recordings, two tasks areevalu-
ated: classification of isolated events in polyphonic recordings and
detection of events in continuous sequences. For classification of
isolated events, the test data provided to the recognizer consists of
a short segment of audio containing one specific event, but the seg-
ment can have a rich content meaning that other events may also
be present on the duration of the target event to be recognized. This
task is similar to the SNR experiments from Section 3. In the acous-
tic event detection, the system also needs to temporally position the
events. The test data consists of an entire track, and the system
performs segmentation and classification simultaneously.

4.1 System description

The system for event detection consists of 61 event class models
represented by three-state left-to-right HMMs with 16 gaussians per
state. The set of features used for constructing the models are the
MFCCs. The parameterization was the same as in Section 3.

For event classification, the class corresponding to the model
resulting in the largest likelihood for the test observation sequence
is chosen as recognition result. For event detection, the 61models
are connected into a network HMM, having equal transition proba-
bilities from one event model to another. The detection taskoutput
is an unrestricted sequence of the 61 models, where any modelcan
follow any other and there is no limit for the number of events. The
optimal sequence of events is decoded using the Viterbi algorithm.
The output of the system contains the timestamps for the recognized

2http://www.sound-ideas.com/
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Figure 3: Count-based probabilities for the event classes calculated for the entire database. The histogram is dominated by ”speech”, as it is
the most frequently annotated event, appearing in all the recorded contexts.

events, assuming that the system will indicate the most prominent
event at a given polyphonic segment.

4.2 Database of real life recordings

For the modeling and recognition of acoustic events we collected
long recordings (10 to 30 min each) from ten different acoustic en-
vironments (see the list in Table 1). All the recordings are made
using a binaural setup, where a person is wearing the microphones
in his ears during the recording. The recording equipment consists
in a Soundman OKM II Klassik/studio A3 electret microphone and
Roland Edirol R-09 wave recorder using 44.1 kHz sampling rate
and 24bit resolution.

The events in the recordings were manually annotated by spec-
ifying the name and exact location (start and end time) of each
audible event within the files. For each context there are 8 to14
recordings, with a total of 103 recordings in the database. Within
each context there are from 9 to 16 annotated event classes, totalling
to 61 event classes, and there are many event classes appearing in
multiple contexts. We formed distinct classes for events appearing
at least 10 times, while more rare events are included in a class la-
beled as ”unknown”. Figure 3 illustrates the event classes and their
frequencies of occurrence within the database. The classesare not
balanced, some events are very frequent, while other are very com-
mon, as it is expected in a natural environment.

The data was split into non-overlapping training and testing sets
such that in five folds all the material gets tested. Individual event
instances as annotated are used for training. The features for one
event instance were calculated directly from the polyphonic mix-
ture, in the region of each track that was annotated as havingthat
event present. In the case when more events appear simultaneously,
the same part of the track (therefore the same observation vectors)
was assigned to all the event classes present in that segment. The
observations for individual events were used to construct models for
each class. Table 1 presents information about the number ofevent
instances extracted from each context.

4.3 Event classification

In this experiment we are interested in recognizing one event per
presented test segment, considering that the system will identify the
most prominent event in that segment. The experiments were per-
formed in the described five fold setup. In this case, the testdata is
segmented into chunks containing one event, according to the an-
notated start and end times for each event instance. These segments

Table 1: Number of events extracted for each context of the record-
ings

basketball 990 beach 738
bus 1729 car 582
office 1220 hallway 822
restaurant 780 shop 1797
street 827 tracknfield 793

Table 2: Acoustic event classification evaluated using using one,
two and three-best list

one best 2-best 3-best
accuracy 23.8 % 35.4 % 44.1 %

are similar to the data used for training the event classes. In this
respect, the task is isolated event classification, but withpolyphonic
audio, where other events may also be present on the durationof the
target event to be recognized.

The average recognition accuracy is 23.8%, and some event
classes have zero recognition rate. The confusion matrix ispre-
sented in Figure 4, and the recognition rates for individualclasses
are presented in Figure 5. There are cases when one event class
is not present both in training and testing, thus we expect itto be
wrongly classified, while in other cases there may be acoustic events
that are more prominent for a given segment than the target one –
for example water splashing is often recognized as wind on trees,
which is a concurrent event in the beach recordings. To take into ac-
count the possibility of recognizing multiple superimposed events,
we chose from one to three best scoring models for each testedfile.
The results of the experiments are presented in Table 2. The eval-
uation considers an event to be correctly recognized if its model is
among one to three most likely models.

In the SNR experiments from Section 3, the recognition rates
drop with approximately 10% every 5 dB. At the 0dB level, the con-
current background ambient noise has the same level as the acoustic
event to be classified. At that value, the recognition rate iscom-
parable with the results obtained for the real life recordings. This
suggests that the level at which our annotator could still clearly hear
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Figure 4: Confusion matrix for event classification. The labels pre-
sented in the figure represent every fifth event class in alphabetical
order.

and annotate a distinct sound event is when the acoustic power of
the power is approximately the same as the power of the event itself.

4.4 Event detection

As mentioned, for the event detection task, the optimal sequence
of events is decoded using the Viterbi algorithm within the sys-
tem HMM network, assuming that the system will indicate the most
prominent event at a given time. The output contains the start and
end times for the recognized events, marked as the points when the
search path goes from one event model to another.

Prior knowledge of the events frequency of occurrence can be
used in the detection. This information is presented as a normalized
histogram of the event counts, as illustrated in Figure 3. These are
prior probabilities for the event classes. The likelihoodsof the event
classes during recognition will be multiplied by their prior probabil-
ities in order to determine a posterior probability that will then be
used in the Viterbi search.

As a performance evaluation measure for the events detection
we use the accuracy evaluation metric from the CLEAR 2007 eval-
uation. This metric is used to score detection of relevant acoustic
events (AE). It does not take into account temporal coincidence of
the annotated and system output timestamps. It is defined as the
F-score (the harmonic mean between precision and recall). In the
evaluation, the balanced F-score was used:

ACC = 2∗
Precision∗Recall
Precision+Recall

,

where

Precision =
number of correct system output AEs

number of all system output AEs

and

Recall =
number of correctly detected reference AEs

number of all reference AEs

The system output is considered correct if there exists at least
one annotated sound event whose temporal centre is situatedbe-
tween the timestamps of the system output, and the annotatedlabel
and system output are similar, or if the temporal centre of the system

Table 3: Acoustic event detection evaluation results

system Precision Recall Accuracy
no priors 38.9% 24.5% 30.1%
using priors 39.6% 24.2% 30.0%

Table 4: Acoustic event detection error

system missed false substitu- overall
events alarms tions error

no priors 60.6% 1.4% 22.1% 84.1%
using priors 60.7% 1.4% 21.8% 84.0%

output lies between the timestamps of at least one annotatedevent
and the annotated label and system output are similar. The anno-
tated sound event is considered correctly detected if thereexists at
least one system output whose temporal centre is situated between
the timestamps of annotated sound event and the labels are similar,
or if the temporal centre of the annotated sound event lies between
the timestamps of at least one system output and the labels are sim-
ilar. The results are presented in Table 3.

The temporal resolution of the detected acoustic events is
scored using the metric for Speaker Diarization, adapted tothe task
of audio event detection in the CLEAR evaluation. A one-to-one
mapping of the reference acoustic events to the acoustic events out-
put by the system is computed, and the measure is the aggregation
over all reference acoustic events of the time that is jointly attributed
to both the reference and the corresponding system output acoustic
event to which that reference events are mapped. This is computed
over all audio segments, including regions of overlapping.

The overall error scoreER will be computed as the fraction of
the time that is not attributed correctly to an acoustic event:

ER =

∑
seg

{dur(seg)∗max(Nre f ,Nsys)−Ncorrect)}

∑
seg

{dur(seg)∗Nre f }

where the audio data is divided into adjacent segments whoseborder
coincide with the points where either a reference or a systemoutput
acoustic event starts or stops, so that for the given segment, the
number of current reference AEs and the number of system output
AEs do not change. For each segmentseg, dur is the duration of the
seg, Nre f is the number of reference AEs inseg, Nsys is the number
of system output AEs inseg andNcorrect is the number of reference
AEs in seg which have a corresponding mapped system output AEs
in seg .

The overall detection error of the system and some details about
the errors are presented in Table 4. The total amount of scored
time is 920 min; this represents the added duration of all annotated
events, being 2.5 times more than the actual time covered by over-
lapping events. The overall acoustic event detection errorof the pre-
sented system for the 61 event classes is 84.1% of the total scored
time.

Using the prior information based on overall events counts did
not improve the results for event detection. Such direct count may
not reflect the true probability of events in different contexts; be-
cause of averaging over all the contexts, the histogram in Figure 3
is dominated by ”speech”. Indeed, speech is present in all the con-
texts and it overlaps practically all other events, and alsogets a lot
of confusions in the classification.

In the audio events detection of the CLEAR evaluation, the
best system score was 36.3% accuracy and 99.5% detection error.
In comparison, our system has a lower detection error for a much
higher number of classes, but the accuracy of recognition islower.
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Figure 5: Event classification performance of individual classes
.

5. CONCLUSIONS

This paper presented a detailed evaluation of an HMM-based event
detection and classification system using recordings of tendiffer-
ent natural environments. Three different tests were performed. A
study of the topology and size of the selected models was performed
on a database containing isolated audio events, obtaining amaxi-
mum performance of 54% for the three-state left-to right andfully-
connected HMMs. Based on these results, we selected a three-state
left-to-right model for the subsequent experiments. We performed
a similar event classification task on the real-life recordings, obtain-
ing a recognition performance of 24%. Similar performance was
obtained in isolated events recognition with with background noise
mixed at 0 db SNR, suggesting that this is the level where humans
can clearly hear and annotate an audio event in a natural context.
For detecting successive events in a long recording, the proposed
system has an accuracy of 30% for 61 classes and a detection error
of 84.1%. Using prior information based on overall event count did
not bring any improvement. We think this is due to adding up all
the events from different environments, which averages outthe dif-
ferences in count between events specific to certain environments.
Our future work will consider e.g. using missing feature techniques
for improving the event detection robustness in polyphonicmix-
tures. The current event detection system is used in an audiocontext
recognition system based on acoustic events.
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